Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Predictive Value of Immune Genomic Signatures
From Breast Cancer Cohorts Containing Data for
Both Response to Neoadjuvant Chemotherapy and
Prognosis After Surgery

Yidan Zhu (%= vicky.zyd0823@gmail.com)

Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences: Okayama
Daigaku Daigakuin Ishiyakugaku Sogo Kenkyuka Igakubu https://orcid.org/0000-0002-4427-3946
Takayuki Iwamoto

Okayama University Hospital: Okayama Daigaku Byoin

Yukiko Kajiwara
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences: Okayama
Daigaku Daigakuin Ishiyakugaku Sogo Kenkyuka Igakubu

Yuko Takahashi
Okayama University Hospital: Okayama Daigaku Byoin

Mariko Kochi
Okayama University Hospital: Okayama Daigaku Byoin

Tadahiko Shien
Okayama University Hospital: Okayama Daigaku Byoin

Naruto Taira
Okayama University Hospital: Okayama Daigaku Byoin

Shinichi Toyooka
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences: Okayama
Daigaku Daigakuin Ishiyakugaku Sogo Kenkyuka Igakubu

Hiroyoshi Doihara
Okayama University Hospital: Okayama Daigaku Byoin

Research Article

Keywords: immune-related gene signatures (IGSs), prognosis, IGS models, breast cancer subtypes,
tumors

Posted Date: October 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1007296/v1

Page 1/13


https://doi.org/10.21203/rs.3.rs-1007296/v1
mailto:vicky.zyd0823@gmail.com
https://orcid.org/0000-0002-4427-3946
https://doi.org/10.21203/rs.3.rs-1007296/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 2/13


https://creativecommons.org/licenses/by/4.0/

Abstract

Background

Previous studies of immune-related gene signatures (IGSs) in breast cancer have attempted to predict the
response to chemotherapy or prognosis and were performed using different patient cohorts. The purpose
of this study was to evaluate the predictive functions of various IGSs using the same patient cohort that
included data for response to chemotherapy as well as the prognosis after surgery.

Methods

We applied five previously described IGS models in a public dataset of 508 breast cancer patients treated
with neoadjuvant chemotherapy. The prognostic and predictive values of each model were evaluated, and
their correlations were compared.

Results

We observed a high proportion of expression concordance among the IGS models (r: 0.56-1). Higher gene
expression scores of IGSs were detected in aggressive breast cancer subtypes (basal and HER2-enriched)
(P<0.001). Four of the five IGSs could predict chemotherapy responses and two could predict 5-year
relapse-free survival in cases with hormone receptor-positive (HR+) tumors. However, the models showed
no significant differences in their predictive abilities for hormone receptor-negative (HR-) tumors.

Conclusions

IGSs are, to some extent, useful for predicting prognosis and chemotherapy response; moreover, they
show substantial agreement for specific breast cancer subtypes. However, it is necessary to identify more
compelling biomarkers for both prognosis and response to chemotherapy in HR- and HER2+ cases.

Introduction

Breast cancer is a heterogeneous disease that poses a major threat to women'’s lives worldwide. To
overcome the heterogeneous malignant potential of breast cancer, a good biomarker may contribute to
more precise treatment strategies. Several genomic signature studies of breast cancer have identified
various distinct prognostic markers or predictors (1). However, the currently available gene signatures are
limited to hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative
(HER2-) breast cancers. The National Comprehensive Cancer Network Guidelines (version 3.2021-March
29 2021) recommend that only a proliferation-related marker, Oncotype Dx, has both prognostic and
predictive value with regard to chemotherapy in HR+/HER2- breast cancers (2). Oncotype Dx identifies
patients who are more likely to show distant recurrence but have a good response to chemotherapy,
thereby offering strong evidence for the development of treatment plans (3—5). Chemotherapy should not
be offered if the patient has a poor prognosis, poor response to chemotherapy, or a good response to
chemotherapy but a good prognosis. On the other hand, for HER2+ or triple-negative (TN) breast cancers,

Page 3/13



there is no clinically available genomic signature to optimize treatment strategies. Clinically, decision-
making for adjuvant chemotherapy for HER2+ and TN breast cancer patients is based on the classic
clinical and pathological information (tumor size and nodal or distant metastatic status).

Accumulating evidence has suggested that immune genomic signatures (IGSs) can be used to predict
clinical outcomes or response to chemotherapy in HER2+ and TN breast cancer (6). However, previous
studies evaluating the predictive value of IGSs for prognosis and response to chemotherapy have been
performed in different databases, and the results differed accordingly (7-13). Therefore, we aimed to
identify optimal biomarkers for response to chemotherapy and prognosis for HR- patients by evaluating
both prediction results in the same patient cohort. The aim of this analysis was to directly asses and
compare five previously reported IGSs: Ascierto (7), Schmidt (8), Bianchini (9), TILsGS (13) and IRSN-23
(10) in a single cohort of breast cancer patients who received uniform neoadjuvant chemotherapy and
were followed up for survival. Accordingly, we performed various assessments based on different breast
cancer subtypes and evaluated pairwise consistency in IGSs.

Materials And Methods

Patient cohorts and gene expression data

We retrieved a single dataset of 508 breast cancer patients that contained gene expression data and
clinical information, including both response to neoadjuvant chemotherapy and prognosis after surgery.
Complete gene expression data for primary breast cancer are available in the Gene Expression Omnibus
(GEO: https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE25055 and GSE25066. Gene
expression profiling was performed using Affymetrix UT133A gene chips, as previously described (14).
Pretreatment fine needle aspiration samples of primary breast cancer were collected. Expression data
were normalized using the MASS5 algorithm, mean centered to 600, and log,-transformed. Of the 508
patients, 23 patients with HER2+ and unknown HER2 statuses were excluded because the patients
received no HER2-targeted therapy during that time and the sample size was small; thus, the data for 485
HER2-negative patients were retained for further analyses. All patients received neoadjuvant
chemotherapy with sequential paclitaxel (80 mg/m? weekly x 12 treatments) and 5-fluorouracil,
doxorubicin, and cyclophosphamide (500, 50, and 500 mg/m?, respectively, once every 21 days with 4
treatments) and underwent mastectomy or breast-conserving surgery with axillary lymph node sampling
after completion of neoadjuvant chemotherapy. Pathologic complete response (pCR) was defined by the
absence of viable invasive cancer in the breast and lymph nodes. HR and HER2 statuses were determined
in the diagnostic core needle biopsy specimens before chemotherapy, in accordance with the American
Society of Clinical Oncology/College of American Pathologists guidelines. Patients showing 10% positive
nuclear staining for ER and/or progesterone receptor (PR) with immunohistochemistry (IHC) were
considered HR-positive (+). Patients with either 3+ IHC staining for HER2 or showing HER2 gene copy
number of 2.0 by fluorescent in situ hybridization (FISH) analysis were considered HER2-positive.
Patients with HR-positive status received adjuvant hormone therapy. Distant relapse-free survival (DRFS)
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was defined as the time from operation to the first distant recurrence, and cases of death without distant
recurrence were censored at the time of death.

Immune genomic signatures (IGSs)

We applied five different previously reported immune genomic signatures (IGSs) to this dataset. An
Affymetrix-based approximation of IRSN-23 was calculated as previously described (10). In brief, genes
in the 23-probe (19 genes) signature were identified on the Affymetrix U133A platform using gene
symbols, and their expression data were calculated as the weighted sum of the gene expression values.
The weight was calculated as the expression level of a gene multiplied by its predetermined correlation
coefficient that was taken from the original publication (10). In order to simplify genomic markers with
distinct complex algorithms for the other four genomic signatures, namely, “Ascierto (7),” “Bianchini (9),”
“Schmidt (8),"and “TILsGS (13),” we calculated the average gene expressions based on algorithm-
normalized MASS5 log,-converted mRNA gene expression data. The list of genes for each gene signature
is shown in Supplementary Table 1. Intrinsic molecular subtypes (luminal A, luminal B, HER2+, basal-like,
and normal type) were assigned to each case by using the PAM50 centroid-based classifier, as described
previously (15).

We first compared five IGSs by molecular subtypes (luminal A, luminal B, HER2+, basal-like, and normal
type) to ascertain the associations between breast cancer subtypes and immune gene expression levels.
IGSs scores were considered as continuous variables, and Pvalues were calculated using the Kruskal-
Wallis test. Next, we plotted a scatter plot matrix to visualize the bivariate relationships between
combinations of every pair of IGSs. The Pearson's r values ranged from -1 to 1. An r of -1 indicated a
perfect negative linear relationship between variables, while an r of 0 indicated no linear relationship
between variables, and an r of 1 indicated a perfect positive linear relationship between variables.

Then, we classified each IGS model by dividing the patients evenly into three groups based on the
expression level of the IGS score (low, intermediate, and high). To assess the prognostic value of each
IGS model (low vs. high and intermediate vs. high), we performed univariate Cox proportional hazards
analysis of the five IGSs by evaluating hazard ratios and 95% confidence intervals (95% Cls) in all, HR-
positive (+) and HR-negative (-) breast cancer patients separately. The outcome of interest was defined as
DRFS and evaluated according to the tertiles of the IGS score. Survival curves were also calculated using
the Kaplan—Meier method and compared using the log-rank test. Next, to evaluate the prediction of
patients’ response to neoadjuvant chemotherapy in each IGS model, we performed univariate logistic
regression analysis of five IGSs for the response to pCR after neoadjuvant chemotherapy and

assessed the odds ratios (OR) and 95% confidence intervals (95% Cl) in all, HR+, and HR- breast cancer
patients separately. The predictive outcomes were classified as either pCR or residual disease (RD).
Predicted outcomes were plotted using boxplots in each IGS model, and the Pvalues were calculated by
the Wilcoxon test.
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Finally, we conducted multivariate analysis using traditional clinical pathological factors related to
prognosis and therapy response, including age, nodal status (1-3 vs. 0), tumor stage (3,4 vs. 0-2),
estrogen receptor status (negative vs. positive), and MKi67 (low vs. intermediate vs. high). Of the 485
cases, 17 did not include information regarding the histological grade. Therefore, we used the
proliferation index, MKI67, instead and divided all patients into three groups (high, intermediate, and
low) according to the gene expression level. Cox proportional hazards analysis and logistic regression
analysis were separately performed in all, HR+, and HR- breast cancer patients.

Statistical analyses were performed using R software version 3.6.2 (https://www.r-project.org/) and BRB
Array Tools version 3.9.0a (https://brb.nci.nih.gov/BRB-ArrayTools/). Differences were considered
statistically significant at two-sided Pvalues of <0.05.

Results

Patient characteristics and breast cancer subtypes

The patient characteristics are demonstrated in Table 1. The median age at diagnosis was 49.9 years.
Among the 485 HER2-negative patients, 306 (63.1%) were HR+ and 179 (36.9%) were HR-. The molecular
subtypes of luminal A, luminal B, HER2, basal-like, and normal types were noted in 153 (31.5%), 75
(15.5%), 35 (7.2%), 179 (36.9%), and 43 (8.9%) cases, respectively. In assessments based on tumor size,
279 (57.5%) cases were categorized as T0-2, while evaluations of nodal status showed that 151 cases
(31.1%) had no lymph node metastasis. Seventeen cases (3.5%) included no information on histological
grade status. After neoadjuvant chemotherapy treatment, 93 (19.2%) patients achieved pCR, while 373
(76.9%) patients showed residual disease. As for the prognostic outcomes, 106 (21.9%) patients showed
no relapse in five years after primary diagnosis, whereas 379 (78.1%) patients experienced recurrence
within five years.

The expression levels of each IGS classified by molecular subtype are shown in Figure 1. Each model
tended to show differences in expression across subtypes (Kruskal-Wallis Pvalue < 0.001). As

expected, significantly higher expression levels were found in more aggressive subtypes, such as HER2 or
basal-like subtypes.

Scatter plot matrix for each IGS

We then assessed the strength of the correlation between the models by using scatter plot matrix-
calculated correlation coefficients determined with Pearson's rank correlation test. As shown in Figure 2,
all pairs of IGSs showed high correlations with each other: Ascierto (r: 0.65-0.83), Schmidt (r: 0.58-1),
Bianchini (r: 0.56-1), TILsGS (r: 0.56-0.66), and IRSN-23 (r: 0.6-0.67).

Correlations between distant relapse-free survival and IGSs

In the univariate Cox proportional analysis of 5-year DRFS, in all cancer patients (n = 485), 3 of the 5 IGSs

showed significant prognostic value (Table 2), including Ascierto: low vs. high (HR 0.577,95% CI 0.353-
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0.944, P=0.028); TILsGS: low vs. high (HR 0.281,95% Cl 0.164-0.482, P< 0.001); IRSN-23: low vs. high
(HR 0.420,95% CI 0.254-0.693, P< 0.001). In HR+ patients (n = 306), two out of five IGS had considerable
importance (Table 2), including TILsGS: low vs. high (HR 0.358,95% CI 0.166-0.775, P=0.009); IRSN-23:
low vs. high (HR 0.319,95% CI 0.141-0.724, P = 0.006). However, in HR- patients (n = 179), there was no
significant difference between the groups (Table 2). Kaplan—Meier curves for survival are shown in
Supplementary figureT.

In the multivariate Cox proportional analysis of 5-year DRFS (Table 2), in all cancer patients (n =
485), only IRSN-23 had significant prognostic value: low vs. high (HR 0.459, 95% CI 0.224-0.941, P=
0.033). In HR+ patients (n = 306), two of the five IGSs had considerable importance, including TILsGS:
low vs. high (HR 0.402,95% CI 0.181-0.892, P=0.025) and IRSN-23: low vs. high (HR 0.394, 95% CI 0.166-
0.932, P=0.034). However, in HR- patients, no IGSs were statistically significant.

Correlations between pCR and IGSs

In the univariate logistic regression analysis of the prediction of chemotherapy response, for all cancer
patients (n = 466), 4 of the 5 IGSs showed significant predictive values (Table 3), including Ascierto:
intermediate vs. high (OR 0.382,95% CI 0.215-0.661, P< 0.001), low vs. high (OR 0.363,95% CI 0.203-
0.631, P< 0.001); Schmidt: intermediate vs. high (OR 0.460, 95% CI 0.267-0.809, P= 0.007), low vs. high
(OR 0.400, 95% Cl 0.249-0.762, P = 0.004); Bianchini: intermediate vs. high (OR 0.459, 95% Cl 0.263-0.790,
P=0.005), low vs. high (OR 0.430, 95% CI 0.242-0.750, P = 0.003); TILsGS: intermediate vs. high (OR
0.484,95% C1 0.284-0.814, P=0.007), and low vs. high (OR 0.212, 95% CI 0.108-0.394, P< 0.001). In HR+
patients (n = 306), 4 of the 5 IGSs showed considerable importance (Table 3), including Ascierto:
intermediate vs. high (OR 0.258,95% CI 0.100-0.615, P=0.003), low vs. high (OR 0.268,95% CI 0.112-
0.609, P=0.002); Schmidt: intermediate vs. high (OR 0.397,95% CI 0.151-0.459, P = 0.034), low vs. high
(OR 0.345,95% CI 0.143-0.797, P= 0.014); Bianchini: intermediate vs. high (OR 0.400, 95% CI 0.168-0.926,
P=0.034), low vs. high (OR 0.340, 95% CI 0.139-0.798, P = 0.014); TILsGS: intermediate vs. high (OR
0.392,95% CI1 0.163-0.915, P=0.032), low vs. high (OR 0.253,95% CI 0.103-0.595, P= 0.002). However,
there was no statistically significant difference in HR- patients (Table 3). Boxplots for the predictive
results of pCR and RD are shown in Supplementary figure 2.

Also, among the multivariate logistic regression analysis of the prediction to chemotherapy response
(Table 3), in HR+ patients, 4 of the 5 IGSs (Ascierto, Schmidt, Bianchini, and TILsGS ) showed
considerable importance, including Ascierto: intermediate vs. high (OR 0.217, 95% CI 0.077-0.559, P =
0.002), low vs. high (OR 0.274,95% CI 0.106-0.670, P = 0.005); Schmidt: intermediate vs. high (OR 0.357,
95% C1 0.137-0.880, P=0.028), low vs. high (OR 0.309, 95% CI 0.118-0.771, P=0.013); Bianchini:
intermediate vs. high (OR 0.313,95% CI 0.120-0.783, P=0.015), low vs. high (OR 0.276,95% CI 0.102-
0.712, P=10.009); TILsGS: low vs. high (OR 0.418,95% CI 0.159-1.075, P=0.019). However, no IGS
showed statistical significance in all cancer patients and in HR- patients.

Discussion
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We found that IGSs have disparate predictive and prognostic abilities in different breast cancer subtypes.
In HR+ breast cancer, IGSs showed coincident predictive power for response to chemotherapy and some
predictive power for prognosis. However, in all breast cancer cases, IGSs showed little predictive power for
prognosis, and in HR- breast cancer, IGSs showed neither predictive nor prognostic ability.

Various multigene assays have been developed with distinct breast cancer datasets to predict the
likelihood of distant recurrence and response to adjuvant therapy. Previous studies identified some IGSs
that could be used for either prediction of the response to chemotherapy or the patient’s prognosis,
particularly in HER2+ and triple-negative breast cancer (4-9,13,14). To improve prognostic power, a
classifier consisting of seven immune-related genes was developed and validated to identify good
prognosis of ER-breast cancer that was independent of lymph node metastatic status (11). A set of 14
novel prognostic genes, including eight genes linked to immune and inflammatory chemokine regulation,
were identified for HR- breast cancer, which was superior to other gene signatures with regard to the
prediction of metastasis outcome of patients with early-stage HR- breast cancer/TNBC (17). More
recently, a 17-immunity gene signature was developed to predict the prognosis of distant metastasis-free
survival among patients with ER- and highly proliferative breast cancers. Patients with high expression of
these immune genes had significantly better outcomes (16). To predict the response to chemotherapy, a
novel prediction model (IRSN-23) constructed with immune-related genes can predict pCR independent of
the intrinsic subtypes and chemotherapeutic regimens (10). An immune module score was identified to
predict the response to chemotherapy in ER-positive and luminal advanced BC (12). However, all of the
previous IGSs studies only showed results for either prediction of the response to chemotherapy or
patient’s prognosis, particularly with regard to HER2+ and triple-negative breast cancer, and all were
performed on different datasets. Our analyses were performed on a single dataset including both
chemotherapy response and survival information. Moreover, the IGSs showed their utility in HR+ breast
cancer, whereas they were not as effective in HR- breast cancer.

The discrepancies in the predictive power of HR status in previous studies and our analysis may be
attributed to the small sample size. Only 179 HR- patients were registered in our dataset, and no HER2+
patients were included because they were not treated with trastuzumab, the outcome should be different
from the current standard care, so that HR- are not detected as a significance in our study. In addition, the
occurrence of pCR might be insufficient. The pCR rates in the data set were only 11.8% (36/306) in HR+
and 31.8% (57/179) in the HR- group, respectively. Moreover, the recurrence rate between HR+ and HR-
patients might be incomparable. When combining IGSs with ER status, the predictive function of some
IGSs that were useful in the univariate analysis seemed to disappear, which may suggest that ER status
is an extremely powerful predictor. Another interesting discrepancy between our study and previous
reports could be its prognostic value. Previous studies have shown that high expression of immune-
related genes is associated with favorable prognosis (7-9,16) and favorable response to
chemotherapy (10,12) in patients with HR- and HER2+ breast cancer. In contrast, in our data, high
expression was associated with poor prognosis, especially in HR+ cases. Essentially, prognosis is
determined by the nature of the original cancer and the effect of chemotherapy. Our data indicated that
higher gene expression levels for IGSs were associated with aggressive and poor subtypes of breast
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cancer (e.g., basal and HER2 enriched), as expected (9,13). The difficulties in predictions for HR- breast
cancer have been reported previously (18). Indeed, in clinical practice, genomic assays to predict clinical
outcomes are available only for HR+ breast cancers to stratify Luminal A and B, and there were no
powerful signatures for more subtle prediction in other settings. HR- breast cancer may be a
heterogeneous group, and subtyping is needed to better identify optimal treatment strategies. Lehmann et
al identified 6 TN breast cancer subtypes from clustering analysis based on mRNA gene expression and
to show the “driver ” signaling pathways associated with treatment outcomes (19). To overcome the
problem of the dual predictor for HR- breast cancers, another study with a larger data set and novel
statistical methods to capture the subtle differences or unknown biological processes associated with
clinical outcomes is needed.

Furthermore, we demonstrated that five distinct IGSs are highly correlated with each other and that some
different non-overlapping genomic signatures can produce statistically similar results. When the gene
lists derived from some of these seemingly identical studies were compared, a minor overlap was noticed,
if any. It is unclear what caused the lowerthan-expected overlap, but differences in patient cohorts,
platforms, and statistical methods are likely to be among the factors responsible for these differences.
Despite the lack of gene overlaps, the various gene signatures were highly correlated, since they all might
represent the same biological functions, thereby allowing distinction between poor and good outcomes of
breast cancers (e.g., in terms of prognosis or response to chemotherapy).

One of the strengths of this study is that the cases included both survival and pathologic response data,
allowing the prognostic and predictive functions to be analyzed and compared directly. However, our
analyses had several limitations. We used the proliferation index, Ki67, instead of pathological grade,
since information regarding the pathological grade of 17 (out of 485) patients was unknown. Moreover,
the sample size was small, as we have already mentioned.

In conclusion, our results show that IGSs are, to some extent, useful for predicting prognosis and
chemotherapy response. However, more compelling biomarkers are required for both prognosis and
response to chemotherapy in HR and HER2+ cases. As an alternative, we hope to evaluate different
biomarkers for prognosis and response to chemotherapy. In conjunction, we aim to obtain larger datasets
including data for both prognosis and response to chemotherapy to determine more concrete

biomarkers.

References

1. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790-800.

2. Paik S, Kim C, Baehner FL, Park T, Wickerham DL, Wolmark N. A multigene assay to predict
recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817-26.

3. Sparano JA, Gray RJ, Makower DF, Pritchard Kil, Albain KS, Hayes DF, et al. Prospective validation of
a 271-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005-14.

Page 9/13



10.

11.

12.

13.

14.

15.

16.

17.

18.

. Sparano JA, Gray RJ, Makower DF, Pritchard KIl, Albain KS, Hayes DF, et al. Adjuvant chemotherapy

guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379:111-21.

. Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard Kil, Albain KS, et al. Clinical and genomic

risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med. 2019;380:2395-405.

. Kwon MJ. Emerging immune gene signatures as prognostic or predictive biomarkers in breast

cancer. Arch Pharm Res. 2019;42:947-61.

. Ascierto ML, Kmieciak M, Idowu MO, Manijili R, Zhao Y, Grimes M, et al. A signature of immune

function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res
Treat. 2012;131:871-80.

. Schmidt M, Béhm D, von Térne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a

key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68:5405-13.

. Bianchini G, Qi Y, Alvarez RH, Iwamoto T, Coutant C, Ibrahim NK, et al. Molecular anatomy of breast

cancer stroma and its prognostic value in estrogen receptor—positive and —negative cancers. J Clin
Oncol. 2010;28:4316-23.

Sota Y, Naoi Y, Tsunashima R, Kagara N, Shimazu K, Maruyama N, et al. Construction of novel
immune-related signature for prediction of pathological complete response to neoadjuvant
chemotherapy in human breast cancer. Ann Oncol. 2014;25:100-6.

Teschendorff AE, Caldas C. A robust classifier of high predictive value to identify good prognosis
patients in ER-negative breast cancer. Breast Cancer Res. 2008;10:R73.

Foukakis T, Lovrot J, Matikas A, Zerdes |, Lorent J, Tobin N, et al. Inmune gene expression and
response to chemotherapy in advanced breast cancer. Br J Cancer. 2018;118:480-8.

Kochi M, lIwamoto T, Niikura N, Bianchini G, Masuda S, Mizoo T, et al. Tumour-infiltrating
lymphocytes (TILs)-related genomic signature predicts chemotherapy response in breast cancer.
Breast Cancer Res Treat. 2018;167:39-47.

Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response
and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA.
2011;305:1873-81.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of
breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160-7.

Yang B, Chou J, Tao Y, Wu D, Wu X, Li X, et al. An assessment of prognostic immunity markers in
breast cancer. NPJ Breast Cancer. 2018;4:35.

Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic
outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer
Res. 2010;12:R85.

Hess KR, Wei C, Qi Y, lIwamoto T, Symmans WF, Pusztai L. Lack of sufficiently strong informative
features limits the potential of gene expression analysis as predictive tool for many clinical
classification problems. BMC Bioinformatics. 2011;12:463.

Page 10/13



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, ShyrY, et al. Identification of human
triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J
Clin Investig. 2011;121:2750-67.

Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790-800.

Paik S, Kim C, Baehner FL, Park T, Wickerham DL, Wolmark N. A Multigene Assay to Predict
Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N Engl J Med. 2004;10.

Sparano JA, Gray RJ, Makower DF, Pritchard Kl, Albain KS, Hayes DF, et al. Prospective Validation of
a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2015;373:2005-14.

Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy
Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2018;379:111-21.

Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard Ki, Albain KS, et al. Clinical and Genomic
Risk to Guide the Use of Adjuvant Therapy for Breast Cancer. N Engl J Med. 2019;380:2395-405.

Kwon MJ. Emerging immune gene signatures as prognostic or predictive biomarkers in breast
cancer. Arch Pharm Res. 2019;42:947-61.

Ascierto ML, Kmieciak M, Idowu MO, Manijili R, Zhao Y, Grimes M, et al. A signature of immune
function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res
Treat. 2012;131:871-80.

Schmidt M, Bohm D, von Térne C, Steiner E, Puhl A, Pilch H, et al. The Humoral Immune System Has
a Key Prognostic Impact in Node-Negative Breast Cancer. Cancer Res. 2008;68:5405-13.

Bianchini G, Qi Y, Alvarez RH, lIwamoto T, Coutant C, Ibrahim NK, et al. Molecular Anatomy of Breast
Cancer Stroma and Its Prognostic Value in Estrogen Receptor—Positive and —Negative Cancers. J
Clin Oncol. 2010;28:4316—23.

Sota Y, Naoi Y, Tsunashima R, Kagara N, Shimazu K, Maruyama N, et al. Construction of novel
immune-related signature for prediction of pathological complete response to neoadjuvant
chemotherapy in human breast cancer. Ann Oncol. 2014;25:100-6.

Teschendorff AE, Caldas C. A robust classifier of high predictive value to identify good prognosis
patients in ER-negative breast cancer. Breast Cancer Res BCR. 2008;10:R73.

Foukakis T, Lovrot J, Matikas A, Zerdes |, Lorent J, Tobin N, et al. Immune gene expression and
response to chemotherapy in advanced breast cancer. Br J Cancer. 2018;118:480-8.

Kochi M, lwamoto T, Niikura N, Bianchini G, Masuda S, Mizoo T, et al. Tumour-infiltrating
lymphocytes (TILs)-related genomic signature predicts chemotherapy response in breast cancer.
Breast Cancer Res Treat. 2018;167:39-47.

Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response
and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA.
2011;305:1873-81.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised Risk Predictor of
Breast Cancer Based on Intrinsic Subtypes. J Clin Oncol. 2009;27:1160-7.

Page 11/13



35. Yang B, Chou J, Tao Y, Wu D, Wu X, Li X, et al. An assessment of prognostic immunity markers in
breast cancer. NPJ Breast Cancer. 2018;4:35.

36. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic
outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer

Res BCR. 2010;12:R85.

37. Hess KR, Wei C, Qi Y, Iwamoto T, Symmans WF, Pusztai L. Lack of sufficiently strong informative
features limits the potential of gene expression analysis as predictive tool for many clinical
classification problems. BMC Bioinformatics. 2011;12:463.

38. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human
triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. :19.

Tables

Due to technical limitations, table 1 to 3 is only available as a download in the Supplemental Files

section.
Figures
p-value < 0.0001
B : e -
— i ’ :‘_
i~ !
S ;
8 2- L
I : ' g |
& L
@ - T 4 4

LumA LumB Her2 Basal Normal

p-value < 0.0001

] |
T

TILsGS
8.5 9.0 9.5 10.010.511.011.5

T T T T T

LumaA LumB Her2 BasalMNormal

Figure 1

Schmidt

IRSN-23

10 12 14

p-value < 0.0001

L]

@ ! : ; —
: :

.

160170180 190 200 210 220230

LumA LumB Her2 BasalNormal

p-value < 0.0001

L

L

A

L

'}

'

LumA LumB Her2 BasalMormal

Page 12/13

Bianchini

p-value < 0,0001

Lo

LumA LumB Her2 Basal Mormal



Boxplots for five IGSs by breast cancer subtypes P values were calculated using the Kruskal—Wallis rank-
sum test. Subgroups were classified by molecular subtype using the PAM50 centroid-based classifier.
IGSs: Immune gene signatures
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Figure 2

Scatter-plot matrix of five immune-related gene signatures for all breast cancer patients A scatter-plot
matrix was plotted to visualize bivariate relationships between combinations of every pair of IGSs.
Pearson's r values ranged from -1 to 1.
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