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Abstract

Fall dormancy (FD) is one of the most important traits of alfalfa (Medicago sativa) for cultivar selection to
overcome winter damage. Regrowth plant height following autumn clipping is an indirect way to evaluate
FD. Although transcriptomics, proteomics analysis, and QTL mapping have revealed some important
genes correlated with FD, the genetic architecture of this trait is still unclear. There are no applicable genes
or markers for selection, which hinders progress in the genetic research and molecular breeding for the
trait. We conducted whole-genome sequencing (WGS) on 220 alfalfa accessions at 10x depth. Among the
875,023 SNPs, seven of them were associated with FD using genome-wide association study (GWAS).
One SNP located on chromosome 6 is in linkage disequilibrium with dehydration-responsive element-
binding protein 1C (DREB1C). Furthermore, seven DREB genes are clustered in this region, one of which
has previously been shown to enhance freezing tolerance in the model plant Medlicago truncatula. The
candidate genes uncovered by our research will benefit the transgenic and CRISPR-Cas9 research of FD in
alfalfa. This gene will also be useful for marker development and assisted selection of FD for alfalfa.

Key Message

Seven SNP associated to fall dormancy in alfalfa and one candidate gene DREB17C were identified using
GWAS method combined with whole genome sequencing.

Introduction

Fall dormancy (FD) is the adaptive growth characteristic of alfalfa in autumn and can be evaluated by the
regrowth plant height at 25-30 days after final cutting (Teuber et al. 1998).

The taller alfalfa grows in the fall, the less dormant it is. The FD level of alfalfa varieties can be classified
from 1 to 11, where 1 represents most dormant and 11 represents least dormant (Teuber et al. 1998).
Dormancy is induced by falling temperature and shortening photoperiod. Dormancy can improve plant
survival in winter and increase freezing tolerance. FD alfalfa cultivars have better winter survival and
hardiness than non-dormant alfalfa cultivars (Barnes et al. 1979; Smith 1961; STOUT 1985; STOUT and
HALL 1989). FD level can be considered one of the indices for alfalfa cultivar selection in specific regions.
There is a trade-off between FD and yield. High FD could increase overwintering ability, but decrease the
potential yield (Avci et al. 2018; STOUT and HALL 1989). Breaking down the linkage between FD and yield
from genetic level could benefit for both yield and winter hardiness. Studying the genetic architecture of
FD could be used to improve those high yield alfalfa cultivars with bad cold tolerance (Li et al. 2015;
Munjal et al. 2018).

The genetic mechanism of FD in alfalfa has been studied using genomics, transcriptomics, and
proteomics. QTL mapping between different FD level alfalfa germplasms has been conducted in several
studies. Seventy-one QTL related to FD traits have been identified, and 15 of them can be detected in more
than one environment (Li et al. 2015). Another study identified 45 significantly associated QTL for FD
(Adhikari et al. 2018). Both of these groups found that FD and winter hardiness have independent
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inheritance and could be improved independently. A gene expression-related experiment showed that a
cold acclimation-responsive gene, RootCAR1, was positively associated with alfalfa winter survival
(Cunningham et al. 2001). More FD-related genes have been found using transcriptomics technology.
Forty-four genes were identified by comparison of the transcriptomes from non-FD versus FD cultivars’
leaves. The transcription of the genes IAA-amino acid hydrolase ILR1-like 1, abscisic acid receptor PYLS,
and monogalactosyldiacylglycerol synthase-3 were suggested to be involved in regulating FD in alfalfa
(Du et al. 2017). Eight significantly differentially expressed transcription factors related to CBF and ABRE-
BFs were identified (Liu et al. 2019). Furthermore, FD-related proteins were analyzed using proteomics and
metabolomics. A total of 90 proteins were different between FD and non-FD alfalfa. One of these was
thiazole biosynthetic enzyme (MsThi), which is important for alfalfa growth (Du et al. 2018). Raffinose
family oligosaccharide (RFO) metabolism was shown to be involved in short photoperiod-induced freezing
tolerance in dormant alfalfa cultivars (Bertrand et al. 2017).

Genome-wide association studies (GWAS) are widely used to locate precise SNPs associated with
phenotypes using historical recombination information. With the development of the sequencing method
and genetic analysis method of GWAS, the candidate SNP markers for important quantitative traits have
been identified across different populations (Biazzi et al. 2017; Wang et al. 2016; Yu et al. 2016). Based on
198 accessions, Longxi-Yu reported a set of GWAS results. It includes 19 SNPs associated with drought
resistance (Zhang et al. 2015). 36 SNPs associated with salt tolerance (Yu et al. 2016), 42 associated with
plant growth and forage production (Liu and Yu 2017), and 131 markers associated with 26 forage quality
traits (Lin et al. 2020). Using the 336 genotypes, Wangzan conducted GWAS for several key alfalfa traits,
including fiber-related traits and digestibility (Wang et al. 2016), crude protein and mineral concentrations
(Jia et al. 2017), and nine biomass-related traits (Wang et al. 2020). Another study reported several SNPs
associated with forage quality using half-sib progeny developed from three cultivars (Biazzi et al. 2017).
Furthermore, several genes were revealed to be related to some important traits of alfalfa. For example,
several stress-responsive genes associated with yield under water deficit were identified, including leucine-
rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and
phospholipase-like protein (Liu and Yu 2017). Two markers linked to NIR-NBS-LRR genes were
significantly associated with Verticillium wilt resistance (Yu et al. 2017). A cell wall biosynthesis gene
associated with several cell wall-related traits that affect alfalfa nutritive value has been identified
(Sakiroglu and Brummer 2017). MSACR11 has an effect on plant height, which could significantly increase
the height of transgenic arabidopsis (Wang et al. 2020).

Although many GWAS have been performed in alfalfa, few of these have focused on FD. Furthermore, with
the lack of reference genome in alfalfa, most previous studies have used the Medicago truncatula genome
as a reference (Sakiroglu and Brummer 2017; Wang et al. 2020; Yu et al. 2017). With the technological
development of the genome assembly, the genome of the cultivar “Zhongmu No.1" has been released. A
flowering locus T homolog gene, MsFTaZ, may be associated with fall dormancy and salt resistance and
was identified using the GWAS method and the new reference genome for alfalfa (Shen et al. 2020).
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In this study, we evaluated FD (we define FD as regrowth plant height at 30 days following autumn
clipping) in 220 accessions and conducted WGS with the mean depth of 10x sequencing for every
accession. A total of 875,023 SNPs were detected in the alfalfa reference genome and used for
conducting GWAS. The objectives of this experiment were (1) evaluate the linkage disequilibrium (LD) and
population structure of alfalfa, (2) identify SNPs associated with FD, and (3) infer the candidate genes
controlling FD.

Materials And Methods

Plant materials and phenotyping

The plant materials used in this study consisted of 220 accessions collected from all over the world.
These accessions include 55 cultivars, 26 cultivated materials, 95 landraces, 4 breeding materials, 16 wild
materials, and 24 uncertain improvement status materials. Among them, 26 accessions come from the
database of the Medium Term Library of National Grass Seed Resources of China. Another 194
accessions come from the database of the U.S. National Plant Germplasm System (USDA GRIN). The
geographic sources of the accessions include China, the United States, Turkey, Afghanistan, Tashkent
Uzbekistan, Spain, Russia, Morocco, France, Argentina, and others (Table S1).

In October 2017, the seeds of 220 accessions were planted in the greenhouse of the Chinese Academy of
Agricultural Sciences (CAAS) in Langfang, Hebei Province, China (39.59°N, 116.59° E). The area has a
continental monsoon climate with an average temperature of 11.9 °C/year. The coldest month is January
with an average temperature of -4.7 °C and the hottest month is July with an average temperature of 26.2
°C. The annual rainfall is 554.9 mm. The soil type is loam soil with the PH value of 7.37 and soil organic
matter content is 1.69%. Individuals were transplanted to the field of CAAS in April 2018. A randomized
complete block design with three replications was used for the experimental design. Every accession
included 5 individuals placed 30 cm apart in a single row for one replication. The accession spacing was
65 cm between rows and columns. To keep all individuals uniform, they were clipped to a height of 5 cm
after transplant. To keep same evaluation standard with field management of alfalfa, all individuals were
clipped at the early flowering stage (when 10% of plants begin flowering). Plants were clipped three times
in 2018 and four times in 2019. Fall dormancy was collected using plant regrowth one month after final
clipping (31 Oct 2018 and 29 Oct 2019). The tallest stem height of one individual was considered FD. The
correlation information between FD of the mean value of different individuals (3 replication x 5
individual=15 individuals) and FD of sequencing individual was analyzed using ggplot2 (Wickham 2011).

The variance of fall dormancy was analyzed using a generalized linear model (GLM) as follows:
height = accession + ind (accession) + year + accession * year + replicates + error

All factors were random, and the GLM was performed using PROC GLM (SAS Institute, 2010). The broad-
sense heritability (H?) was computed as follows:
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where 02 is the variance of accession; 6%, is the interaction variance of accession and year, 02 e

residual variance. The items y and i in the equation refer to the number of years and individuals, respectively.

Sequencing and SNP calling

Phenotyping was conducted on 15 individuals per accession and one individual with the typical
phenotype was selected for sequencing. Young leaves were selected at the early regrowth stage (9 July
2019). Total DNA was extracted using the CWBIO Plant Genomic DNA Kit (CoWin Biosciences, Beijing,
China), according to the manufacturer’s protocol. At least 6 ug of genomic DNA from each accession was
used to construct a sequencing library following the manufacturer's instructions (lllumina Inc.). Paired-end
sequencing libraries with an insert size of approximately 300 bp were sequenced on an Illlumina NovaSeq
6000 sequencer at BerryGenomics company. The data size of every accession is 10 Gb and the average
Q30 is 85%. The raw data has been uploaded to the National Genomics Data Center (NGDC,
https://bigd.big.ac.cn/) under BioProject PRJCA004024 and NCBI Sequence Read Archive with BioProject
ID: PRUNA739212. Sequencing data were first quality filtered using Trimmomatic software with default
parameters (Bolger et al. 2014). Paired-end sequencing reads were mapped to the alfalfa reference
genome (haploid genome with 8 chromosomes (Long et al. 2021)) with BWA-MEM using default
parameters (Li 2013). SAMtools were used to translate SAM file to BAM file and sort BAM files using
default parameters (Li et al. 2009).

Picard Tools was used to mark duplicate reads (http://broadinstitute.github.io/picard/), and Genome
Analysis ToolKit was used to correct indels which can be mistaken for SNPs (Van der Auwera et al. 2013).
SAMtools mpileup and VarScan were used to detect SNPs (Koboldt et al. 2012). Furthermore, SNP data
were filtered using VCFtools (Danecek et al. 2011) with a missing rate of less than 10%, a minor allele
frequency of more than 0.05, and mean read depth greater than 20. The SNP distribution on the
chromosome was generated using the R code from a GWAS study in beef cattle (Zhou et al. 2019).

Population structure and linkage disequilibrium

Population structure was calculated using the TASSEL 5 software with principal component analyses
(PCA) (Bradbury et al. 2007). The 3D PCA results combined with geography information were plotted
using R package scatterplot3d (Ligges and Méachler 2002). The population structure subgroup was
estimated using admixture and the figure was generated using R package pophelper (Francis et al, 2017).
LD information was calculated using the software PopLDdecay with default parameters (Zhang et al.
2019). The VCF file containing information on all 875,023 SNP markers was imported to PopLDdecay. The
LD results among all accessions were used to estimate the LD of alfalfa. The distance versus mean R?
within 30 kb of LD was plotted using R package ggplot2.

Association mapping
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The Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) method was used
to carry out the GWAS (Huang et al. 2019) for two kinds of FD phenotype (sequencing individual and
mean of 15 individuals). GWAS was conducted using the BLINK C version software. The Bonferroni
multiple test correction was used to determine the significant SNP threshold (P=0.01/875,023= 1.14x10-
8). The BLINK method uses iterations to select a set of markers associated with a trait. These associated
markers are fitted as a covariate for testing the remaining markers. This method better controls false
positives than the kinship approach. The real data and simulated data results showed that BLINK has
higher statistical power than other methods, such as MLM, FarmCPU, et al. (Huang et al. 2019). The
Manhattan and Q-Q plots of GWAS results were created using the R package qgman (Turner et al. 2014).

Results

Phenotypic variance

To identify the genetic difference in FD for different individual among the same accession, the variance of
the phenotype was analyzed. The effect of accession, year, individual, and accessions—year interaction
were estimated (Table1). FD was recorded for two years: 2018 and 2019. The FD correlation between
sequencing individual and mean of 15 individuals was used to estimate individual variance. The
correlation R? value was 0.46 and 0.55 in 2018 and 2019. The correlation R? value across two years was
0.47 (Figure 1). The FD correlation R? between 2018 and 2019 among sequencing individuals and
accession mean were 0.41 and 0.27 (Figure S1). The variance of FD in 220 accessions was analyzed
using ANOVA. Significant differences in accession, year, and accession-year interaction were observed at
the 0.001 probability level (p<0.001)). The variation of individuals was not significant at the 0.05
probability level (p=0.12), indicating that the difference in FD between individuals is not big enough and
the mean value can be used to represent the FD of one accession (Table 1). The broad-sense heritability
was 69.2% for FD.

Genotype calling and allele frequencies

A total of 32.2 million SNPs were detected using the BWA-SAMTools-VarScan pipeline. After filtering the
SNPs with a missing value >10%, minimum mean read depth >20, and minor allele frequency (MAF) >0.05,
there were 875,023 SNPs that passed the threshold and were confirmed for further analysis. Among these
875,023 SNPs, the average SNP density in the genome was one SNP per 26.95 bp (among the 814,517
SNP with SNP interval less than 300 bp) (Figure 2a, b). There were 60,506 SNP with an interval larger than
300bp, and the average SNP interval for these was 11128.66 bp (Figure 2b). The distribution of the MAF
value showed that the value equal to 0.06 has the highest density (Figure 2c, detail data not shown). The
SNP number range is similar for MAF values from 0.2 to 0.5 (Figure 2c). These results demonstrate that
the markers can be assigned to unbiased chromosomes and distinct positions.

Population structure

Page 7/23



The accessions used in our research originated from different countries, especially the USDA-GRIN
collection, representing wide coverage of genetic diversity on alfalfa. To analyze population structure, the
genome-wide SNP data generated by WGS was used for principal component analysis (PCA) and
population structure analysis. The PCA scatter-plots showed a weak population structure for the 220
accessions consisting of different geographical origins with no clear subpopulation (Figure 3). In the
scatterplot of PC1-3, most accessions are mixed. But some accessions coming from China can be
separated from those with other origins (red color). Similarly, some accessions from South America can be
separated from the others (cyan color). The accessions from Europe, North America, and other Asia
countries have wide and mixed distribution. The geographic distribution of accessions interacted with PC1
showed similar results and the accessions coming from China and South America were different from
others (Figure S2). The first three PCs explained 2.6%, 1.8%, and 1.2% genetic variance separately; the total
genetic variance explained by the first three PCs is 5.6%. Population structure analyses were conducted by
admixture. The best subgroup was estimated by cross-validation (CV) error with a K value range from 2 to
10. The CV results showed K=3 has the smallest error (Figure S3 and Figure S4). The relationship between
subgroup were illustrated using population structure results from K=2 to K=4. The accessions coming
from China can be separate for K=3. The accessions from South America and Africa can be separate for
K=4 (Figure 4). These mixed clusters indicate that, although accessions come from different geographical
origins, they still have a high degree of genetic relatedness. Furthermore, the variance of FD among
different geographic origins has a similar difference pattern. The accessions coming from Africa have the
highest FD, while the accessions coming from China have lower FD. The FD variance of South America
was in the middle of Africa and China. The FD variance of accessions coming from other origins (Europe,
North America, and other Asia) is either similar to FD in China or South America (Figure S5).

Linkage disequilibrium

To estimate the confidence interval of GWAS results, LD was analyzed using a total of 875,023 markers.
The r? of LD across all chromosomes was used to estimate the LD of alfalfa. A rapid drop in r?> was
observed with the increase in physical distance. Over all the accessions, the value of r> decreased quickly
within 2 kb physical distance, then decreased slowly afterward (Figure 2d). The value of r? decreased to
0.1 after 18 kb across all chromosomes. The results showed that extensive recombination took place
during alfalfa evolution and distribution.

GWAS and candidate genes for FD

To identify SNP markers associated with FD and compare the effect of different kind of phenotype,
genotypic and phenotypic data were analyzed using the Bayesian-information and Linkage-disequilibrium
lteratively Nested Keyway (BLINK) method in the BLINKC version software. SNP effect was calculate using
the BLINK R version Prediction function. Both kind of phenotype (mean of 15 individuals and sequencing
individual) were used to conduct GWAS analysis.

The quantile-quantile (Q-Q) plot results of marker-trait associations for FD were illustrated using observed
versus expected p-values (Figure 5). Any deviation from the expected red line implies SNP association with
Page 8/23



FD. In the present study, a total of four SNPs passed the 1% threshold after a Bonferroni correction
(p<1.14x10-8) and were associated with FD of mean of 15 individuals and three SNPs associated with FD
of sequencing individual (Figure 5, Table 2). Among them, two markers, chr2__23380918 and
chr2__80663885, were located on chromosome 2. In addition, 2 markers (chr6__740339 and SNP
chr6__69737395) were located on chromosome 6. Another three markers associated with FD of
sequencing individual were located on chromosome 5 (chr5__36702273), 7 (chr7_49431088) and 2
(chr2_58174960). The FD difference between different genotypes can be observed in the seven SNP
boxplots. There is no homozygous genotype CC for SNP chr6_740339 and there is no homozygous
genotype TT for SNP chr5_36702273 and no AA for SNP chr2__58174960 (Figure 6). These results may
suggest that CC, TT or AA genotype is the deleterious variance for alfalfa.

To identify potential candidate genes linked to SNP associated with FD, candidate genes were screened
based on the up- and downstream 18 kb LD interval information. Of the seven significantly associated
SNP four of them are linked to known genes in the alfalfa genome (Table 2). There is one candidate gene
(Msa0867660) with the annotated function of signal anchor protein connected to chr6_740339. Only one
gene (Msa0892030), dehydration responsive element binding protein 1C (DREB1C), was connected with
the SNP chr6__69737395 in the 36 kb genomic interval based on LD information (Figure S6). We further
checked the genes near SNP chr6__69737395 with a larger scope (500 kb interval up- and downstream).
Another six DREB genes were found upstream of this SNP (chr6:69234712-69716598). One of the six
genes (Msa08917950) has been validated to be associated with freezing tolerance in Medicago truncatula
(Figure S7) (Chen et al. 2010). The transgenic Medicago truncatula has lower plant height than normal
plants and has better tolerance for freezing. We further checked all DREB genes on chromosome 6, and
found that there were nine in total (Table S2). Another two DREB genes were Msa0893350 and
Msa0893360 (chr6:76949157-76957350). There is only one cluster region with seven DREB genes on
chromosome 6, and this region corresponds to our significant GWAS signal. Another two SNP have more
than one candidate gene. The SNP chr5_36702273 is connected with one hypothetical protein gene
(Msa0729370) and transcription factor FAMA isoform X2 gene (Msa0729380). The SNP chr7__49431088
is connected with two transcription factor bHLH155 genes (Msa1022700 and Msa1022710).

Discussion

The FD variance of alfalfa

Because of the outcrossing and self-incompatibility feature of alfalfa, the genotype between different
individuals is different. Most studies collect phenotypes using cloned plants (Li et al. 2015; Liu and Yu
2017; Sakiroglu and Brummer 2017; Wang et al. 2016). For one study, seed plants of the same accession
were used for phenotype collection (Yu et al. 2016). Compared with cloned plants, the advantages of
using seed plants are that they are easier to establish and have better accession representation.
Furthermore, some experiments and assessment of phenotypes cause damage to the plants, such as
winter survival, disease resistance, and root-related phenotypes. It is easier to rebuild the population using
seed than by cloning plants. We checked the FD variance of individuals based on our experiment. To
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check the influence of individuals’ genetic differences for FD among the same accessions, we nested
individuals in accession. Our results showed that the variance of individuals is not significant, while the
variance of accessions is significant (Table 1). That means we could use the mean value to serve as a
representative phenotype of one accession. Even though there is genetic variance among different
individuals, their mean value is the whole picture of one accession. Furthermore, the correlation between
sequencing individual plants and the mean value of different plants is high enough. The correlation R?
value is 0.46 and 0.55 in 2018 and 2019 (Figure 1). While the correlation R? between 2018 and 2019 is
0.41 and 0.27 for mean FD and sequencing individual FD (Figure S1). It showed that environmental effect
has bigger influence for a single individual. The mean value of multiple individuals is more stable among
the different environments. In order to test the genetic variance of these two kinds of FD phenotype
(sequencing individual and mean of 15 individuals). We tested the GWAS signal for both kinds of
phenotypes and found associated SNP (Figure 5, Table S3). However, there is no overlap SNP for them.
This phenomenon has been observed in previous studies (Heller and Yekutieli 2014; Lin 2019; Rietveld et
al. 2014). We think FD maybe controlled by several different genes. Our two kinds of phenotypes
corresponding to two different kinds of genes. Combine both associated SNP could uncover a better
understanding of FD (Rietveld et al. 2014). Combining ANOVA and correlation results of FD and GWAS
results, we think the mean of FD could be used for genetic analysis of alfalfa.

Our experiment also showed that FD evaluation in one location for three years is very hard. Because the
accessions were collected from all over the world. The fall dormancy level is very different. For the
accessions with low dormancy ability, their winter hardiness is weak and winter survival is a problem. It is
hard to control the balance between sample diversity and local adaption. If we want to collect more trails
data, these accessions not adapted local environment will die and our phenotype will be biased. That's
why we only collected two years’ data. Our purpose is to gain more genetic variance of alfalfa. However,
more test trails with different climatic environments may be a possible way to solve this problem.

The genetic diversity of alfalfa

The improvement of alfalfa is mainly based on outcrossing, and the genetic exchange of alfalfa always
exists in alfalfa-growing regions (Li and Brummer 2012). To this end, nine distinct germplasms with global
backgrounds were introduced in North America to cultivate new varieties (Barnes 1977). It is more difficult
to distinguish alfalfa accessions based on geographic origin than for self-pollinating plants, such as
soybean (Zhou et al. 2015) and rice (Huang et al. 2012). Also, diploid alfalfa (M. sativa subsp. caerulea
and M. sativa subsp. falcata) can be clustered based on subspecies and geography (Sakiroglu and
Brummer 2017; Sakiroglu et al. 2010); the genetic diversity of tetraploid alfalfa (cultivated alfalfa) is more
complicated. Based on our PCA results and population structure results, the genetic differentiation among
different origins is not very high, except the ones from China and South America.

The introduction of alfalfa to South America took place around the sixteenth century, while it was
introduced to China 2000 years ago (Annicchiarico et al. 2015). Differentiation has occurred along with
cultivation in the local region. This phenomenon has also been identified in previous studies (Qiang et al.
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2015; Shen et al. 2020; Wang et al. 2020). The accessions coming from Europe and other Asia regions
(regions except for China) are mixed and have a wide range. These accessions have the highest genetic
diversity among all accessions with different geography. This result may be the reason that alfalfa
originated from the Caucasus region: northeastern Turkey, Turkmenistan, and northwestern Iran (Michaud
et al. 1988). This theory can also be strengthened by the knowledge that accession genetic diversity from
North America and Africa is relatively low compared to European accessions. The cultivated alfalfa was
exported to North America and Africa only around 200~300 years ago (Prosperi et al. 2014). This relatively
short cultivation period also partially explains the low genetic diversity.

The linkage disequilibrium of alfalfa

Our results also showed that the LD distance is very short (R? reduced to 0.1 after 18 kb). This is different
from previous studies (Sakiroglu and Brummer 2017) and (Li et al. 2014). One major reason may be
because we used a large number of SNPs (around 58 times more than the previous report). With increased
marker density, it is easier to estimate historical recombination events. Another study showed that LD can
be decreased rapidly to less than 1 kb in alfalfa using candidate gene-related SNP (Herrmann et al.
2010). The rapid LD decrease is likely due to the outcrossing nature of alfalfa and the diverse germplasm
we collected.

The candidate genes of FD

A total of seven SNPs were determined to be associated with FD based on the 1% Bonferroni test (Table 2
and Figure 5). Four out of seven SNPs can be mapped to candidate genes based on LD information, and
one SNP is connected with a DREB1C gene. DREB1C has been shown to be associated with freezing
tolerance. When the gene CBF2/DREB1C was disrupted, mutant Arabidopsis had a higher capacity to
tolerate freezing than WT plants and were more tolerant to dehydration and salt stress (Novillo et al.
2004). Further validation has been done in model plant Medlicago truncatula. Transgenic Medicago
truncatula exhibited suppressed shoot growth and enhanced freezing tolerance (Chen et al. 2010). The
transcriptomic analyses of different dormancy alfalfa cultivars showed that DREB7C was one of the most
significantly differentially expressed genes and was upregulated in a fall dormant alfalfa cultivar (Liu et
al. 2019). Another transcriptome sequencing analysis revealed that nine DREB unigenes responded to cold
and/or freezing stresses (Shu et al. 2017). Even though FD and winter survival may be controlled by
different QTL (Adhikari et al. 2018; Brummer et al. 2000; Li et al. 2015), FD serves as an indicator to
evaluate freezing tolerance in the broad sense is possible. Regrowth plant height following autumn
clipping can be considered a signal of fall dormancy and freezing tolerance. If an alfalfa cultivar has a
higher regrowth plant height, it will also have less freezing tolerance (Sheaffer et al. 1992). We further
confirmed that DREB1C contributes to FD using the GWAS method. And our gene expression data showed
that the DREB17C gene can be induced by cold treatment. But the difference between high and low fall
dormancy level alfalfa is not significant (Figure S8). Maybe our sample size (10 samples) used for
expression analysis is not enough. However, combining several previous results from transgenic studies,
transcriptomics, and GWAS showed that the DREB7C gene is very important for alfalfa freezing tolerance.
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Validation of the DREB1C gene effects in alfalfa using gene-modification tools such as CRISPR/CAS9
(Chen et al. 2020) or a transgenic method (Chao et al. 2014) will give us a better understanding of the
function of DREBI1C.

In addition to the DREBTC gene, there should be other genes responsible for FD, because FD is a
quantitative trait with continuous variance (Figure S9). We identified six genes associate with FD and one
of which has a clear relationship with FD. Other genes identified by sequencing individual FD such as
transcription factor FAMA isoform X2 and transcription factor bHLH155 may be also important for FD.
These results tell us maybe there are different genes responsible for FD.

Moreover, there are some candidate genes responsible for FD that have been identified using omics
technologies, such as ABF4 from RNA-seq results (Liu et al. 2019) and MsThi from the iTRAQ-based
method (Du et al. 2018). Cross-validation from multiple omics technologies could help us develop a more
accurate understanding of FD. Our results showed that GWAS results could agree with RNA-seq data.
Combining GWAS methods with other omics technologies on a bigger scale could be a possible way to
uncover more details regarding FD for alfalfa (Scossa et al. 2021).

In conclusion, we conducted a GWAS analysis of FD in alfalfa using whole-genome sequencing on
seeding plants. Weak population structure was found among different accessions belonging to different
geographical origins. Seven SNPs were shown to be associated with FD. One candidate gene, DREB1C,
was responsible for FD. This research will help us achieve a better understanding of the relationship
between genotype and the FD phenotype. The results could serve as basic information for QTL mapping
or candidate gene cloning to understand the mechanism of FD in alfalfa. Furthermore, analyzing the
genetic basis of FD will help to develop cultivars with different FD.
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F-value
10.73
2458.49

P-value
<.0001
<.0001

biotechnology 33:408-414

Tables

Table 1. Analysis of variance for FD in GWAS population over two years.
Source df Type llI SS
accession 219  111676.00
year 1 116825.50

ind(accession) 866  43915.99
repeat 2 382.01
accession*year 204 22669.18

1.07
4.02
2.34

0.12
0.02
<.0001

Variance
15.41
35.39
0.53
0.07
424

Table 2. Significant SNP markers associated with FD.
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Correlation of FD between sequencing individual and mean of 15 individuals. Every cycle dot represented
one accession. Regression line were drawn with red line and R squared value of linear regression were
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present at the bottom right of the figure. a, the correlation information in 2018. b, the correlation
information in 2019. ¢, the correlation information of 2018 and 2019.
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Figure 2

Properties of single nucleotide polymorphisms (SNPs). In total, 220 alfalfa accessions were genotyped by
WGS; 875,023 SNPs passed filters and quality control. Marker distributions are displayed as a heatmap on
8 chromosomes by minor allele frequency (MAF) (a). Marker density is displayed by histogram according
to the interval of adjacent SNPs (b). MAF distribution is shown in a histogram (c). LD decay is shown
according to the red trend line (d).
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Figure 3

Population structure from the principal component analysis. A total of 875,023 SNPs and 220 alfalfa
accessions were used to perform the principal component analysis. Population structure is shown as a 3D
plot (D) of the first three principal components (PC) with colored points that define the seven groups.
There are 13, 35, 73, 32, 4, 38, and 25 accessions in the groups corresponding to Africa, China, Europe,
North America, other (not belonging to any other group), other Asia (except China), and South America,
respectively.
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Figure 4

Population structure results from K=2 to K=4. K values were labeled on the right side of the figure. The
individual order of subgroups was ordered by K=2. The geographical origins were shown at the bottom of
the figure. Different origins were separated by a white dish line.
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Figure 5

Manhattan and Quantile-Quantile (Q-Q) plot of FD. The genome-wide association study was performed by
BLINK C version software, with a significant p-value threshold set at P=0.01/875,023= 1.14x10-8(red line).
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We identified four significantly associated SNPs for FD of mean of 15 individuals, which are shown in the
Manhattan plot (a). Q-Q plots are displayed on the right panel (b). There are three associated SNP for FD
of sequencing individual (c and d).
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Figure 6

Distribution of FD among the genotypes of the associated SNPs. The SNP associated with FD of mean of
15 individuals were shown in upper half figure (a, b, c and d). The SNP associated with FD of sequencing
individual were shown in lower half figure (e, f and g). There is only one individual with TT genotype for
SNP chr2_23380918 and no individual with genotype of CC on SNP chr6_740339. There is no
homozygous genotype AA for SNP chr5_36702273 and no GG for SNP chr2__58174960.
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