De novo assembly of Amorpha fruticosa (Amorpha fruticosa L.) transcriptome in response to drought stress provides insight into the tolerance mechanisms
Background
Amorpha fruticosa (Amorpha fruticosa L.) is a deciduous shrub that is native to North America and has been introduced to China as an ornamental plant.In order to cultivate drought-tolerant Amorpha fruticosa varieties, it is important to understand the drought-tolerant mechanism of Amorpha fruticosa. Through the changes of the transcriptome of Amorpha fruticosa under drought stress, the mechanism of anti-stress of Amorpha fruticosa could be revealed. Different concentrations of polyethylene glycol-6000 (PEG-6000) was used to simulate drought stress, and transcriptomic analysis was used to reveal the changes of gene expression patterns in Amorpha fruticosa seedlings.
Results
Results showed that Amorpha fruticosa seedlings were seriously affected by PEG-6000. As for the differently expressed genes (DEGs), most of them were up-regulated. The additional Go and KEGG analysis results showed that DEGs were functionally enriched in cell wall, signal transduction and hormonal regulation related pathways. DEGs like AfSOD, AfHSP, AfTGA, AfbZIP and AfGRX play roles in response to drought stress.
Conclusion
In conclusion, Amorpha fruticosa seedlings were sensitive to drought, which was different from Amorpha fruticosa tree, and the genes functions in drought stress responses via ABA‐independent pathways. The up-regulation of Salicylic acid signal related DEGs (AfTGA and AfPR-1) indicated that Amorpha fruticosa can resist drought stress through Salicylic acid.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
This is a list of supplementary files associated with this preprint. Click to download.
Posted 20 Dec, 2019
De novo assembly of Amorpha fruticosa (Amorpha fruticosa L.) transcriptome in response to drought stress provides insight into the tolerance mechanisms
Posted 20 Dec, 2019
Background
Amorpha fruticosa (Amorpha fruticosa L.) is a deciduous shrub that is native to North America and has been introduced to China as an ornamental plant.In order to cultivate drought-tolerant Amorpha fruticosa varieties, it is important to understand the drought-tolerant mechanism of Amorpha fruticosa. Through the changes of the transcriptome of Amorpha fruticosa under drought stress, the mechanism of anti-stress of Amorpha fruticosa could be revealed. Different concentrations of polyethylene glycol-6000 (PEG-6000) was used to simulate drought stress, and transcriptomic analysis was used to reveal the changes of gene expression patterns in Amorpha fruticosa seedlings.
Results
Results showed that Amorpha fruticosa seedlings were seriously affected by PEG-6000. As for the differently expressed genes (DEGs), most of them were up-regulated. The additional Go and KEGG analysis results showed that DEGs were functionally enriched in cell wall, signal transduction and hormonal regulation related pathways. DEGs like AfSOD, AfHSP, AfTGA, AfbZIP and AfGRX play roles in response to drought stress.
Conclusion
In conclusion, Amorpha fruticosa seedlings were sensitive to drought, which was different from Amorpha fruticosa tree, and the genes functions in drought stress responses via ABA‐independent pathways. The up-regulation of Salicylic acid signal related DEGs (AfTGA and AfPR-1) indicated that Amorpha fruticosa can resist drought stress through Salicylic acid.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6