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Abstract

Background: Verbal Autopsy (VA) is a tool commonly used in low to medium
income countries to ascertain cause of death, where most deaths are not assigned
a medically certified cause. As such, they strengthen health priorities, inform
policy, practice and provide vital information where civil registration systems are
weak. Physician diagnosis is used as a gold standard to determine cause of death,
from VA interviews even though it is inconsistent and expensive. Alternatively,
conventional computer algorithms and machine learning approaches have been
applied.However, they fail to perform optimally because of data quality and
ineffective strategies that they employ. We present a robust machine learning
framework that can accurately classify cause of death using only narratives from
VA interviews.

Methods: Experiments started with data acquisition of the VA narratives,
followed by data preprocessing. We created numeric vectors to represent the
narratives using various feature engineering techniques for twelve cause of death
categories. Furthermore, we applied data balancing, feature scaling,
hyper-parameter tuning and dimensionality reduction in order to improve model
performance. We applied eight different classification approaches to the vectors
to generate model predictors of cause of death. Validation was done using
Precision, Recall, Accuracy, F1-score and Receiver Operating Characteristic Area
Under Curve (ROCAUC).

Results: We used the physician diagnosis as our gold standard for validation of
our models. Our five best classifiers attained a Precision, Recall, Accuracy and
F1-score of 95%, 94%, 93%, 92% and 91% respectively in cause of death
classification of all twelve disease categories. We report on Micro-Average
ROCAUC of 96% and Macro-Average ROCAUC of 95% of our twelve classes.

Conclusion: Our proposed robust machine learning framework can be a faster
and cost effective way to determine cause of death from rich informative
unstructured VA narratives. This study can also serve as a benchmark of model
comparability and generalisation of machine learning models in determining cause
of death using VA data. Our study was limited in terms of data quality. Future
work aims at using combined responses and narratives for our models and also
applying deep learning architectures for cause of death classification using VAs.
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Background

Most of the countries in the world fail to meet the United Nations 90 percent

death registration coverage requirement, as deaths in many Low to Medium Income

Countries (LMICs) are not captured in civil registration systems [1, 2]. In addition,

65 percent of the population in the world lack high quality information on cause

of death since every year about sixty million deaths worldwide are not assigned a

medically certified cause [3]. However, the cause of death information is important

as it is needed for public health monitoring, to inform critical health policies and

priorities. As such, in the absence of clinically oriented sources, cause of death

information should be derived from alternative sources. The most common approach

used globally as an alternative source of cause of death information is Verbal autopsy

(VA). VA is a process that is used to determine the cause of death where death

occurs outside health facilities and is not certified by a doctor and is common

in LMICs [4]. The VA process is done by a non-clinical personnel who conduct

interviews using a structured questionnaire with relatives of the deceased about

circumstances and events that led to death, and this information is captured as text

[3]. The VA process suffers from inconsistencies and inaccuracies as it is subjective,

prone to errors amongst many drawbacks. The compiled VA narratives are then

given to two doctors for assessment who reach a consensus on the cause of death

and if not a third physician is consulted a process known as Physician Coded Verbal

Autopsy (PCVA). PCVA is the only available gold standard for determining cause of

death even though it is widely criticised because of lack of robustness, cost and time

amongst many drawbacks [5]. Therefore, PCVAs are mostly employed for training

and validation of computational approaches. Advances in technology have given

rise to automated methods for determining cause of death which are faster, efficient

and cost effective [3]. In this study we present a robust machine learning framework

for determining causes of death only from VA narratives. We apply effective data

cleaning strategies, data balancing to achieve optimum transparency and accuracy

through addressing most model limitations and applying recommendations that are

reported in [6, 7, 8]. We assess the robustness of several classifiers including; random

forest (RF), k-nearest neighbour (KNN), decision tree (DT), support vector machine

(SVM), logistic regression (LR), artificial neural network (ANN), Naive Bayes (NB)

and bagging as an ensemble classifier.

Computer Coded Verbal Autopsy

Literature to date reports on five various Computer Coded Verbal Autopsy (CCVA)

or VA algorithm approaches which are expert-driven to perform cause of death clas-

sification [9, 10, 11, 12, 13]. These approaches make use World Health Organisation

standardised VA instrument which is a questionnaire with questions on signs and

symptoms of respondent’s health history. The CCVA algorithms are made up of VA

data derived from real deaths, symptom-cause information (SCI) which is a repos-

itory of information about symptoms that are related to each probable cause of

death. This information is derived from the physician’s reports. Additionally, they

make use of logic that entails a logical algorithm that combines the tSCI and VA

data to identify cause-specific mortality fractions (CSMF), so as to assign specific

cause of death.
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The InterVA algorithm uses the Bayes Rule, which is a function that computes

conditional probabilities of a sample when given evidence and Symptom Cause

Information (SCI) as conditional probabilities of symptoms given a specific cause

of death using CSMFs [14]. [13] applied the InterVA-4 and reported a Sensitivity

of 43% and CSMF Accuracy of 71% using data from the Million Death study.

The Tariff algorithm uses fewer symptoms and it employs the SCI as a tariff score

to rank causes of death, thus determining the association between specific symptoms

and causes in the Population Health Metrics Research Consortium (PHMRC) gold

standard dataset. CSMFs are arrived at by identifying a single cause with the

highest rank for each death in the VA dataset and sum them up [15]. [10] applied the

Tariff approach on the PHMRC and reported 50.5% Chance-corrected concordance

(CCC) (a measure of how well the predicted cause of death categories correspond

to the correct cause of death categories) and CSFM accuracy of 77%.

The InSilicoVA algorithm uses a statistical approach employing joint probabilities

to identify the most likely significant cause of death in relation to CSMFs for all

deaths in a VA data set. The study of [12] applied the Insilico approach and reported

a mean Sensitivity of 34.1% across 34 cause of death categories and CSMF accuracy

of 85% CSMF.

Näıve Bayes Classifier algorithm uses the Bayes Rule to categorise cause of death.

The study of [13] applied the NBC and achieved better results as compared to

InterVA and the Tariff approach with a Sensitivity of 57% and CSMF Accuracy

of 88%. Nevertheless, they used various datasets for model evaluation targeting

16 cause of death categories and their model only used data from the structured

questionnaire.

The King-Lu algorithm uses symptom conditional probabilities to estimate cause

of death of a dataset over 13 categories. It does not provide a cause of death for

individual records [3]. This algorithm relies on SCI training data which defines

clusters of symptoms rather than a single symptom. Moreover it is recommended to

use gold standard deaths and if possible they should be from the same population

as the VA deaths to get credible and better results [15]. [9] used the King-Lu on

the Indian Million Death Study Dataset and reported a CSMF Accuracy of 96%.

[16] did an investigation that focussed on validation of VA expert algorithms and

concluded that population level accuracy is similar to that of machine learning

approaches with CSFM in the range of 57% − 96%. These findings are supported

by [17] who did a study were they validated data derived algorithms against the

gold standard of physician review and concluded similar findings for certain disease

categories based on the CSFM.

Another validation study done by [18] where they re-assigned the VA review

process to other physicians to do the diagnosis of cause of death given the VA

narratives using the Tariff, Simplified Symptom Pattern (SSP), InterVA and the

Random Forest. They got a CSFM in the range of 76.4% − 77% for adults as

compared to PCVA that attained 68% and InterVA 62.5% respectively. On the

other hand, they report a CSFM Tarrif score of 78.3% for children as compared to

PCVA that attained 67.8% and InterVA 52% respectively. Similar comparisons are

reported in the work of [19], were they compared PCVA and CCVA in determining

cause of death and they reported an overall chance concordance of less than 50%.
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They concluded that there is little evidence to justify the CCVA as a possible

replacement of the gold standard which is the PCVA. Therefore, there is need for

further investigations and research with large datasets to train and test models on

cause of death classification.

However, there has been less research done in using Machine Learning (ML) which

make use automated computer programs that can take data and learn new trends

and patterns for VA classification. They also employ a performance measure or

weighting to improve the performance. Moreover, it employs some statistical, prob-

abilistic and optimisation technique in order to discover patterns and trends in

complex data through some analysis to get to a decision [20].

Machine Learning in VA

[3] argues that to date, ML techniques have been primarily applied to data from

the structured questionnaires only, with the best Sensitivity scores around 60% for

individual cause of death classification, using various numbers of cause of death cat-

egories. ML can avail real-time results that is similar to that of physicians/experts

[21]. In literature, complex machine learning (ML) models can be found that can

replace the PCVA and CCVA algorithms as approaches of determining cause of

death.

[22] used the LR model to determine the completion rate of VA and factors asso-

ciated with undetermined cause of death. They reported a 83% to 89% completion

rate. [23] reports various common diseases that lead to death using CSFM and LR

classifier and they achieved 80% Specificity. [24] applied ANN classify cause of death

from VAs and achieved a Sensitivity of 45.3. On the contrary, this is the only study

that has used ANN to date and they concluded that more explorations are needed

with large datasets and large training samples to improve results of the ANN. We

also explore with the ANN in this study.

[25] used the RF classifier to assign cause of death categories and reported that the

algorithm performed better if not as the PCVA approach. They further state that

the RF was better than PCVA on overall chance concordance and CSFM accuracy

for both adults and children. [26] used text classification techniques to predict cause

of death from forensic autopsy reports and found out that the SVM produced better

results as compared to other classifiers with Precision of 78.1%, Recall of 78.3%,

F-score of 78.2% and overall Accuracy of 78.25% for 16 disease categories. In a

similar study done by [27], SVM also outperformed the other classifiers. This might

be attributed to the fact that SVM can easily handle non-linearity of data and its

capability to handle overfitting. Similar findings are reported in [28] where SVM

achieved an accuracy of 95.41%. [29] did a study where they performed automatic

classification of diseases using VA narratives using SVM and they reported an F-

score in the range of 80%−96%. They deduce that feature extraction approaches are

grossly affected by variations in words as well as word combinations. As such, SVM

performs better in high dimensional feature spaces because of feature independence

and its ability to handle non-linearity.

[30] did a semantic analysis on infants VA data on cause of death in trying to

showcase the relationship between keywords and a given cause of death. Further-

more, they did another investigation on linguistic features using infant data from
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Ghana and sought to classify into 16 target classes. They achieved a Sensitivity

of 40.6% using features from narratives and 61.6% using both structured question-

naires and VA narratives. They conclude that using word occurrences produced

better results as compared to word occurrence features. More explorations with

large datasets in the medical domain with effective model training might improve

model performance. The same authors developed a VA corpus using a structured

VA questionnaire and argue that there are properties of the human languages in a

VA corpus that are the same with other databases [31].

[32] did some work using Term Frequency with Inverse Document Frequecny (TF-

IDF) automated classification to determine cause of death from VAs and they proved

that TF-IDF is an optimal vectoriser that can improve model performance and if

integrated in model design and production, it can improve cause of death categori-

sation.

[33] did a multi class classification study to determine accident related cause of

death using expert driven feature selection. They achieved an evaluation measure of

85%−90% on the RF and DT classifier. Furthermore, their models improved on Ac-

curacy by 14% to 16%. The models outperformed the SVM, NB and KNN. [28] did

a study where they classified VA reports based on conceptual graph-based method

document representation model and they report a 12%-15% model improvement

on performance as compared to fully automated baseline graph based document

representation techniques. [26] used text classification techniques to classify cause

of death from forensic autopsy reports. They report that uni-grams are better fea-

ture extraction techniques, Term Frequency (TF) and TF-IDF being better feature

representation schemes. They further state that Chi-squared produced better per-

formance as a dimensionality reduction approach. On classifiers they point out that

the SVM outperformed RF, NB, KNN, DT and ensemble classifiers. [8] did a sys-

tematic survey on current literature of clinical text mining techniques and they

propose effective pre-processing, data balancing and feature engineering techniques

to get improved performance.

[34] applied part of speech tagging to identify suicide note classification. Their

results show that the best ML classifier managed to attain a 78% classification rate

out of the eight classifiers. However, their study used Natural Language Processing.

[35] did a study where they predicted tuberculosis using LR and the DT classifier.

They report an Accuracy of 98% on both classifiers and Area Under Curve (AUC)

of 61.74% for LR and 59.28% for DT. Nevertheless, they used data from the Thai

ministry of public health. [36] applied the one-against-all ensemble classifiers and

NB to determine cause of death from VAs. Their approach showed improved model

performance with a surge in Sensitivity scores of between 6% to 8%.

VA Data Challenges and Limitations

[1] argues that these VA algorithms and ML approaches can not avail enough evi-

dence where there is limited expert diagnosis, hence they cannot be used to guide

health priorities. These VA algorithms mainly employ statistical approaches and

tariff scores to rank causes of death [15, 9]. Various VA algorithms and ML ap-

proaches are dependent on sample size, age group, causes of death, data set size

or characteristics of the sample in order to produce best results [16, 4]. There has
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been challenges and issues in terms of various VA techniques and there has been

proposals to improve VA approaches through minimising the number of features

under study (dimensionality reduction) and also combining various algorithms in

order to improve on performance, accuracy and efficiency [13]. Moreover, the valid-

ity of the VA and ML approaches performance in terms of Sensitivity, Specificity

and Predictive values vary with regard to causes of death across populations [37].

It is difficult to generalize and standardise VA classification practices, since there

is no gold standard and patient’s records vary in terms of socio-economic status

[13, 15]. Another issue is associated with standardising VA questionnaires so that

they have the same structure and content. The format and standard of VA question-

naires differs considerably, thus their administration requires appropriate training

so as to elicit relevant and appropriate symptoms and causes. There are also of-

ten language barriers and the interviewer and interviewee need to speak the same

language so as to derive best results. [4] recommended incorporating fully trained

multiple translators. Additionally, the VA data collection procedures vary and is

done by people who are not health professionals and possess different competen-

cies. The other downside is the length of the recall period which can create a bias in

the collected VA data. The heterogeneity of various autopsies in terms of the non-

intersecting dialects of the English language (terms being in the native language)

compromises data quality as most of these approaches tend to omit such autopsies

in their model prediction, yet they might entail valuable information. This needs

to be addressed to improve data quality of the VA narratives that are taken as

input to the CCVA and ML approaches, thus eliminating possibilities of bias and

mis-interpretations of the models.

This study seeks to close the gap in the existing body of knowledge by applying

robust ML approaches for determining causes of death from VAs. This will be

achieved by employing effective strategies for preprocessing, feature scaling, data

balancing and feature engineering.

Methods

Study design

This is a retrospective cross-sectional study that uses secondary data analysis. All

the cleaned VA narratives, model performance and classification results of various

tasks are pushed from a Python Jupyter Notebook environment and housed within

a PostgreSQL Version 4.2 object-relational database management system.

Population

This study uses only VA narratives data from the study area of the Agincourt

Health and Demographic Surveillance System (HDSS). On a historical perspective

the study setting was established in 1992 and is situated in the rural Sub-district of

Bushbuckridge under Ehlanzeni District, in Mpumalanga Province, in north-eastern

South Africa. The study area covers approximately 420km2. According to Agincourt

fact sheet of 2019, the population was at 116 247 individuals residing in 28 villages

with 22 716 households, with males being 55 961, females being 60 280, children

under 5 years being 11 724 and school going children with ages from 5 − 19 being

35 928 [38].
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Data Source

Our dataset is from the Agincourt HDSS which is a surveillance site that specifically

provides evidence based health monitoring that seeks to strengthen health priorities,

practice and inform policy. The VA narratives data is for the period of 1993 to 2015.

However, the doctors reviewed and classified cases are from 1993 to 2010 and suffice

for our model training and prediction. We specifically use the VA narrative data

and the corresponding cause of death assigned by two physicians and where they

do not agree a third physician is consulted and assign a corresponding International

Classification of Diseases-10 (ICD-10) code for each record in the dataset. Our data

had 287 columns/features and 16338 records/observations. However, for this study

we only used the VA narrative column (predictor = X), which where in English

and in free text and the cause of death column assigned by certified physicians with

a corresponding ICD-10 code on cause of death for each record. This implied now

having only one narrative column and 16338 records. We further created twelve

cause of death categories with corresponding number of samples for each class, as

in Table 1. The cause of death categories where derived based on InterVA user guide

and literature studies of [11, 27, 39, 3].

Table 1: Table showing disease categories, corresponding labels and number of sam-

ples per category
Category Class Label Number of samples
HIV/TB 0 3388

Other infectious 1 3388
Metabolic 2 3388

Cardiovascular 3 3388
Indeterminate 4 3388

Maternal and Neonatal 5 3388
Abdominal 6 3388
Neoplasms 7 3388

External causes 8 3388
Neurological 9 3388
Respiratory 10 3388
Other NCD 11 3388

Schematic Diagram of the Processes Followed

Figure 1 illustrates our logical steps that we follow for this study experiments. We

first do data acquisition of our VA narratives as a comma separated value text

file (csv), followed by data exploration and cleaning. Additionally, we do feature

engineering, data balancing and feed our data to our models for training, validation

and testing. Lastly we do cause of death classification.

[width=4cm]MLSchematicDiagram.JPG

Figure 1: High level Schematic Diagram of our ML process

Data Cleaning and Labelling

Data cleaning entails pre-processing were we aim at doing away with irrelevant data

in order to improve model performance. After importing the dataset in csv format,

we started by cleaning the unstructured narrative data by converting all text to low-

ercase, removed all punctuation, removed spaces, numbers and special characters.
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Furthermore, we applied the TextBlob Python library to correct spellings. We per-

formed tokenisation which is splitting a document (seen as a string) into tokens. All

stop words where removed using the NLTK library of English stopwords removing

insignificant words. Stemming was done to convert all possible word variations into

the root form using the Python PorterStemmer library. Our dataset had certain

missing values (narrative nulls where 2247 and cause of death nulls where 5170).

We then dropped all nulls to remove bias in our modelling. Thereafter, feature en-

gineering was done to determine the most representative features, as we then aimed

at retaining only relevant words in the vector space by applying a weighting scheme

[40]

Feature Engineering

Feature engineering was performed in order to generate new input features from

existing ones. Feature engineering is made up of three steps namely, feature ex-

traction, feature selection and feature value representation. We started by applying

automated feature extraction as we aimed at only pulling out useful features using

n-grams. n-grams are feature extraction techniques that identify feature(s) corre-

sponding to token(s) where a token can be thought of as a string of words. n can

be any number, n = 1 is a unigram, n = 2 is a bigram and n = 3 is a trigram [26].

Moreover, after the feature extraction we did feature value representation or term-

weighting using the TF-IDF approach. Feature value representation is a process of

creating a numeric vector of features, where each feature will have a corresponding

numeric value that can be used for model learning. TF-IDF considers a feature im-

portant if the feature occurs frequently in the VA narratives belonging to one class

and less frequently available in narratives belonging to another class. Feature selec-

tion was done to attain a the most relevant subset of features from the narratives

using Singular Value Decomposition (SVD) as a selection criteria to reduce the di-

mension of our feature space. SVD creates a matrix in a low dimensional space and

generates a matrix that is an exact representation of data. Moreover, it removes the

less important terms producing an equivalent representation using any number of

dimensions. This implies reducing our dataset containing a large number of values

to a dataset containing significantly fewer values without loss of data [41, 42].

Data Balancing

Our dataset had data imbalances where the classes where imbalanced, meaning that

there is a high difference between the positive values and negative values (e.g. more

HIV positive than HIV negative classes). Furthermore, the (majority class:HIV/TB)

had more samples as compared to other minority classes. This means that the mi-

nority classes where less represented in terms of data samples. As such, this creates

bias in that minority classes as they will have fewer data points that can cause large

misclassification errors. In order to address the issue of data imbalance we used the

oversampling approach known as the Synthetic Minority Oversampling Technique

(SMOTE). SMOTE was applied by generating artificial samples for the minority

class, through interpolation between the positive instances that lie together. This

approach addresses the issue of over-fitting caused by the general oversampling ap-

proach that replicates existing positive cases [8]. After data balancing we fed the

data into our twelve models for training and validation.
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Training, Validation and Testing

In this study, data was split into 70% training, 20% validation and 10% testing for

all our twelve models. Training data is used to train our models and validation data

is used to design and see how well our models perform so as to be able to check

if our models are overfitting or underfitting. As such we can enforce some control

mechanisms to address such. On the contrary, the test set is used to to see how well

a model performs with new or unseen data [42].

Machine learning models for classification

All our models were generated in Python using the Scikit learn module. Various

supervised ML models where applied in this study to predict the ICD-10 related

cause of death by taking input of the VA narratives and feeding into eight classifiers

(SVM, DT, KNN, RF, Bagging, LR, NB and ANN). Our feature space was made

up of inputs of VA narratives and our response variable was a categorical ICD-10

code for cause of death.

The NB is a statistical approach that uses conditional probabilities of each feature,

thus assuming independence on predictors to assign cause of death to a record

[26, 3]. This implies that it all features or variables are independent, thus making

it an effective classifier. This approach is also discussed in [41].

The LR is a statistical approach that uses maximum likelihood estimation to cat-

egorise classes. This approach seeks to predict a continuous or numeric variable by

fitting a straight line or hyperplane to the feature space. It assumes a set or predic-

tors or independent variables with corresponding categorical or response variable,

such that it aims at to predict the probability of the response variable based on

the independent variable. This makes logistic regression a classification approach.

Similar approaches are used in the studies of [22, 41].

Bagging also known as bootstrap aggregation, is an approach that builds a classi-

fier for every bootstrap based on a number of bootstraps from given datasets. The

learning environment generates a classifier for every model from the dataset and a

final classifier is created from aggregation of the classifiers that are classified from

instances through voting for a class. It then chooses the class with most votes as

the best classifier [43, 41].

DTs are tree based classifiers that split the feature space into rectangles using a

technique known as recursive binary splitting. At first all features are within one

rectangle and the process iterates through all dimensions and determines a split

where there is a largest reduction in error measure (difference between the predictor

and response is minimal). DTs define each node as a condition on a feature and a

branch as a result of the condition and each leaf node as a class label. The start of

the tree node is known as the root node (established through finding the feature that

best divides the feature space), labelled as terms are branches with a weight. Leaf

nodes represent class labels and new data points can be generated and assigned a

class based on the majority vote of the leaf nodes [26]. Similar work is also reported

in [41, 42].

The RF gets to a decision by using various decision trees to categorise new data

points. Thus, it uses many individual learner trees to perform classification based

on votes on an overall category from a given set of inputs. A majority vote is
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then applied to determine a class of a new data point through combining random

forest decision trees. It is similar to bagging except it builds trees based on random

sampling of subset features at each node in the DT[33, 41, 42].

KNN uses a distance function to compute and generate new data points from

available data points [3, 26]. This approach first creates a vector space for each

data point in the training set, such that when a new data point is fed into the

model for classification, this approach checks data points from the training set that

are close to the new data point using the distance function. It then classifies this

new label through combining the distance of the closest training examples [42].

SVM employs the idea of a decision boundary known as a hyperplane that dis-

tinguishes between classes in a high dimensional space. As such, it maximises the

margin, which is the distance between the closest points of training set and hy-

perplane. The points that are close to the hyperplane are called support vectors.

A classifier learns by maximising the margin between classes and uses the kernel

function to map the narratives as input features to a high dimensional space. For

cases that are not linearly separable, the SVM uses the kernel function [3, 26]. The

SVM approach is also elaborated in the work of [42, 41, 44].

ANN are made up of a combination of perceptrons known as nodes. The output

of a layer of nodes becomes input to the next layers. At the last stack of nodes

is the output layer which generates the final output of the neural network. These

ANN require vast amounts of training examples or data points [42]. This approach

makes use of layers (input, hidden and output) that are a network of units where

each unit can be a term and the output unit represents a category. In document

text classification, weights are assigned to input units and the activation of these

units is propagated through a network and the value of the output unit determines

the categorisation. The layering of the nodes provides a map of the decision space

also known as the neural network where a program can learn rules from massive

data amounts being processed [45, 46, 40, 24]. We use a feed forward neural network

that applies back propagation and data moves from one layer to the other layers

using weights, biases and activation function to produce output. We further use the

rectifier linear unit (reLu) activation function rather that tanh and sigmoid as they

suffer from vanishing gradient (where the derivatives of the activation functions

are closer to zero, thus smaller gradients mean the weights and biases will not be

updated). The neural network function that we use is also reported in [41].

Model Optimisation

This study used 10 k-fold cross validation as an optimisation technique in order to

evaluate our prediction models. This was done by first dividing our dataset into a

training set, for model training and a test set for model evaluation. The dataset was

randomly split into k (10) equal sized samples, where nine folds (k−1) were used for

model training and one fold was used as the holdout validation dataset for model

testing. The cross validation process was iterated 10 times and at each iteration

each of the k samples being used once for validation purposes. Furthermore, at

each iteration an error is computed. The final result will be an average error of the

model generated in each iteration. This implies that the k results from the folds are

combined to produce a single estimation. The advantage of this approach is that, all
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observations are used for both training and validation, with each observation used

for validation exactly once. On the contrary, this approach has a disadvantage of

having to define the number of folds manually. In order to address the limitations

of the k-fold cross validation technique, we also used the automated GridSearch

approach that eliminates the random setting of parameters and chooses optimum

parameters automatically for a specific model. For tree based methods we applied

cost complexity pruning (pre-pruning of trees) to get a smaller subset of trees that

minimised our cost function by tuning parameter alpha through k-fold validation.

We further set the minimum number of samples required at a leaf node and also

set the maximum depth of the tree.

We employ the Mean Squared Error (MSE) and Cross Entropy Error (CEE)

as cost functions for our ANN model. We further hyper-tune parameters such as

the gradient descent, learning rate and back propagation to optimise our weights

and biases on our network. This helps us achieve an optimal cost function that

minimises the difference in predicted and response variables. We apply L1 and L2

regularisation approaches to further optimise our ANN model. L1 regularisation

involves eliminating features that are not useful for model prediction by setting

some weights close to zero. On the contrary, L2 regularisation tends to penalise large

weights more and small weights less. Therefore, this approach is computationally

efficient as an increase in regularisation tends to result in weights decaying towards

zero. In this study, we follow the mathematical approach described in [42]. For most

of our models we employ the MSE, Minkowski, Gini and CEE as cost functions to

compute the minimal cost error between our predictor and the response using the k-

fold cross validation approach to optimise model performance. These cost functions

are described in [41].

Model Evaluation

Performance evaluation of classifier can be evaluated using various metrics and

we report the metrics based on studies by [33, 26]. We present Accuracy, Precision,

Recall , F-score and Area Under Curve (AUC) as our metrics for evaluation. In order

to compute these metrics we use the following values from the confusion matrix;

True Positives (TP) denoting predicted positive VA narratives with a particular

disease category from the twelve classes and are actually positive. False Positives

(FP) predicted positive VA narratives with a particular disease category from the

twelve classes but are actually negative. True Negatives (TN) denoting predicted

negative VA narratives with a particular disease category from the twelve classes

and are actually negative. False Negatives (FN) implying the predicted negative VA

narratives with a particular disease category from the twelve classes but are actually

positive. Precision also known as the Positive Predictive Value (PPV) defines the

proportion of VA narratives correctly predicted as positive to the total of positively

predicted VA narratives. Recall also known as Sensitivity or True Positive Rate

(TPR) defines the proportion of VA narrative correctly predicted as positive to all

VA narratives in the actual positive category. F-measure computes the average or

harmonic mean of Precision and Recall. Accuracy denotes all classes with classified

results that have been predicted correctly in fraction terms. The Receiver Operating

Characteristic Curve (ROC curve) visualises the TPR against the false positive rate
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(FPR). Area under the ROC curve applies the principle of plotting a curve specific to

a machine learning algorithm where the classifier is evaluated relative to a weighting

on the area under the curve. Good performance of the algorithm is given a weight of

close to 1, thus graph is AUC closer to upper left corner and the poor performance

of an algorithm is given a weight of 0.5 and below. Specificity computes the ratio

of negative VA narratives that are correctly predicted as negative.

Results

In this section we present the results attained from various classification techniques

employed to determine cause of death from VA narratives.

Performance evaluation of ML classifiers

Precision, Recall, Accuracy and F-score measure for our eight classifiers in the cause

of death categorisation of the twelve disease classes are presented in Table 2. We

also present the ROCAUC curve for our twelve disease categories in Figure 2.

The RF classifier outperformed all the other eight classifiers with a Precision

of 95%, Recall of 95%, F1-score of 95% and Accuracy of 95%. The second best

performing classifier was the ANN with a Precision of 94%, Recall of 94%, F1-score

of 94% and Accuracy of 94%. The third best classier in terms of performance was

KNN with a Precision of 93%, Recall of 93%, F1-score of 92% and Accuracy of

93%. The SVM was the fourth best performing and achieved a Precision of 92%,

Recall of 92%, F1-score of 92% and Accuracy of 92%. We applied bagging as our

ensemble classifier and attained a Precision of 91%, Recall of 91%, F1-score of 91%

and Accuracy of 91%. Our sixth classifier was the DT which attained a Precision

of 84%, Recall of 85%, F1-score of 84% and Accuracy of 85%. The LR attained a

Precision of 82%, Recall of 82%, F1-score of 82% and Accuracy of 82%. The least

performing classifier was the NB with a Precision of 75%, Recall of 71%, F1-score of

72% and Accuracy of 71%. Table 2 shows the performance evaluation of our eight

models.

The results of the ROCAUC show that our models where good classifiers of cause

of death categorisation of the twelve disease categories. The classes 3,6,9,10 and 12

have an area under the ROC curve of equal to 1. They are followed by classes 8,

2 and 7 with an area under ROC curve of 0.99 , 0.97 and 0.95 respectively. The

other classes have an area ROC curve within the range 0.84 − 0.89. We report a

micro-average ROC curve AUC of 0.96 and a macro-average ROC curve AUC of

0.95.

Table 2: Performance evaluation of models
Model name Accuracy Precision Recall F1-score

RF 95% 95% 95% 95%
ANN 94% 94% 94% 94%
KNN 93% 93% 93% 92%
SVM 92% 92% 92% 92%

Bagging 91% 91% 91% 91%
DT 85% 84% 85% 84%
LR 82% 82% 82% 82%
NB 71% 75% 71% 72%

All list of abbreviations and corresponding terms are given in Table 3.
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Figure 2: Performance evaluation using the ROCAUC

Discussion

Determining cause of death from VAs largely remains a manual task that is tedious,

time consuming, prone to errors and costly. Attaining quality narratives from the

interview process requires trained interviewers that can elicit valuable information

from the interviews. Despite efforts to improve the VA processes, the VA elicitation

process suffers from many drawbacks and still lags behind in the determination of

cause of death from VAs. This ultimately affects VA reporting and does not happen

in in real time, even though they are key in informing civil registration systems

and strengthening of health priorities. Despite most studies in VA using responses

from the standardised questionnaire for ML prediction, this study synthesised and

analysed the robustness of ML techniques in determining causes of death from VA

narratives only. Our findings suggest that ML has already been applied in the VA

domain. Nevertheless, strategies of text pre-processing and handling of data are not

standardised and are inconsistent, hence this affects model performance. Existing

literature lacks clear explanations on how data exploration is done and strategies

implemented post data exploration.

To support our findings, this study applies effective data exploration, pre-

processing, feature scaling and data balancing. There is a lack of studies that report

on the application of effective pre-processing techniques, a step crucial in the data

preparation for optimum model performance. Most work done in ML does not re-

port or apply any data balancing techniques. As such, this leads to bias and false

interpretation of results. There is need to handle data imbalance prior to build-

ing machine learning models for training as this affects model performance . As

such, implementing proper data balancing enforces transparency and conforms to

the standards of explainable AI. Most studies in VA that apply feature engineering

only do feature extraction and feature value representation. Little research reports

on feature selection being applied in VA data [8]. As such, most of these datasets

are modelled with many noisy data points. There is a great need to do feature

selection to curb over-fitting and reduce the highly dimensional feature space and

only retain relevant features for our models. Because of less application of feature

selection, we continue to witness low performing ML models in the VA domain. Im-

proving model performance requires application of optimisation techniques. Most

studies in the VA domain only use k-fold cross validation as an optimisation ap-

proach. However, there is a new novel automated optimisation technique known as

GridSearch. Unlike k-fold cross validation, where one has to manually pre-define

the number of k folds, the GridSearch automates the process of hyper-tuning of

parameters leading to finding the optimal alpha that can be used for model fitting.

In this study we use cost functions as penalties to attain the smallest error distance

between the response and predictors. This process helps us achieve optimum results

of our models.

It is imperative for researchers who intend to use ML approaches to strike a bal-

ance between interpretability and accuracy. Our results, consistent with a number
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of studies that used VA data to determine cause of death, suggest that ML ap-

proaches can accurately classify cause of death from VA narratives. However, in

most cases statistical approaches are always outperformed by other ML approaches

[3, 33, 28, 26, 8, 13, 9]. After applying effective data handling strategies, we discuss

on the performance of our eight classifiers in subsequent paragraphs.

The RF classifier achieved the best results as compared to the other classifiers.

This can be attributed to effective data pre-processing, cleaning and feature selec-

tion strategies that enormously reduced the feature space leaving only discriminative

informative features for the model. This suggests an effective generation of a forest

with powerful low depth trees that gave us good results and model performance.

This approach can handle both categorical and numeric features and produces an

easily interpretable model. Second on the list in terms of performance was the ANN

which is capable of learning complex patterns and relationships within data. It has

effective preprocessing that is inbuilt within the abstract layers. Additionally, em-

ploying back propagation, use of weights, bias and learning rate through application

of an effective activation function suggest the good results attained by this model.

This suggests that with more layers this model can improve in terms of performance.

Consequently, this calls for an urgent need to explore with deep learning architec-

tures. KNN was our third best performing classifier and it calculated the similarity

between new VA narrative data and the VA narratives for the training data finding

the number of k most similar cases which are then labelled as new class instances

based on extracted majority VA narratives. The results suggest this model com-

puted the distance measures effectively and accurately. This suggests that we did

optimum linear scaling of features which were discriminative . Moreover, we man-

aged to apply effective dimensionality reduction schemes. Additionally, this model

is intuitive and thus it is a training set itself. This approach is effective with numer-

ical data and multidimensional data. However, using this technique with categorical

features and limited number of values can still yield better results. Therefore, get-

ting best results depends on the parameters that you select such as the number of

neighbours, distance measure and kernel function to use.

On the contrary the SVM performs better than Bagging our ensemble classifier,

DT and our statistical models (NB,LR). This implies that the categorisation task

was not linearly separable as it uses margins to perform categorisation. Moreover,

the SVM approach is immune to over-fitting and high dimensionality of feature

space because its feature space assumes independent features. Additionally, this

model performs better when faced with high dimensional data and numerical fea-

tures. However, it faces challenges of large memory requirements, model complexity

and interpretability [8]. Our ensemble approach bagging produced better results as

compared to DT, LR and NB but a bit lower to SVM, KNN, ANN and RF. This can

be attributed to the fact that the ensemble classifier combines all capabilities of all

classifiers including strengths and weaknesses and attains optimum results through

voting.Even though the DT was outperformed by RF, ANN, KNN, SVM and bag-

ging, its performance was moderate and managed to perform better than LR and

NB. This can be attributed to the fact that a DT is not affected by data stan-

dardisation and it performs better at multi-class classification problems. Moreover,

it can handle both continuous and categorical variables using more comprehensive
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rules. The DT classifier can nonetheless suffer from over-fitting leading to complex

trees that may need to be pruned and may require applying effective hyper-pameter

tuning to avoid such. However, using a single DT model means a weak learner, thus

having a multitudes of trees can produce better predictions as evidenced by the RF

classifier in this study. Statistical models (LR and NB classifiers) and DT did not

yield optimal results. The NB classifier performance highlights that the assumption

of conditional independence among features might have been a key factor in poor

performance. This implies that as the feature space increases, feature dependence

creates complexity in the model performance. Additionally, this can be attributed

to the fact that these approaches fail to handle non-linearity and fail to handle

complex patterns in the dataset.

One key finding is that, VA researchers who intend to investigate performance

of ML algorithms on VA data should aim to employ various statistical and ML

algorithms to fully understand how they perform. Most studies have only applied

own classifiers on their own datasets, and this lacks generalisation and compara-

bility. Therefore, one cannot deduce that one classifier is best as the performance

varies from one domain to the other. There is a need to explore with various ML

approaches for comparative reasons and generalisations.

This study had limitations of the data quality which was incomplete and collected

using various tools. These problems emanate from the issues of VA data being

collected by non-medical personnel with different competencies and qualifications.

Also the length of the recall period creates room for bias as narrations might be

wrongly interpreted. Moreover, these narratives are given as summaries which might

also not be a true reflection of events that transpired. Furthermore, there is a

challenge of some of the VA narratives being in the native language or a combination

of native and common English language. The capturers of these narratives also

generate errors when transcribing the narratives. This calls for novel approaches of

addressing such issues. One solution can be the use of trained personnel who can

also work with qualified translators so as to elicit appropriate information. Another

solution can be to use NLP to translate the vernacular terms into a common English

vocabulary which machines can understand and process effectively. Ultimately this

can improve model performance.

Conclusion

We successfully assessed the robustness of various ML approaches in determining

cause of death from VA narratives only that proved to have rich valuable informa-

tion. We specifically explored with eight ML algorithms and the RF, ANN, KNN,

SVM and bagging in that order outperformed the other classifiers. Therefore, this

further reinforces the notion that ML approaches can be used to determine cause of

death from the VA narratives in real time, in a cost effective way that is free from

human error thus also saving time. This study was limited in that it only used VA

narratives from Agincourt HDSS with only twelve disease categories. The results of

this study avail interesting opportunities to investigate ML determination of cause

of death from VA narratives using large datasets from other sources with more cause

of death categories. Moreover, we aim at exploring with deep learning architectures

which have shown promising results in other domains and have not been fully ex-

ploited within the VA domain. Additionally, we aim at investigating ML model
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performance using a combination of responses from the structured questionnaire

and the VA narratives as they have proved to have valuable rich information. This

will contextualise and reinforce added value in improving ML model performance,

thus attaining more accurate results in cause of death determination from VAs.

Abbreviations

Table 3 is a list of abbreviations and corresponding full terms.

Table 3: List of abbreviations
Abbreviation Full Term

ANN Artificial Neural Network
AUC Area Under Curve

AUCROC Area Under Curve Receiver Operating Characteristics
CCVA Computer Coded Verbal Autopsy
DT Decision Tree

ICD-10 International Classification of Diseases-10
HDSS Health and Demographic Surveillance Site
KNN K-Nearest Neighbour
LMIC Low to Medium Income Country
LR Logistic Regression
ML Machine Learning
NB Naive Bayes

PCVA Physician Coded Verbal Autopsy
PHMRC Population Health Metrics Research Consortium

RF Random Forest
SMOTE Synthetic Minority Oversampling Technique
SVM Support Vector Machine
TF Term Frequency

TF-IDF Term Frequency with Inverse Document Frequency
VA Verbal Autopsy
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High level Schematic Diagram of our ML process
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Performance evaluation using the ROCAUC


