Preprint: Please note that this article has not completed peer review.
Research article

Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities

Zhigang Min, Hairong Shan, Long Xu, Daihai Yuan, Xuexia Sheng, Wenchao Xie, Zhi-hong Cao
DOI: 10.21203/rs.2.12723/v1

Abstract

Background The purpose of this study was to verify the pathological heterogeneity of white matter hyperintensities (WMHs). We compared diffusion tensor imaging (DTI) metrics within different brain regions using identical grading protocols, and subsequently investigated the microstructural changes in these areas as the WMH progressed. Methods Seventy-three patients with WMH and 18 healthy controls who received DTI were included in this study. We measured fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) of periventricular and deep WMH in six brain regions and grouped these measures according to the Fazekas scale. We then compared the DTI metrics of different regions with the same Fazekas scale grade. Results Significantly lower FA values (all p<0.001), and higher MD (all p<0.001) and DR values (all p<0.001) were associated with WMH observed within the periventricular white matter around the frontal horn (pFH) and the frontal lateral ventricle (pFLV) compared to other regions with the same Fazekas grades. However, in the normal white matter of the pFH and pFLV, FA was not significantly lower than all other regions. Furthermore, in these areas, MD, DA, and DR were not significantly higher than in all other regions. Conclusion Distinct pathological processes occurred within frontal periventricular WMH and other regions; these processes may represent the effects of severe demyelination within the frontal periventricular white matter.

Keywords
White matter hyperintensities; diffusion tensor imaging; pathological processes

Figures

Background

Methods

Results

Discussion

Conclusions

Abbreviations

Declarations

References

Tables

Supplementary Files

Comments (0)

Comments can take the form of short reviews, notes or questions to the author. Comments will be posted immediately, but removed and moderated if flagged.

Learn more about our company.

Preprint: Please note that this article has not completed peer review.
Research article

Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities

Zhigang Min, Hairong Shan, Long Xu, Daihai Yuan, Xuexia Sheng, Wenchao Xie, Zhi-hong Cao

STATUS: In Review

Comments: 0
PDF Downloads: 0
HTML Views: 10

Integrity Check:

  • Article

  • Peer Review Timeline

  • Related Articles

  • Comments

Abstract

Background The purpose of this study was to verify the pathological heterogeneity of white matter hyperintensities (WMHs). We compared diffusion tensor imaging (DTI) metrics within different brain regions using identical grading protocols, and subsequently investigated the microstructural changes in these areas as the WMH progressed. Methods Seventy-three patients with WMH and 18 healthy controls who received DTI were included in this study. We measured fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) of periventricular and deep WMH in six brain regions and grouped these measures according to the Fazekas scale. We then compared the DTI metrics of different regions with the same Fazekas scale grade. Results Significantly lower FA values (all p<0.001), and higher MD (all p<0.001) and DR values (all p<0.001) were associated with WMH observed within the periventricular white matter around the frontal horn (pFH) and the frontal lateral ventricle (pFLV) compared to other regions with the same Fazekas grades. However, in the normal white matter of the pFH and pFLV, FA was not significantly lower than all other regions. Furthermore, in these areas, MD, DA, and DR were not significantly higher than in all other regions. Conclusion Distinct pathological processes occurred within frontal periventricular WMH and other regions; these processes may represent the effects of severe demyelination within the frontal periventricular white matter.

Figures

Background

Methods

Results

Discussion

Conclusions

Abbreviations

Declarations

References

Tables

Learn more about our company.