1 Cordwell, S. J. & Thingholm, T. E. Technologies for plasma membrane proteomics. Proteomics 10, 611-627, doi:10.1002/pmic.200900521 (2010).
2 Josic, D., Clifton, J. G., Kovac, S. & Hixson, D. C. Membrane proteins as diagnostic biomarkers and targets for new therapies. Current opinion in molecular therapeutics 10, 116-123 (2008).
3 Bausch-Fluck, D. et al. The in silico human surfaceome. Proc Natl Acad Sci U S A 115, E10988-E10997, doi:10.1073/pnas.1808790115 (2018).
4 Hormann, K. et al. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations. Journal of proteome research 15, 647-658, doi:10.1021/acs.jproteome.5b01066 (2016).
5 Weekes, M. P. et al. Comparative analysis of techniques to purify plasma membrane proteins. Journal of biomolecular techniques : JBT 21, 108-115 (2010).
6 Sun, B. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins. Proteomics 15, 1152-1163, doi:10.1002/pmic.201400300 (2015).
7 Ozlu, N. et al. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis. The EMBO journal 34, 251-265, doi:10.15252/embj.201385162 (2015).
8 Fellows, C. R., Matta, C., Zakany, R., Khan, I. M. & Mobasheri, A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Frontiers in genetics 7, 213, doi:10.3389/fgene.2016.00213 (2016).
9 Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 (1999).
10 Hunziker, E. B., Kapfinger, E. & Geiss, J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and cartilage 15, 403-413, doi:10.1016/j.joca.2006.09.010 (2007).
11 Kreuz, P. C. et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and cartilage 14, 1119-1125, doi:10.1016/j.joca.2006.05.003 (2006).
12 McCarthy, H. E., Bara, J. J., Brakspear, K., Singhrao, S. K. & Archer, C. W. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Veterinary journal 192, 345-351, doi:10.1016/j.tvjl.2011.08.036 (2012).
13 Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis and rheumatism 50, 1522-1532, doi:10.1002/art.20269 (2004).
14 Nelson, L., McCarthy, H. E., Fairclough, J., Williams, R. & Archer, C. W. Evidence of a Viable Pool of Stem Cells within Human Osteoarthritic Cartilage. Cartilage 5, 203-214, doi:10.1177/1947603514544953 (2014).
15 Williams, R. et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS one 5, e13246, doi:10.1371/journal.pone.0013246 (2010).
16 Holley, R. J. et al. Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem cell reports 4, 473-488, doi:10.1016/j.stemcr.2015.01.007 (2015).
17 Weekes, M. P. et al. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. Journal of proteome research 11, 1475-1484, doi:10.1021/pr201135e (2012).
18 Halfon, S., Abramov, N., Grinblat, B. & Ginis, I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem cells and development 20, 53-66, doi:10.1089/scd.2010.0040 (2011).
19 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006).
20 Horwitz, E. M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7, 393-395, doi:10.1080/14653240500319234 (2005).
21 Almen, M. S., Nordstrom, K. J., Fredriksson, R. & Schioth, H. B. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC biology 7, 50, doi:10.1186/1741-7007-7-50 (2009).
22 Gerter, R., Kruegel, J. & Miosge, N. New insights into cartilage repair - the role of migratory progenitor cells in osteoarthritis. Matrix biology : journal of the International Society for Matrix Biology 31, 206-213, doi:10.1016/j.matbio.2012.01.007 (2012).
23 Koelling, S. et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell stem cell 4, 324-335, doi:10.1016/j.stem.2009.01.015 (2009).
24 Fellows, C. R. et al. Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence. Scientific reports 7, 41421, doi:10.1038/srep41421 (2017).
25 DeVeale, B. et al. Surfaceome profiling reveals regulators of neural stem cell function. Stem cells 32, 258-268, doi:10.1002/stem.1550 (2014).
26 Matta, C., Zhang, X., Liddell, S., Smith, J. R. & Mobasheri, A. Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 20, 572-589, doi:10.3109/1354750X.2015.1130191 (2015).
27 Mindaye, S. T., Ra, M., Lo Surdo, J., Bauer, S. R. & Alterman, M. A. Improved proteomic profiling of the cell surface of culture-expanded human bone marrow multipotent stromal cells. Journal of proteomics 78, 1-14, doi:10.1016/j.jprot.2012.10.028 (2013).
28 Ning, H., Lin, G., Lue, T. F. & Lin, C. S. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochemical and biophysical research communications 413, 353-357, doi:10.1016/j.bbrc.2011.08.104 (2011).
29 Kerkela, E. et al. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells. Stem cells 34, 781-790, doi:10.1002/stem.2280 (2016).
30 Nishihira, S. et al. High-cell density-induced VCAM1 expression inhibits the migratory ability of mesenchymal stem cells. Cell biology international 35, 475-481, doi:10.1042/CBI20100372 (2011).
31 Fan, W. et al. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling. Biochemical and biophysical research communications 474, 338-344, doi:10.1016/j.bbrc.2016.04.101 (2016).
32 Cleary, M. A. et al. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis and cartilage 24, 868-872, doi:10.1016/j.joca.2015.11.018 (2016).
33 Mobasheri, A. et al. The Chondrocyte Channelome: A Narrative Review. Joint Bone Spine, doi:10.1016/j.jbspin.2018.01.012 (2018).
34 Barrett-Jolley, R., Lewis, R., Fallman, R. & Mobasheri, A. The emerging chondrocyte channelome. Frontiers in physiology 1, 135, doi:10.3389/fphys.2010.00135 (2010).
35 Matta, C. & Zakany, R. Calcium signalling in chondrogenesis: implications for cartilage repair. Frontiers in bioscience 5, 305-324 (2013).
36 Pillozzi, S. & Becchetti, A. Ion channels in hematopoietic and mesenchymal stem cells. Stem cells international 2012, 217910, doi:10.1155/2012/217910 (2012).
37 Heubach, J. F. et al. Electrophysiological properties of human mesenchymal stem cells. The Journal of physiology 554, 659-672, doi:10.1113/jphysiol.2003.055806 (2004).
38 Li, G. R., Sun, H., Deng, X. & Lau, C. P. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem cells 23, 371-382, doi:10.1634/stemcells.2004-0213 (2005).
39 Contreras, G. F. et al. A BK (Slo1) channel journey from molecule to physiology. Channels 7, 442-458, doi:10.4161/chan.26242 (2013).
40 Zhang, Y. Y. et al. BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. Journal of cellular physiology 229, 202-212, doi:10.1002/jcp.24435 (2014).
41 Bertram, K. L., Banderali, U., Tailor, P. & Krawetz, R. J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 10, 148-157, doi:10.1080/19336950.2015.1116652 (2016).
42 Tarasov, M. V. et al. Calcium-gated K+ channels of the KCa1.1- and KCa3.1-type couple intracellular Ca2+ signals to membrane hyperpolarization in mesenchymal stromal cells from the human adipose tissue. Pflugers Archiv : European journal of physiology 469, 349-362, doi:10.1007/s00424-016-1932-4 (2017).
43 Suzuki, Y., Ohya, S., Yamamura, H., Giles, W. R. & Imaizumi, Y. A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel alpha Subunit Alters Human Chondrocyte Function. The Journal of biological chemistry 291, 24247-24260, doi:10.1074/jbc.M116.743302 (2016).
44 Karlsson, C. et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis and cartilage 18, 581-592, doi:10.1016/j.joca.2009.12.002 (2010).
45 Matta, C. et al. Purinergic signalling is required for calcium oscillations in migratory chondrogenic progenitor cells. Pflugers Archiv : European journal of physiology 467, 429-442, doi:10.1007/s00424-014-1529-8 (2015).
46 Okamoto, T. et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and biophysical research communications 295, 354-361 (2002).
47 Saeed, A. et al. A thermoresponsive and magnetic colloid for 3D cell expansion and reconfiguration. Advanced materials 27, 662-668, doi:10.1002/adma.201403626 (2015).
48 Ma, B. et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17, 2337-2342, doi:10.1002/rcm.1196 (2003).
49 Matta, C. et al. (figshare, 2018).
50 Sullivan, G. M. & Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J Grad Med Educ 4, 279-282, doi:10.4300/JGME-D-12-00156.1 (2012).