1 Smith, J. S. et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121, 621-632, doi:10.1002/ijc.22527 (2007).
2 Doorbar, J., Egawa, N., Griffin, H., Kranjec, C. & Murakami, I. Human papillomavirus molecular biology and disease association. Rev Med Virol 25 Suppl 1, 2-23, doi:10.1002/rmv.1822 (2015).
3 Ganti, K. et al. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 7, 3530-3551, doi:10.3390/v7072785 (2015).
4 Ramírez, J. et al. Disorder-to-order transition of MAGI-1 PDZ1 C-terminal extension upon peptide binding: thermodynamic and dynamic insights. Biochemistry 54, 1327-1337, doi:10.1021/bi500845j (2015).
5 Shai, A., Brake, T., Somoza, C. & Lambert, P. F. The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res 67, 1626-1635, doi:10.1158/0008-5472.can-06-3344 (2007).
6 Pim, D., Thomas, M. & Banks, L. Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. Oncogene 21, 8140-8148, doi:10.1038/sj.onc.1206026 (2002).
7 Zehbe, I. et al. Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology 383, 69-77, doi:10.1016/j.virol.2008.09.036 (2009).
8 CONEVAL. Resultados de pobreza en México 2018 a nivel nacional y por entidades federativas, <https://www.coneval.org.mx/Medicion/Paginas/PobrezaInicio.aspx> (2018).
9 Ortiz-Ortiz, J. et al. Association of human papillomavirus 16 E6 variants with cervical carcinoma and precursor lesions in women from Southern Mexico. Virol J 12, 29, doi:10.1186/s12985-015-0242-3 (2015).
10 Asadurian, Y. et al. Activities of human papillomavirus 16 E6 natural variants in human keratinocytes. J Med Virol 79, 1751-1760, doi:10.1002/jmv.20978 (2007).
11 Niccoli, S., Abraham, S., Richard, C. & Zehbe, I. The Asian-American E6 variant protein of human papillomavirus 16 alone is sufficient to promote immortalization, transformation, and migration of primary human foreskin keratinocytes. J Virol 86, 12384-12396, doi:10.1128/jvi.01512-12 (2012).
12 Richard, C. et al. The immortalizing and transforming ability of two common human papillomavirus 16 E6 variants with different prevalences in cervical cancer. Oncogene 29, 3435-3445, doi:10.1038/onc.2010.93 (2010).
13 Schiffman, M. et al. A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res 70, 3159-3169, doi:10.1158/0008-5472.Can-09-4179 (2010).
14 Gheit, T. et al. Risks for persistence and progression by human papillomavirus type 16 variant lineages among a population-based sample of Danish women. Cancer Epidemiol Biomarkers Prev 20, 1315-1321, doi:10.1158/1055-9965.Epi-10-1187 (2011).
15 Lichtig, H. et al. HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6. Virology 350, 216-227, doi:10.1016/j.virol.2006.01.038 (2006).
16 Chakrabarti, O. et al. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol 78, 5934-5945, doi:10.1128/jvi.78.11.5934-5945.2004 (2004).
17 Zacapala-Gómez, A. E. et al. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells. Virology 488, 187-195, doi:10.1016/j.virol.2015.11.017 (2016).
18 Kotelevets, L. et al. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 19, 115-117, doi:10.1096/fj.04-1942fje (2005).
19 Chen, H. I. & Sudol, M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A 92, 7819-7823, doi:10.1073/pnas.92.17.7819 (1995).
20 Dobrosotskaya, I., Guy, R. K. & James, G. L. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 272, 31589-31597, doi:10.1074/jbc.272.50.31589 (1997).
21 Zhang, Y. et al. Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol 81, 3618-3626, doi:10.1128/jvi.02044-06 (2007).
22 Thomas, M. & Banks, L. In vitro assays of substrate degradation induced by high-risk HPV E6 oncoproteins. Methods Mol Med 119, 411-417, doi:10.1385/1-59259-982-6:411 (2005).
23 Thomas, M., Glaunsinger, B., Pim, D., Javier, R. & Banks, L. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 20, 5431-5439, doi:10.1038/sj.onc.1204719 (2001).
24 Thomas, M. et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21, 5088-5096, doi:10.1038/sj.onc.1205668 (2002).
25 Charbonnier, S. et al. The structural and dynamic response of MAGI-1 PDZ1 with noncanonical domain boundaries to the binding of human papillomavirus E6. J Mol Biol 406, 745-763, doi:10.1016/j.jmb.2011.01.015 (2011).
26 Charbonnier, S. et al. Defining the minimal interacting regions of the tight junction protein MAGI-1 and HPV16 E6 oncoprotein for solution structure studies. Protein Expr Purif 60, 64-73, doi:10.1016/j.pep.2008.03.022 (2008).
27 Schwede, T. Protein modeling: what happened to the "protein structure gap"? Structure 21, 1531-1540, doi:10.1016/j.str.2013.08.007 (2013).
28 Rodríguez-Ruiz, H. A. et al. In silico prediction of structural changes in human papillomavirus type 16 (HPV16) E6 oncoprotein and its variants. BMC Mol Cell Biol 20, 35, doi:10.1186/s12860-019-0217-0 (2019).
29 Bello-Rios, C. et al. Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 22, doi:10.3390/ijms22031400 (2021).
30 Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L. & Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 11, 548, doi:10.1186/1471-2105-11-548 (2010).
31 Glaunsinger, B. A., Lee, S. S., Thomas, M., Banks, L. & Javier, R. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270-5280, doi:10.1038/sj.onc.1203906 (2000).
32 Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43, W174-W181, doi:10.1093/nar/gkv342 (2015).
33 Lorch, M., Mason, J. M., Clarke, A. R. & Parker, M. J. Effects of core mutations on the folding of a beta-sheet protein: implications for backbone organization in the I-state. Biochemistry 38, 1377-1385, doi:10.1021/bi9817820 (1999).
34 Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36, W229-232, doi:10.1093/nar/gkn186 (2008).
35 Laskowski, R. A. et al. PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22, 488-490, doi:10.1016/s0968-0004(97)01140-7 (1997).
36 Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L. & Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 11, 548, doi:10.1186/1471-2105-11-548.
37 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882, doi:10.1093/nar/25.24.4876 (1997).
38 Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202, doi:10.1006/jmbi.1999.3091 (1999).
39 Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49, D437-D451, doi:10.1093/nar/gkaa1038.
40 Martinez-Zapien, D. et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541-545, doi:10.1038/nature16481.
41 Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015).
42 Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J Mol Graph 14, 33-38, 27-38, doi:10.1016/0263-7855(96)00018-5 (1996).
43 Consortium, U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49, D480-D489, doi:10.1093/nar/gkaa1100.
44 Godwin, R. C., Melvin, R. L., Gmeiner, W. H. & Salsbury, F. R. Binding Site Configurations Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF-κB Essential Modulator). Biochemistry 56, 623-633, doi:10.1021/acs.biochem.6b00755 (2017).
45 Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71-73, doi:10.1038/nmeth.4067 (2017).
46 Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J Comput Chem 30, 1545-1614, doi:10.1002/jcc.21287 (2009).
47 Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781-1802, doi:10.1002/jcc.20289 (2005).
48 Jorgensen, W. L. (ed Chandrasekhar Jayaraman) (1983).
49 Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81, 511-519, doi:10.1063/1.447334 (1984).
50 Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys 31, 1695-1697, doi:10.1103/physreva.31.1695 (1985).
51 Koukos, P. I. & Glykos, N. M. Grcarma: A fully automated task-oriented interface for the analysis of molecular dynamics trajectories. J Comput Chem 34, 2310-2312, doi:10.1002/jcc.23381.
52 Meyer, T. et al. Essential Dynamics: A Tool for Efficient Trajectory Compression and Management. J Chem Theory Comput 2, 251-258, doi:10.1021/ct050285b (2006).
53 Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat Protoc 12, 255-278, doi:10.1038/nprot.2016.169 (2017).
54 Vajda, S. et al. New additions to the ClusPro server motivated by CAPRI. Proteins 85, 435-444, doi:10.1002/prot.25219 (2017).