Reference
[1] S. J. Algodi, J. W. Murray, P. D. Brown, and A. T. Clare, “Wear performance of TiC/Fe cermet electrical discharge coatings,” Wear, vol. 402, pp. 109–123, 2018.
[2] S. Zhang, K. Han, and L. Cheng, “The effect of SiC particles added in electroless Ni–P plating solution on the properties of composite coatings,” Surf. Coatings Technol., vol. 202, no. 12, pp. 2807–2812, 2008.
[3] D. Kumar, K. Mittal, S. Kataria, S. Kadiyan, and S. Sharma, “Experimental investigation on surface modification of Wc-Co by electric discharge coating process using SiC/Cu green compact tool-electrode,” Int. J. Res. Mech. Eng. Technol., vol. 3, no. 2, pp. 274–278, 2013.
[4] A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[5] X. B. Chen, N. Birbilis, and T. B. Abbott, “Review of corrosion-resistant conversion coatings for magnesium and its alloys,” Corrosion, vol. 67, no. 3, pp. 35001–35005, 2011.
[6] S. M. A. Shibli, B. N. Meena, and R. Remya, “A review on recent approaches in the field of hot dip zinc galvanizing process,” Surf. Coatings Technol., vol. 262, pp. 210–215, 2015.
[7] K. O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales, and B. Sartwell, “The replacement of electroplating,” Surf. Coatings Technol., vol. 81, no. 1, pp. 99–105, 1996.
[8] J. Simao, H. G. Lee, D. K. Aspinwall, R. C. Dewes, and E. M. Aspinwall, “Workpiece surface modification using electrical discharge machining,” Int. J. Mach. Tools Manuf., vol. 43, no. 2, pp. 121–128, 2003.
[9] A. Goto, “Development of electrical discharge coating method,” in Proceeding of International Symposium for Electro-Machining (ISEM XIII), 2001, vol. 2, pp. 581–588.
[10] P. K. Patowari, P. Saha, and P. K. Mishra, “Artificial neural network model in surface modification by EDM using tungsten–copper powder metallurgy sintered electrodes,” Int. J. Adv. Manuf. Technol., vol. 51, no. 5–8, pp. 627–638, 2010.
[11] P. A. Sørensen, S. Kiil, K. Dam-Johansen, and C. E. Weinell, “Anticorrosive coatings: a review,” J. Coatings Technol. Res., vol. 6, no. 2, pp. 135–176, 2009, doi: 10.1007/s11998-008-9144-2.
[12] P. J. Liew, C. Y. Yap, J. Wang, T. Zhou, and J. Yan, “Surface modification and functionalization by electrical discharge coating: a comprehensive review,” Int. J. Extrem. Manuf., vol. 2, no. 1, p. 12004, 2020.
[13] U. Elaiyarasan, V. Satheeshkumar, and C. Senthilkumar, “Experimental analysis of electrical discharge coating characteristics of magnesium alloy using response surface methodology,” Mater. Res. Express, vol. 5, no. 8, p. 86501, 2018.
[14] G. Hammes et al., “Effect of hexagonal boron nitride and graphite on mechanical and scuffing resistance of self lubricating iron based composite,” Wear, vol. 376, pp. 1084–1090, 2017.
[15] M. L. Parucker, A. N. Klein, C. Binder, W. Ristow Junior, and R. Binder, “Development of self-lubricating composite materials of nickel with molybdenum disulfide, graphite and hexagonal boron nitride processed by powder metallurgy: preliminary study,” Mater. Res., vol. 17, pp. 180–185, 2014.
[16] O. N. Çelik, N. Ay, and Y. Göncü, “Effect of Nano Hexagonal Boron Nitride Lubricant Additives on the Friction and Wear Properties of AISI 4140 Steel,” Part. Sci. Technol., vol. 31, no. 5, pp. 501–506, Sep. 2013, doi: 10.1080/02726351.2013.779336.
[17] E. K. Mussada and P. K. Patowari, “Characterisation of layer deposited by electric discharge coating process,” Surf. Eng., vol. 31, no. 10, pp. 796–802, 2015.
[18] M. Eswara Krishna and P. K. Patowari, “Parametric optimisation of electric discharge coating process with powder metallurgy tools using Taguchi analysis,” Surf. Eng., vol. 29, no. 9, pp. 703–711, 2013.
[19] J. W. Murray, R. B. Cook, N. Senin, S. J. Algodi, and A. T. Clare, “Defect-free TiC/Si multi-layer electrical discharge coatings,” Mater. Des., vol. 155, pp. 352–365, 2018.
[20] R. Tyagi, N. K. Mahto, A. K. Das, and A. Mandal, “Preparation of MoS2+ Cu coating through the EDC process and its analysis,” Surf. Eng., vol. 36, no. 1, pp. 86–93, 2020.
[21] R. Tyagi, K. Pandey, A. K. Das, and A. Mandal, “Deposition of hBN+ Cu layer through electrical discharge process using green compact electrode,” Mater. Manuf. Process., vol. 34, no. 9, pp. 1035–1048, 2019.
[22] H. M. Zaw, J. Y. H. Fuh, A. Y. C. Nee, and L. Lu, “Formation of a new EDM electrode material using sintering techniques,” J. Mater. Process. Technol., vol. 89, pp. 182–186, 1999.
[23] T. Moro, N. Mohri, H. Otsubo, A. Goto, and N. Saito, “Study on the surface modification system with electrical discharge machine in the practical usage,” J. Mater. Process. Technol., vol. 149, no. 1–3, pp. 65–70, 2004.
[24] A. Gangadhar, M. S. Shunmugam, and P. K. Philip, “Surface modification in electrodischarge processing with a powder compact tool electrode,” Wear, vol. 143, no. 1, pp. 45–55, 1991.
[25] S. Kumar, R. Singh, T. P. Singh, and B. L. Sethi, “Surface modification by electrical discharge machining: A review,” J. Mater. Process. Technol., vol. 209, no. 8, pp. 3675–3687, 2009.
[26] N. Ahmed et al., “Formation of thick electrical discharge coatings,” J. Mater. Process. Technol., vol. 285, p. 116801, 2020.
[27] J. W. Murray et al., “Dry-sliding wear and hardness of thick electrical discharge coatings and laser clads,” Tribol. Int., vol. 150, p. 106392, 2020.