
A Self-adaptive Binary Cat Swarm Optimization
Using New Time-Varying Transfer Function for Gene
Selection in DNA Microarray Expression Cancer
Data
yousef shara� 

Islamic Azad University
Mohammad Teshnehlab  (  Teshnehlab@eetd.kntu.ac.ir )

KN Toosi: KN Toosi University of Technology

Research Article

Keywords: Self-adaptive parameters, Microarray expression cancer data, Gene selection, Binary cat
swarm optimization algorithm, Multi-objective optimization.

Posted Date: March 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1010398/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1010398/v1
mailto:Teshnehlab@eetd.kntu.ac.ir
https://doi.org/10.21203/rs.3.rs-1010398/v1
https://creativecommons.org/licenses/by/4.0/


A Self-adaptive Binary Cat Swarm Optimization Using New Time-Varying Transfer 

Function for Gene Selection in DNA Microarray Expression Cancer Data 

Abstract 

Microarray technology is beneficial in terms of diagnosing various diseases, including cancer. Despite 

all DNA microarray benefits, the high number of genes versus the low number of samples has always been a 

crucial challenge for this technology. Accordingly, we need new optimization algorithms to select optimal 

genes for faster disease diagnosis. In this article, a new version of the binary cat optimization algorithm, named 

SBCSO, for gene selection in DNA microarray expression cancer data is presented. The main contributions in 

this paper are listed as follows: First, the opposition-based learning (OBL) mechanism is employed to improve 

the proposed algorithm's population members' diversity. Second, a time-varying V-shape transfer function is 

employed to balance the two phases of exploration and extraction in the proposed algorithm. Third, the MR and 𝛌 parameters in the proposed algorithm are adapted over time, and finally, single-objective and multi-objective 

approaches are proposed to solve the gene selection problems.  The fifteen datasets pertinent to microarray data 

of various cancer types are employed to compare the proposed method with other well-known binary 

optimization algorithms. The experiments' results indicate that the proposed algorithm has a better capability to 

select the optimal genes for a faster disease diagnosis.  

Keywords: Self-adaptive parameters, Microarray expression cancer data, Gene selection, Binary cat swarm 

optimization algorithm, Multi-objective optimization. 

1. Introduction 

Microarray data are extremely useful in terms of diagnosis and prediction of various diseases 

such as cancer. These data are obtained based on individual's DNA and their genetic information. 

DNA microarray technology simultaneously investigates the expression of thousands of genes, so it 

is a significant breakthrough in diagnosing and treating various diseases, particularly cancer. One of 

the ever-present, significant challenges in microarray data analysis is the selection of optimal genes. 

The high number of genes, in addition to the low number of samples in microarray data, will bring 

about some problems in terms of data analysis. Also, in some cases, the high proportion of genes to 

sample numbers increases the possibility of selecting an unsuitable gene. Nowadays, data analysis 

could be complicated without statistical analysis and intelligent algorithms [3,11]. 
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The traditional methods take the vast majority of genes into account as effective genes in 

diseases [4]. Investigations indicate that most DNA microarray gene expression cancer data are not 

of informational value based on classification criteria [5]. Thus, feature (gene) selection and 

diagnosis and elimination process of irrelevant genes play pivotal roles in the analysis of microarray 

data obtained from DNA. Hence, researchers are in the pursuit of introducing novel algorithms of 

feature selection [1,2]. 

During the last decades, various algorithms are introduced to solve the feature (gene) 

selection problem, including filter-based, wrapper-based, hybrid, and embedded algorithms, among 

which the filter-based and wrapper-based methods are more prevalent [6,16]. Wrapper-based 

methods take advantage of machine learning algorithms as a cost function to evaluate a subset of 

features. Some of the wrapper-based algorithms introduced in recent decades for selecting a subset 

of features in various applications include ISSA [7], BWSSO [8], QWOA [9], and TLBOSA 

[10]. Besides, the filter-based algorithms make use of statistical methods to select a subset of 

features [12]. The hybrid method employs the two wrapper and filter methods to improve the feature 

selection algorithm's effectiveness. In this regard, we can name WFACOFS [13], IG-GA [14], and 

BDE-xRank [15] algorithms. 

When comparing the wrapper-based and filter-based methods, it is indicated that wrapper-

based algorithms have better results. However, the major drawback of these methods is numerous 

calculations. Accordingly, researchers have always pursued novel methods of evolutionary 

optimization algorithms to accelerate the selection process of a subset of optimal features by 

reducing the computational load [6]. 

In recent decades, different evolutionary optimization methods inspired by nature have been 

introduced, among which gray wolf optimizer (GWO) [17], particle swarm optimization (PSO) [18], 

and cat swarm optimization (CSO) [19] algorithms are included. The structure of all evolutionary 

algorithms comprises an initial population that is evolved in an evolutionary approach. Suitable 

diversity in the members of an initial population can play a pivotal part in population convergence 

towards optimal global solutions. Suppose the diversity of population members is not appropriate. In 

that case, the two exploitation and exploration phases will not be balanced well, and the evolutionary 

algorithms can get trapped in a local minimum. Various investigations have been conducted to 

improve the diversity of population members and the effectiveness of evolutionary algorithms. The 

opposition-based learning (OBL) method is one of the most that has recently captured a variety of 

researchers' interests. OBL is a new concept in machine learning, which is inspired by the 

contrasting relationships between entities [20]. This investigation employs the OBL mechanism to 

improve the diversity of initial population members and the middle generation [50-52].  

The cat swarm optimization (CSO) algorithm is presented based on cats' group behavior in 

two phases of tracing and seeking [19]. In the CSO algorithm, the percentage of cats' involvement in 

both phases is determined based on the mixture rate (MR) parameter's extent. In essence, the CSO is 

a continuous algorithm, and the feature selection is an optimization problem, the variables' spaces of 

which are binary. In evolutionary algorithms, some transfer functions, including linear, S-shape, and 

V-shape functions, are usually employed to convert the continuous space to binary 

space. Optimization algorithms employing S-shape functions include BPSO [21], BGWO [22] and 

BCSO [23]. Also, the BGSA [24], BBA [25], BDA [26] algorithms take advantage of V-shape 

functions for various applications. Recently, a new type of transfer function is introduced, the form 

of which varies by time. In the article [23], the PSO binary optimization algorithm is introduced 

based on time-varying transfer functions to strike a balance between exploitation and exploration. 



Also, in dragonfly optimization algorithm, the time-varying transfer functions are employed in 

feature selection [24]. In the article [25], a time-varying mirrored S-shaped transfer function is used 

for BPSO algorithms to solve feature selection problems. The binary version of the binary whale 

optimization algorithm (BWOA) algorithm is also provided based on a time-varying transfer 

function to solve feature selection problems [26]. In this paper, a new time-varying V-shape transfer 

function is employed to convert the continuous space to the binary space in the CSO algorithm. The 

proposed transfer function has an adaptive parameter striking a balance between two exploration and 

exploitation processes in the proposed algorithm.  

In the feature selection problem, the F1 and F2, which are inversely related functions, 

naturally convert this problem into a multi-objective one. The F1 and F2 functions refer to the 

number of features selected and classification error rate, respectively. In this research, single-

objective and multi-objective approaches are proposed to solve the feature selection problem. The 

proposed algorithm is applied to 15 benchmark datasets to optimize the feature selection. The 

experimental results indicate that the proposed binary algorithm has reported better performance in 

comparison to other well-known binary optimization algorithms. 

The contributions of this investigation are summarized as follows: 

 The improved CSO binary algorithm is presented.  

 An initial combined population with a suitable diversity is presented to solve binary problems 

based on OBL and uniform distribution. The OBL mechanism is utilized in the evolution of 

population members of the middle generation.  

 A new time-varying V-shape transfer functions are employed to balance two exploration and 

exploitation phases.  

 Single-objective and multi-objective approaches are provided to solve the gene selection 

problem. 

 The MR and 𝛌 parameters in the proposed algorithm are adapted over time. 

 The proposed algorithm results are investigated on fifteen datasets pertinent to microarray 

data of various cancers, and the outcomes are reported.  

The structure of this article is as follows: A summary of the CSO algorithm and a review of 

OBL and TF are presented in section 2. In section 3, the proposed SBCSO algorithm is presented. In 

section 4, the proposed SBCSO algorithm's test results compared to other well-known binary 

optimization algorithms are reported.  Finally, a conclusion is presented. 

2. Background

In this section, the fundamental concepts of cat swarm optimization algorithm, OBL, and a review of the 

transfer functions are presented.  

2.1 The standard cat swarm optimization algorithm 

The cat swarm optimization algorithm is an algorithm inspired by the group behavior of cats 

in nature. Cats usually conduct two behaviors in nature. First, they rest most of the time, watching 

their surroundings intelligently. Second, they are aware of everything happening around them, and as 

soon as they see a target, they move quickly towards it. These two behaviors are considered to be the 

principle of the design and implementation of the CSO algorithm [27].  

In the CSO algorithm, these two behaviors are stimulated in two phases of seeking and 

tracing. In the seeking phase, cats observe their surroundings, and in the tracing phase, they move 



towards a suitable target. In the CSO algorithm, the number of cats falling under the tracing phase 

category is determined based on the mixture rate (MR) parameter, and the rest of the cats fall into 

the seeking phase category. Figure 1 demonstrates the general process of the CSO algorithm. 

Fig. 1 The overall procedure of the CSO algorithm. 

The four parameters of the seeking phase in the CSO algorithm are defined as follows: 

 Counts of Dimension to Change (CDC)   

 Self-Position Consideration (SPC) 

 Seeking Range of the selected Dimension (SRD) 

 Seeking Memory Pool (SMP)

Several copies of every cat in the seeking phase will be created (the copy number equal to 

SMP parameter), and each copy will change separately based on SRD and CDC parameters (similar 

to the mutation operator in a genetic algorithm). The value of the SPC parameter is either TRUE or 

FALSE. In case it is TRUE, the present cat competes with other modified copies, as well. Finally, 

the best solution in terms of fitness is transferred to the next algorithm generation. Any cat in the 

tracing phase will move to the position of the cat in the best position [27]. 

Researchers have introduced several improved versions of the CSO algorithm, so 

far. Particularly in the article [29], an improved version of this algorithm is presented based on the 

normal mutation to achieve a faster convergence. The article [28] has also improved the global and 

local search of this algorithm by modifying some of the equations. 



2.2 The binary cat swarm optimization algorithm 

In the research literature, some binary versions of the cat optimization algorithm are 

presented. For the first time in 2013, a binary version of the cat algorithm addressing the zero-one 

knapsack problem was introduced [37]. In this algorithm, a simple sigmoid function was introduced 

to convert the continuous space into binary space. In the article [38], one binary version of the cat 

algorithm based on the V-shape transfer function is presented to solve the one-zero knapsack 

problem. In the article [39], the updating equations of a cat position in the tracing phase changed, 

and the zero-one knapsack problem is solved based on it. The pseudo-code of the original binary cat 

swarm algorithm (BCSO) is indicated in Algorithm 1. 

Algorithm 1: Binary Cat Swarm Optimization Algorithm (BCSO) 

1. Initialization: popSize,MaxNFE, MR, nfe=0, etc. 

2. Initial population. 

3. While (nfe < MaxNFE) do

4.             Division of population members between two phases based on the MR. 

5.             For i=1 to popSize 

6                    If (cat[i].flag = = 1) then

7.                           //Seeking phase (update 𝑥(i)). 

8. Else 

9.                           //Tracing phase (update 𝑥(i)). 

10.                    End if 

11. End for 

12.             Convert continuous to binary space. 

13.             Evaluate population (cost function value). 

14.             If (termination condition) then

15.                    Go to step 21. 

16. Else 

17.                    Go to step 3. 

18.             End if 

19. Update nfe. 

20. End while 

21. Output: The report of the result. 

2.3 Opposition-based learning (OBL) 

In the evolutionary algorithms, the population members' diversity plays a pivotal part in 

preventing the early premature convergence and also getting stuck in a local optimum. Accordingly, 

various methods, including OBL and chaotic maps, are presented to increase the population 

members' diversity [20, 30, 31]. The concept of OBL is demonstrated in the Figure below (also see 

equation 1). 



Fig. 2 Opposition-based learning

(1)x upper lower x  

The upper and lower values are the ceiling and the floor of the search space, respectively. 

Given that the search space is binary in the feature selection problems, the opposite of a solution is 

calculated employing the following equation. 

(2)1x x 

In recent decades, researchers have taken advantage of various OBL mechanisms in some 

evolutionary optimization algorithms. In this regard, we can name Quasi-Opposition, Super-

Opposition, Quasi-Reflection OBL, and Generalized OBL methods [32,33]. In this paper, the OBL 

mechanism is utilized to improve the proposed algorithm's population members' diversity. 

2.4 A brief overview of existing transfer functions

Various transfer functions have been employed to convert the continuous space to the binary 

space in evolutionary optimization algorithms to solve feature selection problems. Among the well-

known transfer functions capturing researchers' interests in recent years are V-shape and S-shape 

transfer functions. It is worth mentioning that the shape of these transfer functions can vary by the 

time during the optimization process. Accordingly, the shape of these transfer functions can be either 

static or time-varying. In Table 1, a review of some transfer functions is presented.  



Table 1 Some common transfer functions.  

ShapeTransfer function
Time-

varying

Shape 

Type
Name

1

-x1+e
NOS-shapeS1[34]

tanh(x )NOV-shapeV1[35]

2 π
arctan( x)

π 2
NOV-shapeV2[36]

1
,  0.01 α 3

2
1+exp(- x)

α

 
YESS-shapeS2[24]

2
1   x 0 

x
1+exp(- )

3α
,  0.01 α 4

2
1    x 0 

x
1+exp(- )

3α

  

  
  



YESV-shapeV3[24]

max min min

1

1+exp( x) iter
,  ( - )( )+  

1 maxiter

1+exp(- x)


   




 



YESS-shapeS3[25]

3. The proposed self-adaptive binary cat swarm optimization algorithm 

This section presents the binary version of the self-adaptive cat swarm optimization 

algorithm for the gene selection in DNA Microarray Expression Cancer data. In the proposed binary 

algorithm named SBCSO, the OBL mechanism is utilized to increase the population members' 

diversity. Enhancing the population members' diversity contributes highly to preventing the 

evolutionary optimization algorithms from getting stuck in a local minimum. In subsection 3.1, the 

method of using the OBL mechanism in the proposed algorithm is presented. The feature (gene) 

selection is a binary optimization problem. Therefore, the transfer functions are required to convert 

an optimization algorithm in continuous space to binary space. In subsection 3.2, a new time-varying 



V-shape transfer function containing a time-varying parameter is presented. The role of this 

parameter is to balance two phases of exploration and exploitation. The cat swarm optimization 

algorithm comprises two phases of seeking and tracing, in which the number of cats in each phase is 

determined based on the mixture rate (MR) parameter. In subsection 3.3, an automatic mechanism 

for adapting the proposed algorithm's parameters, including the MR and 𝛌 parameters, is presented 

(𝛌 is a controlling parameter balancing the exploration and the exploitation phases). In subsection 

3.4, the cost function value for solving the feature selection problem is defined in the form of single 

and multi-objective functions. In subsection 3.5, the final conditions of the proposed algorithm are 

presented. 

In order to obtain the best subset of features, the K-nearest neighbor (KNN) algorithm with K 

= 5 is employed to determine the performance of each feature’s subset for classification. The block 

diagram of the SBCSO algorithm for selecting the optimal feature subset of a dataset is 

demonstrated in Fig. 3. The details of the proposed algorithms are presented below.  

Fig. 3 Block diagram of self-adaptive binary cat swarm optimization algorithm. 

3.1 Initial population strategy 

The OBL mechanism is employed in two parts of the proposed algorithm to improve the 

population members' diversity. First, a population titled the subset {p} with a uniform distribution is 

initially created in the first part, as indicated in Fig. 4. In the next step, a population titled {OP} is 

created using the OBL mechanism. N better solutions for the initial population are selected from {P, 

OP} set to calculate their cost functions.  



Fig. 4 The proposed initial population based on OBL. 

Most evolutionary algorithms come across stagnancy over time as population diversity 

decreases. In this research, as demonstrated in Fig. 5, if the proposed algorithm comes across the 

stagnancy condition, the OBL mechanism will become active, improving the population members' 

diversity.  

Fig. 5 The use of the OBL mechanism for avoiding the stagnancy conditions. 

In the SBCSO algorithm, the OBL mechanism can become active under particular 

circumstances. As indicated in Fig. 6, two scenarios are introduced. In the first scenario, if the 

algorithm comes across a stagnancy in terms of a decline in the cost function (fitness) value, the 

OBL mechanism will become active. In the second scenario, the OBL mechanism is active after 

several defined steps. In the proposed algorithm, the first scenario is employed. In fact, if the value 

of the cost function remains unchanged after “step” successive steps, the OBL mechanism will be 

employed (the value of step in this article is considered 10).  



Fig. 6 The scenarios of employing the OBL mechanism. 

3.2 Position updating based on new time-varying V-shape transfer function

The evolutionary algorithms usually employ two types of transfer functions, S-shape and V-

shape, to convert continuous space to binary space. In the S-shape transfer functions, the solution is 

converted to the binary space on the basis of equation 3. 

(3) 

d

d i

i d

i

1    if rand Sfunction(x (t+1)) 
x (t+1) = 

0    if rand Sfunction(x (t+1)) 

 




The expression d

ix (t+1) is the value of d-th dimension of the i-th solution at the t-th generation. The phrase rand 

is a random number with a uniform distribution in [0, 1] range. 

In the V-shape transfer functions, the solution is converted to the binary space on the basis of equation 4. 

(4) 
d d

d i i

i d d

i i

1- x (t)          if rand Vfunction(x (t+1)) 
x (t+1) = 

x (t)              if rand Vfunction(x (t+1)) 

 




In this paper, a new time-varying V-shape transfer function is presented as indicated below.

(5) 
1

x
TVTF(x, ) = - (1- ) +1, β=max(x)

β





In this equation, 𝛌 is a controlling parameter balancing the exploration and the exploitation phases in the 

optimization process.  In Fig. 7, the influence of the parameter on the proposed transfer function is 

demonstrated.  

As can be seen in Fig. 7, for the small values of 𝛌, the transfer function has values approximate to one. 

Also, according to Fig. 8, the variations on the solution are high, and the algorithm is in the exploration phase. 



For the larger values of 𝛌, on the other hand, the transfer function has values approximate to zero. According to 

Fig. 8, the variations on the solution are low, and the algorithm is in the exploitation phase. 

Fig. 7 The effect of the 𝛌 parameter values on the shape of the proposed transfer function.

Fig. 8 The effect of 𝛌 value on the intensity of the changes on a solution.



Figure 9 demonstrates an overview of the different shapes of the proposed transfer function. 

The evolutionary algorithms usually start to operate with the exploration phase and enter the 

exploitation phase over time. If such a scenario is supposed to occur in the proposed algorithm, it 

ought to start with small value of the 𝛌 parameter, and 𝛌 must be increase over time. This matter is 

easily performed as the 𝛌 parameter linearly increases according to equation 6. This method's major 

drawback is that it compels the algorithm to move in a predefined path from the exploration phase to 

the exploitation phase. And sometimes, it makes the algorithm get stuck in the local minimum and 

be unable to get out it. In subsection 3.3, a new method for determining the 𝛌 parameter's value in 

each step of the proposed algorithm is presented.   

(6) iter max min min min max

iterλ =( )(λ - λ )+λ ,  λ 0.25,  λ = 5.25
maxiter



Fig. 9 The proposed time-varying V-shape transfer function. 

3.3 The self-adaptive parameters in the proposed method 

The 𝛌 and MR parameters in the proposed SBCSO algorithm play a pivotal role in placing 

the population members in two exploration and exploitation phases. In each step of the proposed 

algorithm, the MR parameter value indicates how many members of the population are in the 

exploitation phase. Also, the value of the 𝛌 parameter in the transfer function indicates the intensity 

of changes on one solution.   

Figure 10 demonstrates the self-adaptive approach of the 𝛌 and MR parameters in the 

proposed SBCSO algorithm. As can be seen in this Figure, the binary cat optimization algorithm 

operates in two phases of seeking and tracing. In the seeking phase, the concentration is on global 

search (increase in exploration), and the tracing phase concentrates on local search (increase in 

exploitation). The evolutionary algorithms cannot have the best performance until they can divide 

their population members well between these two phases and determine the phase in which they 

should operate more during the optimization process. This investigation employs 𝛌 and MR 

parameters to control the balance between these two phases at any moment. The update procedure of 

these parameters will be discussed later.  



Fig. 10 The self-adaptive approach of 𝛌 and MR parameters in the proposed algorithm. 

As can be seen in Fig. 11, the cost function curve can be considered as feedback of the 

algorithm optimization process's performance. The variation of fitness value is calculated in two 

successive steps according to the following equations. 

(7) 1 2 1t t tBestFitness BestFitness    

(8) 1t t tBestFitness BestFitness  

t
BestFitness is the best cost function value in the t-th step. t

 is the difference in the value of the cost function 

changes in two consecutive steps of t and t-1. 1t
  is the difference in the value of the cost function in two 

successive steps of t-1 and t-2. 

Fig. 11 Cost function value curve.

In the proposed algorithm is adapted to 𝛌 and MR parameters based on t
  and 1t

   according 

to the following pseudo-code. When the algorithm gets stuck in the local optimum, the cost function 



curve remains unchanged ( 1
0

t t
    ). In this case, to increase the diversity of the population 

members, the search mechanism should be in the exploration phase (by reducing the values of 𝛌 and 

MR). When the slope of the cost function curve’s variations is low ( 1t t
   ), it indicates that either 

the population members’ diversity decreases or we are close to a local or global optimum. 

Accordingly, in order to increase the population members’ diversity, the search mechanism ought to 

be in the exploration phase (by reducing the 𝛌 and MR values). When the slope of the cost function 

value’s variations is high ( 1t t
   ), it means that the search route is suitable, and we can increase 

the convergence speed and place the search mechanism in the exploitation phase (by increasing the 

values of   and MR). 

1

1

max

max

min

min

[ ,  ] Self-adaptive( ,  )

( )  //Explotation phase

{

        min( 0.02,  )

min( 0.15,  ) 

}

 //Exploration phase

{

        max( 0.02,  )

max( 0.15,  ) 

}

t t

t t

MR

if

MR MR MR

elseif

MR MR MR

  
 

  

  









 
 

 
 

min max min maxλ 0.25,  λ = 5.25,   MR 0.02,  MR = 0.90 

3.4 Fitness function 

The definition of a cost function for an optimization problem is of paramount importance. A 

gene selection problem as a minimization problem is expressed as follows: 

(9) 1 2 ( ) ( ( ), ( ))Minimum F x f x f x

The 1( )f x is classification accuracy and 2 ( )f x  is the number of selected genes. The objective functions of 1( )f x

and 2 ( )f x  for a specific dataset are defined as follows: 

(10) 1

Number of wrongly predicted 
( )  

Total number of instances
f x 

(11) 2

Number of selected features

Total number of features
(x)  f 



3.4.1 Single objective approach 

In the single-objective approach, the fitness function is defined as below: 

(12) 1 1 2 2 1 2
  (x )  ( ),    1fitness w f w f x w w     

The values of 1w  and 2w are the weights to control the effect of objective functions on the final fitness function’s 

final value. In the test results, the values 0.95 and 0.6 are considered for parameter 1w . 

3.4.2 Multi-objective approach 

In the single-objective approach to the gene selection problem, the objective functions of 

1( )f x  and 2 ( )f x  are minimized simultaneously, and ultimately, an optimal solution is obtained. In 

the multi-objective approach, according to Fig. 12, a set of answers titled Pareto front (PF). Based on 

the non-dominated sorting algorithm, the best answers are ranked first. As demonstrated in Fig. 12, 

solution ‘A’ comprises the maximum selected genes and the minimum classification errors. On the 

contrary, solution ‘B’ contains the minimum selected genes and the maximum classification errors. 

Fig. 12 The Pareto front for solving the gene selection problem.

Note that the proposed SBCSO algorithm is a single-objective version. In a multi-objective 

approach, the cost function is defined as follows: 

(13) ( )i i ifitness m Rank CD  

A definition of the concept of the crowding distance (CD) is: 

(14)      
1

m
i a i b

c max min
i ij

f x f x
CD x

f f






where 
max

if  and 
min

if are maximum and minimum of the value of the i-th objective function, m is the number of 

the objective functions,   i af x and   i bf x are the i-th objective function value related to the two members close 

to the solution cx  in the space of the Pareto front.  

The multi-objective approach of the proposed SBCSO algorithm runs exactly as its single-

objective version does. The only difference is that in the single-objective approach, the SBCSO 



algorithm aims to minimize the cost function of equation 12. Nevertheless, in the multi-objective 

approach, the SBCSO algorithm aims to minimize the cost function of equation 13. 

3.5 Termination criteria 

One of the evolutionary algorithms' challenges is that it is not clear when the algorithm will 

reach the optimal solution. Also, it might not reach the optimal solution at all and get stuck in a local 

optimum. Therefore, in evolutionary algorithms, usually, the end of the search process is considered 

based on either the number of evaluations of the objective function (NFE) or the number of steps. In 

this paper, the NFE is employed. The pseudo-code of the proposed SBCSO algorithm is indicated in 

Algorithm 2. 

Algorithm 2: Self-adaptive Binary Cat Swarm Optimization Algorithm (SBCSO) 

1. Initialization:  popSize,MaxNFE, 𝛌, MR, nfe=0, etc. 

2. Initial population (subsection 3.1). 

3. While (nfe < MaxNFE) do

4.             Division of population members between two phases based on the MR. 

5.             For i=1 to popSize 

6                    If (cat[i].flag = = 1) then

7.                           //Seeking phase (update 𝑥(i)). 

8. Else 

9.                           //Tracing phase (update 𝑥(i)). 

10.                    End if 

11. End for 

12.             Convert continuous to binary space (subsection 3.2). 

13.             Evaluate population (cost function value). 

14.             Adaptation of the 𝛌 and MR (subsection 3.3). 

15.             If (stagnancy conditions happen) then

16.                    Go to step 20. 

17. Else 

18.                    Go to step 22. 

19.             End if 

20.             Improvement of the population members based on the OBL (subsection 3.1).  

21.             Evaluate population (cost function value). 

22.             If (termination condition) then

23.                   Go to step 29. 

24. Else 

25.                   Go to step 3. 

26.             End if 

27. Update nfe. 

28. End while 

29. Output: The report of the result. 



4. Experimental results and discussions

In this section, in order to investigate the proposed algorithm performance, the results of the 

fifteen datasets simulation related to the microarray data of different types of cancers, compared to 

the other common methods, are reported in several subsections as follows. The assessment results of 

the SBCSO algorithm, compared to the binary single-objective optimization algorithms, such as the 

BACO [13], BBA [25], BCSO [23], BDA [26], BGSA [35], BGA [42], BPSO [21], and BGWO 

[22], are reported in subsection 4.3. Finally, the assessment results of the SBCSO algorithm, 

compared to the binary multi-objective optimization algorithms, such as BMOCSO [46], BNSGA-II 

[45], BMODE [43], BMOPSO [44], and BMOBBA [47], are reported in subsection 4.5. All of the 

simulations were executed in MATLAB on a computer equipped with a Core i7 CPU and 16G 

RAM. In this study, the results of the proposed SBCSO algorithm are compared based on the 

statistical tests together with different algorithms. Friedman, Quade, and Wilcoxon are among the 

statistical tests used in the assessment of the results [48,49]. 

4.1 Dataset description  

Some details of 15 datasets of different types of cancer microarray data, including the 

numbers of samples, genes, and data class of each dataset, are indicated in Table 1. Each dataset is 

categorized into two training and testing parts based on the k-fold cross-validation in the results’ 

assessment. In this research, to ensure the experiments’ results on different datasets, the k=10 value 

is used for the k-fold cross validation mechanism. The optimization process of all feature selection 

algorithms is executed on train data, and after selecting the optimal features, the assessment results 

of classification on test data are reported. 

In the suggested wrapper-based method, a K-nearest neighbor (KNN) algorithm is used to 

select an optimal subset of features. The KNN algorithm obtains the optimal features based on the 

train data with the lowest classification error. According to the gained features, the classification 

accuracy of the test data is achieved. In the KNN algorithm, the K value and also the distance 

method is obtained based on the trial and error method. In this study, the KNN algorithm, K=5 and 

Euclidean distance method are taken into consideration.  

Table 1 Microarray datasets.

ID Dataset #Genes #Instances #Classes Keywords 

DS01 Colon Cancer 2000 60 2 continuous, binary 

DS02 Central Nervous System Cancer 7129 60 2 discrete, binary 

DS03 Blood1 Cancer 7129 72 2 discrete, binary 

DS04 Ovarian Cancer 15154 253 2 continuous, binary 

DS05 Blood2 Cancer 12582 72 3 discrete, multi-class 

DS06 SRBCT Cancer 2308 83 4 continuous, multi-class 

DS07 Breast Cancer 2905 168 2 continuous, binary 

DS08 Prostate Cancer 12600 102 2 continuous, binary 

DS09 Myeloma Cancer 12625 173 2 continuous, binary 

DS10 Lung Cancer 12533 181 2 continuous, binary 

DS11 Lymphoma Cancer 7129 77 2 continuous, binary 

DS12 Crohn's Cancer 22283 127 3 continuous, multi-class 

DS13 Huntington's Cancer 22283 31 2 continuous, binary 

DS14 Miscellaneous1 Cancer 1413 217 3 continuous, multi-class 

DS15 Miscellaneous2 Cancer 10100 50 2 continuous, binary 

4.2 Parameter settings  



All of the values related to the parameters of the different algorithms are provided in Table 2. 

Table 2 Parameters values of compared algorithms.

Parameter setting Value 

Initial population size {100, 200} 

Stopping criteria 
The number of fitness evaluation (NFE)  20000 

Number of generations 500 

Problem search space 
Domain [0 1] 

Dimension Number of features  

Objective function parameter W1 {0.95, 0.60} 

Binary gravitational search algorithm (BGSA) [35] 
α 20 

Gravitational constant (G0) 100 

Binary particle swarm optimization (BPSO) [21], binary multi-

objective particle swarm optimization (BMOPSO) [44] 

c1 2.05 

c2 2.05 

 Inertia weight (w) 0.9 to 0.1 

Binary cat swarm optimization (BCSO) [23], binary multi-

objective cat swarm optimization (BMOCSO) [46], Proposed 

SBCSO 

c1 2.05 

 Inertia weight (w) 0.9 to 0.1 

Mixture rate (MR) 0.5 

Seeking memory pool (SMP) 5 

counts of dimension to change 

(CDC) 
0.2 

self-position considering (SPC) TRUE 

Binary grey wolf optimization (BGWO) [22] No parameter 

Binary multi-objective differential evolution (BMODE) [43] 

Crossover rate 0.9 

Mutation factor 0.6 

Binary genetic algorithm (BGA) [42], binary multi-objective 

genetic algorithm (BNSGA-II) [45] 

Crossover rate 0.9 

Mutation rate 1/dimension 

Binary dragonfly algorithm (BDA) [26] 
beta 1.5 

 Inertia weight (w) 0.9 to 0.2 

Binary bat algorithm (BBA) [25], binary multi-objective bat 

optimization algorithm (BMOBBA) [47] 

α 0.9 

γ 0.9 

Binary ant colony optimization (BACO) [13] 

Evaporation rate (p) 0.1 

Pheromone (alpha) 1 

Visibility (beta) 0.02 

4.3 Comparing the proposed algorithm (SBCSO) with other binary evolutionary algorithms 

This section compares the proposed algorithm with other single-objective binary 

optimization algorithms, such as BACO [13], BBA [25], BCSO [23], BDA [26], BGSA [35], BGA 

[42], BPSO [21], and BGWO [22]. All of the different algorithms’ parameters are indicated in Table 

2. The results obtained from 20-times independent execution of the proposed algorithm, compared to 

the other binary algorithms, are reported in Tables 3 to 10. In order to assess the SBCSO algorithm 

performance, the two values of 0.6 and 0.95 have been used for the w1 parameter in formula fitness 

(see equation 12). The results of the Tables 3 and 6 are based on w1=0.95. Accordingly, the results 

of Tables 4 and 7 are on the basis of w1=0.60. The fitness values of all benchmark datasets are 

indicated in Tables 3 and 4. As demonstrated in Table 3, the SBCSO algorithm has the lowest fitness 

value in 12 out of 15 benchmark datasets. The BGA algorithm has obtained better results in datasets 

DS02, DS05, and DS09, compared to the SBCSO algorithm. Furthermore, as indicated in Table 4, 

the SBCSO algorithm has the lowest fitness value among all of the datasets, all of which are on the 

basis of w1=0.60. 



Table 3 Comparison between the binary optimization algorithms based on the fitness average (w1=0.95). 

#DS BACO [13] BBA [25] BCSO [23] BDA [26] BGSA [35] BGA [42] BPSO [21] BGWO [22] SBCSO 

DS01 1.78E-01 ± 7.52E-02 1.32E-01 ± 8.25E-02 1.32E-01 ± 2.02E-02 1.31E-01 ± 8.31E-02 1.47E-01 ± 6.06E-02 1.16E-01 ± 1.78E-02 1.32E-01 ± 3.23E-02 1.41E-01 ± 8.66E-02 8.19E-02 ± 8.72E-03 

DS02 2.62E-01 ± 6.25E-02 1.98E-01 ± 1.29E-02 2.31E-01 ± 7.79E-02 2.29E-01 ± 8.47E-02 1.99E-01 ± 6.43E-02 1.65E-01 ± 7.06E-02 2.15E-01 ± 6.95E-02 2.23E-01 ± 6.24E-02 1.66E-01 ± 2.37E-02 

DS03 1.57E-01 ± 4.51E-02 1.16E-01 ± 4.05E-02 1.17E-01 ± 7.12E-02 1.29E-01 ± 7.36E-02 1.17E-01 ± 2.49E-02 8.82E-02 ± 4.92E-02 1.16E-01 ± 4.56E-02 1.26E-01 ± 6.67E-02 3.57E-02 ± 2.04E-02 

DS04 8.43E-02 ± 7.01E-02 5.40E-02 ± 2.12E-02 6.94E-02 ± 5.05E-02 7.01E-02 ± 6.59E-02 6.85E-02 ± 3.13E-02 4.21E-02 ± 4.68E-02 6.76E-02 ± 5.38E-02 7.28E-02 ± 2.19E-02 1.88E-02 ± 1.13E-02 

DS05 1.44E-01 ± 3.81E-02 7.69E-02 ± 7.65E-02 7.76E-02 ± 5.68E-02 9.06E-02 ± 5.40E-02 7.71E-02 ± 4.34E-02 3.61E-02 ± 3.29E-02 6.38E-02 ± 5.06E-02 8.67E-02 ± 4.04E-02 3.65E-02 ± 1.54E-02 

DS06 1.17E-01 ± 2.30E-02 6.95E-02 ± 5.35E-02 8.12E-02 ± 3.49E-02 7.06E-02 ± 5.23E-02 7.00E-02 ± 2.33E-02 2.20E-02 ± 2.86E-03 6.99E-02 ± 3.10E-02 6.80E-02 ± 6.51E-02 2.01E-02 ± 2.60E-02 

DS07 3.13E-01 ± 1.85E-02 2.88E-01 ± 8.70E-02 2.96E-01 ± 1.04E-02 3.01E-01 ± 7.20E-02 2.96E-01 ± 7.54E-02 2.58E-01 ± 7.95E-02 2.96E-01 ± 1.68E-02 2.95E-01 ± 3.08E-02 2.46E-01 ± 7.40E-02 

DS08 1.37E-01 ± 7.82E-02 9.90E-02 ± 5.98E-02 1.08E-01 ± 3.81E-02 1.08E-01 ± 5.11E-02 8.95E-02 ± 4.21E-02 7.89E-02 ± 1.61E-02 9.97E-02 ± 2.92E-02 1.17E-01 ± 2.47E-02 6.67E-02 ± 2.92E-02 

DS09 2.06E-01 ± 7.24E-02 1.77E-01 ± 4.12E-02 1.83E-01 ± 2.93E-02 1.87E-01 ± 4.23E-02 1.84E-01 ± 1.77E-02 1.55E-01 ± 2.06E-02 1.83E-01 ± 8.54E-02 1.95E-01 ± 5.60E-02 1.64E-01 ± 1.48E-02 

DS10 8.83E-02 ± 4.42E-02 6.13E-02 ± 2.44E-02 7.14E-02 ± 6.96E-02 6.99E-02 ± 1.59E-02 7.16E-02 ± 6.49E-02 2.10E-02 ± 1.55E-02 7.21E-02 ± 3.01E-02 7.50E-02 ± 7.24E-02 3.09E-03 ± 3.41E-03 

DS11 1.36E-01 ± 6.15E-02 8.57E-02 ± 4.03E-02 8.62E-02 ± 7.49E-02 5.98E-02 ± 5.26E-02 7.45E-02 ± 3.81E-02 6.07E-02 ± 4.51E-02 6.27E-02 ± 6.01E-02 8.23E-02 ± 5.98E-02 3.49E-02 ± 2.70E-02 

DS12 2.26E-01 ± 3.49E-02 1.67E-01 ± 8.39E-02 1.67E-01 ± 4.44E-02 1.52E-01 ± 2.48E-02 1.66E-01 ± 8.24E-02 1.36E-01 ± 8.84E-02 1.53E-01 ± 4.51E-02 1.65E-01 ± 3.06E-02 1.07E-01 ± 4.27E-02 

DS13 5.53E-02 ± 1.68E-02 2.28E-02 ± 2.17E-02 2.39E-02 ± 1.41E-02 2.38E-02 ± 1.23E-02 2.48E-02 ± 8.43E-03 1.75E-02 ± 3.87E-03 5.46E-02 ± 4.91E-02 5.93E-02 ± 2.90E-02 2.28E-03 ± 3.72E-03 

DS14 3.21E-02 ± 3.98E-03 2.16E-02 ± 1.09E-02 1.65E-02 ± 7.31E-03 2.15E-02 ± 1.39E-02 2.61E-02 ± 8.80E-03 1.06E-02 ± 2.17E-03 2.60E-02 ± 2.75E-02 2.83E-02 ± 1.18E-02 5.56E-04 ± 3.80E-04 

DS15 2.53E-01 ± 1.24E-02 1.76E-01 ± 6.95E-02 1.94E-01 ± 5.00E-02 1.94E-01 ± 4.84E-02 1.76E-01 ± 8.24E-02 1.37E-01 ± 5.88E-02 1.76E-01 ± 5.94E-02 1.87E-01 ± 7.44E-02 1.25E-01 ± 5.61E-02 

Table 4 Comparison between the binary optimization algorithms based on the fitness average (w1=0.60). 

#DS BACO [13] BBA [25] BCSO [23] BDA [26] BGSA [35] BGA [42] BPSO [21] BGWO [22] SBCSO 

DS01 3.18E-01 ± 1.48E-02 2.50E-01 ± 6.46E-02 2.71E-01 ± 1.34E-02 2.41E-01 ± 1.57E-02 2.64E-01 ± 5.17E-02 2.35E-01 ± 1.77E-02 2.50E-01 ± 7.55E-02 2.80E-01 ± 6.78E-02 7.39E-02 ± 2.20E-02 

DS02 3.62E-01 ± 2.39E-02 3.16E-01 ± 4.13E-02 3.11E-01 ± 7.65E-02 2.88E-01 ± 7.43E-02 2.91E-01 ± 1.48E-02 2.77E-01 ± 4.19E-02 3.05E-01 ± 5.22E-02 3.46E-01 ± 6.25E-02 1.35E-01 ± 6.02E-02 

DS03 2.81E-01 ± 8.61E-02 2.27E-01 ± 8.36E-02 2.39E-01 ± 1.42E-02 2.32E-01 ± 6.90E-02 2.44E-01 ± 3.15E-02 1.51E-01 ± 4.38E-02 2.55E-01 ± 5.38E-02 2.72E-01 ± 4.34E-02 2.21E-02 ± 1.87E-02 

DS04 2.22E-01 ± 1.26E-02 1.79E-01 ± 5.49E-02 1.87E-01 ± 8.05E-02 1.54E-01 ± 6.35E-02 1.91E-01 ± 2.52E-02 5.35E-02 ± 3.01E-02 2.01E-01 ± 4.69E-02 2.29E-01 ± 2.25E-02 3.69E-03 ± 2.69E-03 

DS05 2.64E-01 ± 3.01E-02 2.30E-01 ± 3.32E-02 2.21E-01 ± 5.94E-02 1.89E-01 ± 3.12E-02 2.19E-01 ± 7.60E-02 1.53E-01 ± 8.86E-02 2.12E-01 ± 6.84E-02 2.57E-01 ± 5.67E-02 2.61E-02 ± 9.51E-03 

DS06 2.66E-01 ± 4.38E-02 2.23E-01 ± 1.75E-02 2.37E-01 ± 5.79E-02 2.00E-01 ± 4.77E-02 2.28E-01 ± 6.57E-02 1.03E-01 ± 6.60E-02 2.18E-01 ± 6.11E-02 2.58E-01 ± 1.55E-02 2.68E-02 ± 2.62E-02 

DS07 3.75E-01 ± 7.23E-02 3.42E-01 ± 4.39E-02 3.37E-01 ± 1.73E-02 3.20E-01 ± 3.13E-02 3.54E-01 ± 2.23E-02 2.56E-01 ± 3.25E-02 3.58E-01 ± 4.52E-02 3.75E-01 ± 4.66E-02 1.58E-01 ± 8.00E-02 

DS08 2.67E-01 ± 3.04E-02 2.45E-01 ± 2.79E-02 2.39E-01 ± 6.34E-02 2.28E-01 ± 7.76E-02 2.47E-01 ± 3.76E-02 1.96E-01 ± 7.24E-02 2.51E-01 ± 6.40E-02 2.72E-01 ± 5.82E-02 6.04E-02 ± 3.16E-02 

DS09 3.12E-01 ± 2.41E-02 2.89E-01 ± 6.77E-02 2.92E-01 ± 4.79E-02 2.66E-01 ± 2.22E-02 2.94E-01 ± 3.73E-02 2.29E-01 ± 5.86E-02 2.91E-01 ± 2.53E-02 3.06E-01 ± 2.94E-02 1.11E-01 ± 8.34E-02 

DS10 2.42E-01 ± 6.18E-02 2.08E-01 ± 6.43E-02 2.23E-01 ± 6.09E-02 1.95E-01 ± 8.56E-02 2.21E-01 ± 2.67E-02 1.24E-01 ± 6.67E-02 2.24E-01 ± 2.89E-02 2.41E-01 ± 5.86E-02 1.31E-02 ± 1.27E-02 

DS11 2.39E-01 ± 5.66E-02 2.15E-01 ± 5.33E-02 2.15E-01 ± 7.96E-02 1.90E-01 ± 3.12E-02 2.20E-01 ± 3.54E-02 1.95E-01 ± 1.95E-02 2.16E-01 ± 8.52E-02 2.35E-01 ± 4.84E-02 3.88E-02 ± 1.11E-02 

DS12 3.27E-01 ± 4.24E-02 2.95E-01 ± 4.59E-02 2.58E-01 ± 3.93E-02 2.77E-01 ± 7.11E-02 2.72E-01 ± 6.02E-02 2.35E-01 ± 7.18E-02 2.87E-01 ± 8.46E-02 3.06E-01 ± 2.54E-02 1.08E-01 ± 2.11E-02 

DS13 2.51E-01 ± 3.78E-02 1.83E-01 ± 2.20E-02 2.11E-01 ± 5.69E-02 1.82E-01 ± 3.10E-02 2.08E-01 ± 1.36E-02 1.41E-01 ± 7.04E-02 2.10E-01 ± 2.94E-02 2.35E-01 ± 6.50E-02 1.35E-02 ± 2.29E-02 

DS14 1.87E-01 ± 7.57E-02 1.38E-01 ± 4.44E-02 1.17E-01 ± 8.10E-02 1.47E-01 ± 4.13E-02 1.70E-01 ± 7.15E-02 5.58E-02 ± 3.23E-02 1.72E-01 ± 7.47E-02 1.87E-01 ± 4.02E-02 5.34E-03 ± 2.88E-04 

DS15 3.43E-01 ± 5.12E-02 2.98E-01 ± 8.07E-02 2.97E-01 ± 5.70E-02 2.74E-01 ± 2.24E-02 2.91E-01 ± 2.60E-02 2.59E-01 ± 4.26E-02 3.00E-01 ± 6.99E-02 3.27E-01 ± 7.32E-02 1.10E-01 ± 3.55E-02 



In order to have a quick examination of the algorithms’ results, the comparison between all 

of the algorithms for all of the datasets is conducted in Fig. 13, Fig. 14, and Table 5. In the ranking 

of the algorithms, the white box indicates the first rank, and the black box indicates the last rank 

among all. 

Fig. 13 Ranking the algorithms based on the average value of the fitness (w1=0.95).

Fig. 14 Ranking the algorithms based on the average value of the fitness (w1=0.60).

Table 5 Ranking the algorithms based on the average value of the fitness and accuracy. 

Metric W1 BACO BBA BCSO BDA BGSA BGA BPSO BGWO SBCSO 

Fitness 
0.60 8.73 5.00 5.20 3.27 5.53 2.07 5.93 8.27 1.00 

0.95 8.93 4.07 6.07 5.67 5.53 1.87 5.00 6.67 1.20 

Accuracy 
0.60 8.67 4.33 4.20 7.20 4.93 2.07 4.73 7.00 1.87 

0.95 8.80 5.20 6.00 6.20 5.47 1.80 5.07 4.73 1.73 

Overall Ranking 9.00 3.00 5.00 7.00 5.00 2.00 4.00 8.00 1.00 

(Average ranking number) (8.78) (4.65) (5.37) (5.58) (5.37) (1.95) (5.18) (6.67) (1.45) 

Tables 6 and 7 demonstrates the results of the best classification error along with several features 

selected from each dataset for all of the algorithms (table 6 for the values of w1=0.95 and table 7 for the values 



of w1=0.60). As demonstrated in table 6, the SBCSO algorithm has the least value of classification error in 10 

datasets among 15 benchmark datasets.  Compared to the SBCSO algorithm, the BGA algorithm in three data 

sets of DS05, DS07, DS08, and DS09 has gained better results. The BGWO algorithm in the DS02 dataset has a 

lesser classification error than the SBCSO algorithm.  On the other hand, according to tables 6 and 7, the 

SBCSO algorithm has selected a lesser number of genes compared to the other algorithms. 

Table 6 The best classification error and the number of genes selected for each dataset (w1=0.95).

#DS Metric BACO [25] BBA [24] BCSO [25] BDA [48] BGSA [72] BGA [68] BPSO [39] BGWO [28] SBCSO 

DS01 
Error (%) 1.62E-01 1.13E-01 1.13E-01 1.13E-01 1.29E-01 9.68E-02 1.13E-01 1.13E-01 8.06E-02 

#Features 776 793 791 754 775 771 808 1094 170 

DS02 
Error (%) 1.90E-01 1.83E-01 1.56E-01 1.59E-01 1.22E-01 1.50E-01 2.00E-01 1.18E-01 1.67E-01 

#Features 1400 401 1416 1328 1425 388 436 1904 125 

DS03 
Error (%) 1.11E-01 7.22E-02 7.13E-02 8.67E-02 7.17E-02 4.60E-02 7.19E-02 6.21E-02 1.80E-02 

#Features 1471 1356 1405 1320 1384 1270 1372 1904 532 

DS04 
Error (%) 6.26E-02 3.16E-02 4.74E-02 4.74E-02 4.74E-02 2.37E-02 4.34E-02 3.95E-02 1.58E-02 

#Features 377 363 370 380 356 297 399 535 58 

DS05 
Error (%) 1.26E-01 5.55E-02 5.55E-02 6.94E-02 5.55E-02 1.39E-02 4.17E-02 5.55E-02 2.78E-02 

#Features 611 608 625 620 612 578 609 855 255 

DS06 
Error (%) 8.24E-02 3.57E-02 4.76E-02 3.51E-02 3.54E-02 1.16E-02 3.55E-02 1.84E-02 7.46E-03 

#Features 707 657 665 688 672 609 668 934 241 

DS07 
Error (%) 3.03E-01 2.80E-01 2.86E-01 2.92E-01 2.86E-01 2.50E-01 2.86E-01 2.74E-01 2.56E-01 

#Features 585 523 562 557 569 4.79E+02 575 812 63 

DS08 
Error (%) 1.18E-01 7.84E-02 8.82E-02 8.71E-02 6.86E-02 5.88E-02 7.84E-02 8.82E-02 5.88E-02 

#Features 1234 1236 1220 1261 1223 1.16E+03 1269 1692 545 

DS09 
Error (%) 1.91E-01 1.62E-01 1.68E-01 1.73E-01 1.68E-01 1.39E-01 1.68E-01 1.73E-01 1.62E-01 

#Features 1222 1191 1222 1127 1246 1149 1204 1554 519 

DS10 
Error (%) 6.69E-02 3.87E-02 4.97E-02 4.97E-02 4.97E-02 1.23E-02 4.97E-02 4.42E-02 1.10E-03 

#Features 1243 1233 1212 1138 1224 1052 1245 1656 155 

DS11 
Error (%) 1.15E-01 6.49E-02 6.49E-02 3.89E-02 5.19E-02 3.89E-02 3.89E-02 5.19E-02 2.60E-02 

#Features 1113 1026 1049 977 1075 1013 1099 1411 437 

DS12 
Error (%) 2.20E-01 1.57E-01 1.57E-01 1.41E-01 1.57E-01 1.25E-01 1.41E-01 1.51E-01 1.05E-01 

#Features 1013 1041 1019 1025 1008 995 1061 1243 415 

DS13 
Error (%) 3.92E-02 6.76E-03 7.09E-03 7.04E-03 7.36E-03 5.37E-03 3.94E-02 4.08E-02 6.77E-04 

#Features 1048 949 995 989 1034 719 997 1193 95 

DS14 
Error (%) 1.53E-02 8.62E-03 7.45E-03 1.22E-02 9.67E-03 6.07E-03 9.66E-03 1.02E-02 1.30E-04 

#Features 447 341 241 253 430 124 429 474 11 

DS15 
Error (%) 2.46E-01 1.66E-01 1.86E-01 1.86E-01 1.66E-01 1.26E-01 1.66E-01 1.69E-01 1.23E-01 

#Features 1145 1103 1092 1058 1123 1064 1112 1630 510 



Table 7 The best classification error and the number of genes selected for each dataset (w1=0.60).

#DS Metric BACO [25] BBA [24] BCSO [25] BDA [48] BGSA [72] BGA [68] BPSO [39] BGWO [28] SBCSO 

DS01 
Error (%) 2.04E-01 9.66E-02 1.29E-01 1.61E-01 1.13E-01 9.66E-02 9.66E-02 1.29E-01 8.06E-02 

#Features 782 770 774 576 784 710 767 812 102 

DS02 
Error (%) 1.36E-01 6.06E-02 6.40E-02 1.04E-01 3.06E-02 4.10E-02 4.45E-02 4.50E-02 1.42E-01 

#Features 701 699 682 565 682 630 696 876 126 

DS03 
Error (%) 1.51E-01 6.92E-02 8.31E-02 1.11E-01 1.11E-01 2.76E-02 1.11E-01 1.39E-01 1.39E-02 

#Features 678 661 676 591 631 481 671 674 49 

DS04 
Error (%) 8.85E-02 5.66E-02 4.97E-02 8.82E-02 5.01E-02 8.32E-03 6.97E-02 8.33E-02 3.15E-04 

#Features 337 291 314 203 322 97 318 358 7 

DS05 
Error (%) 1.26E-01 6.59E-02 5.20E-02 1.04E-01 6.53E-02 8.05E-03 5.15E-02 4.04E-02 1.37E-03 

#Features 611 618 618 412 585 482 588 758 82 

DS06 
Error (%) 2.07E-01 1.32E-01 1.37E-01 1.32E-01 1.43E-01 3.95E-02 1.21E-01 1.73E-01 1.03E-02 

#Features 424 431 463 361 427 238 437 462 62 

DS07 
Error (%) 3.21E-01 2.80E-01 2.80E-01 3.09E-01 2.97E-01 2.56E-01 2.91E-01 3.21E-01 2.38E-01 

#Features 531 505 492 390 510 299 531 531 43 

DS08 
Error (%) 1.19E-01 6.85E-02 7.83E-02 1.08E-01 8.81E-02 5.87E-02 9.79E-02 1.18E-01 6.86E-02 

#Features 1234 1282 1212 1029 1226 1012 1209 1269 121 

DS09 
Error (%) 1.96E-01 1.73E-01 1.73E-01 1.96E-01 1.79E-01 1.50E-01 1.73E-01 1.85E-01 1.44E-01 

#Features 1226 1171 1185 938 1175 874 1180 1229 155 

DS10 
Error (%) 1.38E-01 9.85E-02 1.16E-01 1.23E-01 1.02E-01 3.38E-02 1.12E-01 1.26E-01 3.57E-03 

#Features 1192 1118 1151 911 1197 776 1176 1238 82 

DS11 
Error (%) 7.41E-02 3.88E-02 2.58E-02 3.88E-02 3.88E-02 2.58E-02 3.88E-02 5.17E-02 2.60E-02 

#Features 1038 1027 1068 890 1050 959 1029 1091 124 

DS12 
Error (%) 2.99E-01 2.52E-01 2.00E-01 2.60E-01 2.12E-01 1.78E-01 2.42E-01 2.34E-01 1.41E-01 

#Features 1070 1043 996 877 1044 927 1024 1198 168 

DS13 
Error (%) 1.89E-01 8.58E-02 1.22E-01 1.55E-01 1.21E-01 6.63E-02 1.22E-01 1.34E-01 6.32E-03 

#Features 996 951 998 647 982 735 990 1124 70 

DS14 
Error (%) 2.42E-02 1.38E-02 8.57E-03 1.41E-02 7.11E-02 1.10E-02 1.50E-02 8.15E-02 1.85E-04 

#Features 561 421 364 450 414 160 531 450 17 

DS15 
Error (%) 2.55E-01 1.80E-01 1.60E-01 1.80E-01 1.60E-01 1.20E-01 1.80E-01 2.20E-01 1.20E-01 

#Features 1440 1438 1520 1257 1479 1414 1456 1478 288 

Figures 15-24 indicate the fitness decline curve for different algorithms during the optimization 

process.  As can be seen, the convergence velocity and the slope of fitness decline in the SBCSO are more than 

the other algorithms. 



Fig. 15 The curve of average fitness decline for the DS03 dataset 

for different algorithms.  

Fig. 16 The curve of average fitness decline for the DS07 dataset 

for different algorithms.  

Fig. 17 The curve of average fitness decline for the DS02 dataset 

for different algorithms.  

Fig. 18 The curve of average fitness decline for the DS09 dataset 

for different algorithms.  

Fig. 19 The curve of average fitness decline for the DS014 

dataset for different algorithms.  

Fig. 20 The curve of average fitness decline for the DS10 dataset 

for different algorithms.  



Fig. 21 The curve of average fitness decline for the DS13 dataset 

for different algorithms.  

Fig. 22 The curve of average fitness decline for the DS12 dataset 

for different algorithms.  

Fig. 23 The curve of average fitness decline for the DS04 dataset 

for different algorithms.  

Fig. 24 The curve of average fitness decline for the DS05 dataset 

for different algorithms.  

The Friedman, Sign, and Quade statistical tests are employed to analyze more of the proposed 

algorithm’s results than other algorithms.  The two procedures of pairwise comparisons and multiple 

comparisons are employed in the results of the reports. The Sign and Wilcoxon tests fall into the pairwise 

comparisons classification, and the Friedman and Quade tests fall into the multiple comparison’s classification.  

As indicated in Table 8, the SBCSO algorithm has the best performance in comparison to other 

algorithms in Quade and Friedman tests and attained the 1.45 and 1.31 ranks for the Friedman and Quade tests, 

respectively. The BGA and BBA algorithms attained the second and third ranks in the Friedman and Quade 

tests, respectively. The BACO algorithm is ranked the last among all of the algorithms.   



Table 8 Friedman test and Quade test results.

algorithm Friedman Quade 

SBCSO 1.45 1.31 

BACO 8.78 8.82 

BBA 4.65 4.84 

BCSO 5.37 5.50 

BDA 5.58 5.05 

BCSO 5.37 5.31 

BGA 1.95 2.01 

BPSO 5.18 5.19 

BGWO 6.67 6.98 

statistic 318.09 64.58 

p-value 3.75e-08 3.41e-04 

Table 9 reports the results of the Sign test. Table 9 indicates the number of times each algorithm wins 

another algorithm at both 0.05 and 0.1 levels.  Table 9 clearly demonstrates that the SBCSO algorithm with the 

certainty level of a=0.05 has won all of the other algorithms. The BGA and BBA algorithms are ranked second 

and third, respectively, and the BACO algorithm is ranked the latest among all other algorithms.   

Table 9 Sign test results.

SBCSO BACO BBA BCSO BDA BGSA BGA BPSO BGWO 

SBCSO - 59 57 57 58 58 47 59 58 

α= 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

BACO 1 - 0 0 1 1 0 2 8 

α= 
BBA 3 60 - 35 38 40 1 38 46 

α= 0.05 0.05 0.05 0.05 0.05 

BCSO 3 60 25 - 30 31 2 28 39 

α= 0.05 0.05 

BDA 2 59 22 30 - 28 2 26 36 

α= 0.05 0.1 

BGSA 2 59 20 29 32 - 2 29 45 

α= 0.05 0.05 

BGA 13 60 59 58 58 58 - 58 59 

α= 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

BPSO 1 58 22 32 34 31 2 - 49 

α= 0.05 0.05 

BGWO 2 52 14 21 24 15 1 11 - 

α= 0.05 

Table 10 reports the results of the Wilcoxon test. In table 10, the values of R, -R+, and p-value are 

calculated for all binary comparisons pertinent to SBCSO. Table 10 clearly demonstrates that the proposed 

algorithm wins over all of the other algorithms with the certainty level of a=0.01.  



Table 10 Wilcoxon test results.

Comparison R+ R- p-value level of significance 

SBCSO versus BACO 1796 34 1.71E-11 α = 0.01 
SBCSO versus BBA 1732 98 1.51E-10 α = 0.01 

SBCSO versus BCSO 1740 90 1.83E-10 α = 0.01 
SBCSO versus BDA 1792 38 4.44E-11 α = 0.01 

SBCSO versus BGSA 1792 38 4.1E-10 α = 0.01 
SBCSO versus BGA 1527 303 1.94E-07 α = 0.01 
SBCSO versus BPSO 1796 34 1.24E-10 α = 0.01 

SBCSO versus BGWO 1792 38 3.56E-10 α = 0.01 

4.4 Classification performance 

The influence of employing the SBCSO algorithm in the feature selection process for each dataset is 

calculated to examine the performance and evaluate the SBCSO algorithm. In Table 11, the FSL and FSA 

values refer to the number of main features and the number of the selected feature of each dataset. The 

Accuracy and Time values for each dataset are also calculated before and after the feature selection 

process.  The KNN algorithm with the value of K=5 and the k-fold validation mechanisms with the value of 

k=10 are employed to calculate the accuracy.  As indicated in Table 11, the SBCSO positively influences the 

Accuracy and Time, and in all of the datasets, better performance is reported (with a much lesser number of 

features).  

Table 11 The impact of using the SBCSO algorithm in the feature selection process. 

DS# 
Before applying SBCSO  After applying SBCSO 

FSL Accuracy (%) Time (sec)    FSA Accuracy (%) Time (sec)  

DS01 2000 75.81 0.9559 170 91.9 0.8605 

DS02 7129 53.33 0.316 125 83.3 0.1688 

DS03 7129 83.33 0.3425 532 98.2 0.1609 

DS04 15154 91.30 2.1674 58 98.4 0.1756 

DS05 12582 77.78 0.4485 255 97.2 0.162 

DS06 2308 83.13 0.2128 241 99.3 0.1535 

DS07 2905 68.45 0.3425 63 74.4 0.1624 

DS08 12600 84.31 0.6592 545 94.1 0.1795 

DS09 12625 78.03 1.147 519 83.8 0.2146 

DS10 12533 92.82 1.2662 155 99.9 0.1857 

DS11 7129 79.22 0.3476 437 97.4 0.1597 

DS12 22283 77.17 1.0112 415 89.5 0.18 

DS13 22283 93.55 0.3074 95 99.9 0.1649 

DS14 1413 99.08 0.2985 11 100 0.1683 

DS15 10100 64.00 0.324 510 87.7 0.1576 



4.5 The comparison between the SBCSO algorithm and the binary multi-objective optimization 

algorithms 

In this section, the results of the multi-objective SBCSO algorithm procedure are examined. In 

subsection 3.4, a discussion has taken place regarding the objective functions and the multi-objective SBCSO 

algorithm procedure. The proposed algorithm’s results have been compared with BNSGA-II, BMODE, 

BMOCSO, BMOPSO, and BMOBBA algorithms. Given that the Pareto-optimal front related to the datasets is 

not available, the two ∆ and HV criteria were used for the results’ assessment. These criteria are briefly 
explained as follows. 

The hypervolume (HV) criterion is used to assess the convergence velocity of the proposed algorithm 

towards the optimal Pareto front. The HV indicates the dominated space value. A large amount of the HV 

demonstrates that the Pareto front level is closer to the optimal Pareto front. 

(15)
1

( )

PF

i

i

HV volume 


 U

The spread metric (∆) criterion is used for diversity assessment in the Pareto front level. A small amount 
of the ∆ indicates that the Pareto front level is more ordered. 

(16)

1

1

( 1)

N

f l i

i

f l

d d d d

d d N d





  
 

   



The comparison results between two ∆ and HV criteria for 20-times independent execution of each 
algorithm are reported in Table 12-15. As indicated in Table 12-15, the SBCSO algorithm has obtained better 

results based on the HV criteria. Accordingly, it demonstrates that the SBCSO algorithm can obtain more non-

dominated solutions rather than the other algorithms, not to mention that it has a higher convergence velocity.  

Regarding the ∆ criterion, the SBCSO algorithm has obtained better answers in DS05, DS06, DS08, DS09, 
DS10, DS11, DS12, DS13, DS14, and DS15. The BNSGA-II algorithm in the DS03 and DS04 datasets, the 

algorithm BMODE in the DS01 and DS07 datasets, and also the BMOPSO algorithm in the DS02 dataset have 

gained better answers based on the ∆ criterion.  

Table 12 The result of comparing two ∆ and HV criteria for different algorithms.
DS# Metric BMOCSO BNSGA-II BMODE BMOPSO BMOBBA SBCSO 

DS01 
HV 1.81E-01 ± 2.92E-02 8.37E-01 ± 1.99E-02 4.49E-01 ± 8.17E-02 1.40E-01 ± 2.92E-02 2.86E-01 ± 4.34E-02 8.86E-01 ± 1.40E-02 

∆ 9.96E-01 ± 1.55E-01 9.73E-01 ± 1.66E-01 8.49E-01 ± 2.18E-01 9.52E-01 ± 2.59E-01 9.92E-01 ± 5.19E-02 1.05E+00 ± 1.39E-01 

DS02 
HV 8.67E-02 ± 7.32E-02 6.07E-01 ± 3.78E-01 1.46E-01 ± 4.93E-02 8.78E-02 ± 4.42E-02 1.30E-01 ± 3.70E-02 7.24E-01 ± 8.20E-02 

∆ 9.98E-01 ± 4.02E-01 1.05E+00 ± 2.43E-02 9.73E-01 ± 4.65E-01 9.57E-01 ± 3.68E-01 9.87E-01 ± 2.49E-01 9.64E-01 ± 2.93E-01 

DS03 
HV 1.03E-01 ± 3.95E-02 7.58E-01 ± 1.89E-02 1.99E-01 ± 7.24E-02 2.27E-01 ± 4.12E-02 1.51E-01 ± 2.93E-02 8.56E-01 ± 4.23E-02 

∆ 9.96E-01 ± 1.26E-01 9.36E-01 ± 2.35E-01 9.93E-01 ± 4.82E-01 1.03E+00 ± 2.78E-01 9.87E-01 ± 2.65E-01 9.46E-01 ± 1.23E-01 

DS04 
HV 1.60E-01 ± 1.77E-02 6.37E-01 ± 6.15E-02 5.74E-01 ± 3.77E-01 3.43E-01 ± 1.83E-01 1.82E-01 ± 5.60E-02 9.07E-01 ± 1.48E-02 

∆ 9.92E-01 ± 2.50E-01 9.11E-01 ± 3.16E-01 9.62E-01 ± 3.43E-01 9.13E-01 ± 2.04E-01 9.67E-01 ± 1.90E-01 9.27E-01 ± 4.94E-01 

DS05 
HV 1.71E-01 ± 2.88E-02 6.89E-01 ± 1.48E-01 2.26E-01 ± 7.57E-02 1.35E-01 ± 1.12E-02 1.86E-01 ± 1.34E-02 8.19E-01 ± 2.35E-02 

∆ 1.00E+00 ± 2.85E-02 1.00E+00 ± 4.44E-01 9.62E-01 ± 4.58E-01 9.85E-01 ± 4.00E-01 1.07E+00 ± 5.84E-02 9.11E-01 ± 1.38E-01 

DS06 
HV 3.60E-01 ± 2.63E-01 8.13E-01 ± 6.85E-02 4.70E-01 ± 2.63E-01 3.40E-01 ± 1.86E-01 3.70E-01 ± 2.23E-01 8.62E-01 ± 3.37E-02 

∆ 1.00E+00 ± 1.74E-01 9.45E-01 ± 3.43E-01 9.69E-01 ± 7.69E-02 1.03E+00 ± 3.63E-01 1.07E+00 ± 6.23E-02 9.28E-01 ± 3.30E-01 

DS07 
HV 3.32E-01 ± 3.00E-01 7.16E-01 ± 2.51E-02 4.32E-01 ± 2.78E-01 1.79E-01 ± 2.47E-02 1.94E-01 ± 3.95E-02 8.32E-01 ± 6.00E-02 

∆ 1.06E+00 ± 2.52E-01 9.69E-01 ± 3.92E-01 9.62E-01 ± 3.60E-01 9.90E-01 ± 4.53E-01 9.84E-01 ± 4.47E-01 9.67E-01 ± 1.74E-01 

DS08 HV 5.95E-01 ± 3.14E-01 4.62E-01 ± 4.16E-02 6.63E-01 ± 3.72E-01 4.83E-01 ± 3.13E-01 5.03E-01 ± 2.00E-01 7.97E-01 ± 4.49E-02 



∆ 1.40E+00 ± 3.52E-01 9.97E-01 ± 1.07E-01 1.33E+00 ± 2.50E-02 1.26E+00 ± 3.75E-01 1.19E+00 ± 2.55E-01 8.93E-01 ± 2.45E-01 

DS09 
HV 5.98E-01 ± 1.84E-01 4.83E-01 ± 1.29E-01 6.48E-01 ± 2.08E-01 4.83E-01 ± 2.09E-01 4.99E-01 ± 3.29E-01 8.52E-01 ± 7.36E-02 

∆ 1.38E+00 ± 4.53E-01 1.06E+00 ± 3.09E-01 1.23E+00 ± 3.13E-01 1.23E+00 ± 4.31E-01 1.16E+00 ± 4.05E-01 8.39E-01 ± 2.93E-01 

DS10 
HV 6.61E-01 ± 2.61E-01 5.39E-01 ± 1.58E-01 7.02E-01 ± 7.49E-02 5.33E-01 ± 2.18E-01 5.17E-01 ± 1.47E-01 8.53E-01 ± 8.51E-02 

∆ 1.39E+00 ± 9.96E-02 9.91E-01 ± 1.28E-01 1.31E+00 ± 4.44E-01 1.06E+00 ± 2.41E-02 1.13E+00 ± 2.50E-01 9.26E-01 ± 9.23E-02 

DS11 
HV 3.15E-01 ± 1.52E-01 6.45E-01 ± 2.25E-01 6.92E-01 ± 2.53E-01 5.10E-01 ± 2.39E-01 5.30E-01 ± 9.10E-02 8.50E-01 ± 3.41E-02 

∆ 9.98E-01 ± 4.90E-01 1.03E+00 ± 3.59E-01 1.11E+00 ± 2.55E-01 1.04E+00 ± 2.41E-01 1.02E+00 ± 3.92E-02 9.88E-01 ± 3.44E-01 

DS12 
HV 1.91E-01 ± 4.77E-02 4.89E-01 ± 9.99E-02 6.37E-01 ± 3.39E-01 4.49E-01 ± 8.60E-02 4.72E-01 ± 9.81E-02 7.69E-01 ± 2.37E-02 

∆ 9.99E-01 ± 3.08E-02 1.03E+00 ± 4.50E-02 9.80E-01 ± 2.66E-01 9.41E-01 ± 5.74E-02 1.10E+00 ± 4.11E-01 9.11E-01 ± 4.11E-01 

DS13 
HV 2.65E-01 ± 2.82E-02 5.82E-01 ± 1.80E-01 6.59E-01 ± 1.31E-01 5.03E-01 ± 3.70E-01 5.10E-01 ± 1.78E-01 8.72E-01 ± 2.48E-02 

∆ 1.02E+00 ± 3.64E-01 1.03E+00 ± 8.34E-02 1.00E+00 ± 3.33E-01 1.07E+00 ± 2.64E-01 1.10E+00 ± 4.87E-01 8.42E-01 ± 3.28E-01 

DS14 
HV 5.99E-01 ± 3.63E-01 7.88E-01 ± 8.84E-02 7.53E-01 ± 4.51E-02 5.54E-01 ± 5.33E-02 6.18E-01 ± 1.11E-01 9.70E-01 ± 4.27E-02 

∆ 1.30E+00 ± 4.02E-01 1.13E+00 ± 2.32E-01 1.16E+00 ± 2.22E-01 1.03E+00 ± 4.14E-01 1.08E+00 ± 5.09E-02 1.01E+00 ± 7.53E-02 

DS15 
HV 2.03E-01 ± 5.76E-02 5.03E-01 ± 1.12E-01 6.34E-01 ± 2.45E-01 4.51E-01 ± 2.87E-01 4.20E-01 ± 9.65E-02 7.76E-01 ± 1.94E-02 

∆ 1.11E+00 ± 9.50E-02 1.01E+00 ± 2.02E-01 1.04E+00 ± 4.17E-01 1.24E+00 ± 4.04E-01 1.30E+00 ± 3.96E-02 9.67E-01 ± 2.06E-01 

Table 13 Ranking the algorithms based on the average value of the HV and ∆. 

Metric BMOCSO BNSGA-II BMODE BMOPSO BMOBBA SBCSO 

HV 5.00 2.93 2.60 5.07 4.40 1.00 

∆ 4.80 3.07 3.47 3.60 4.40 1.67 

Overall Ranking 6 2 3 4 5 1 

(Average ranking number) (4.90) (3.00) (3.03) (4.33) (4.40) (1.33) 

Fig. 25 Ranking the algorithms based on the average value of all metric values.

For further examination of Table 14, the results of statistical tests show the comparison of 

different algorithms. Table 14 shows that SBCSO is the best performing algorithm of the 

comparison with a rank of 1.33 and 1.12 for the Friedman and Quade tests, respectively. 

Table 14 Friedman and Quade tests of all metric values.

algorithm Friedman Quade 

SBCSO 1.33 1.12 

BMOCSO 4.90 5.15 

BNSGA-II 3.00 2.72 

BMODE 3.03 3.02 

BMOPSO 4.33 4.63 

BMOBBA 4.40 4.36 

statistic 73.94 27.67 

p-value 9.18e-15 4.36e-05 



Table 15 Wilcoxon test results.  

Comparison R+ R- p-value level of significance  

SBCSO versus BMOCSO 449 16 2.6E-06 α = 0.01 
SBCSO versus BNSGA-II 412 53 7.69E-06 α = 0.01 
SBCSO versus BMODE 427 38 1.02E-05 α = 0.01 

SBCSO versus BMOPSO 413 52 5.75E-06 α = 0.01 
SBCSO versus BMOBBA 449 16 3.18E-06 α = 0.01 

Figures 26-31 demonstrate the Pareto front diagram obtained by different algorithms. In these figures, 

the vertical axis represents the classification error, and the horizontal axis represents the number of the selected 

features for each dataset. As indicated in the figures, the SBCSO algorithm has a faster convergence to the POF 

non-dominated solutions (at the same time compared to other algorithms). The multi-objective SBCSO 

algorithm simultaneously minimizes the number of selected features and the classification error.   

Fig. 26 Pareto front of non-dominated solutions for the DS04 

dataset.

Fig. 27 Pareto front of non-dominated solutions for the DS06 

dataset.



Fig. 28 Pareto front of non-dominated solutions for the DS10 

dataset.

Fig. 29 Pareto front of non-dominated solutions for the DS12 

dataset.

Fig. 30 Pareto front of non-dominated solutions for the DS13 

dataset.

Fig. 31 Pareto front of non-dominated solutions for the DS15 

dataset.

5. Conclusion

This article proposes a new version of cat binary optimization algorithms, titled SBCSO, in order to 

select genes at DNA microarray expression cancer data. The high number of genes against the low number of 

samples has always been a challenge to microarray technology. The proposed algorithm consists of 4 main 

sections. In the first section, an opposition-based learning (OBL) mechanism is employed for population 

members' diversity. In the second section, a new time-varying V-shape transfer function that varies by time is 

employed. In the third section, the MR and 𝛌 of the proposed algorithm are adapted over time. And in the fourth 

section, a single-objective and multi-objective approach is proposed in order to solve the gene selection 

problem. The fifteen datasets pertinent to the microarray data of different types of cancer have been employed 

in order to compare the proposed method with other ubiquitous methods. The results of the experiments indicate 

that the proposed algorithm is highly capable in selecting optimal gene sets required for the faster diagnosis of a 

vast majority of diseases.  
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