[1] Ma, Z.G., Yuan, Y.P., Wu, H.M., Zhang, X., & Tang, Q.Z. 2018. Cardiac fibrosis: new insights into the pathogenesis. International Journal of Biological Sciences, 14: 1645-1657. doi: 10.7150/ijbs.28103
[2] Kong, P., Christia, P., & Frangogiannis, N.G. 2014. The pathogenesis of cardiac fibrosis. Cellular And Molecular Life Sciences, 71: 549-574. doi: 10.1007/s00018-013-1349-6
[3] Zhou, B., & Tian, R. 2018. Mitochondrial dysfunction in pathophysiology of heart failure. Journal of Clinical Investigation, 128: 3716-3726. doi: 10.1172/JCI120849
[4] Tanjore, H., Lawson, W.E., & Blackwell, T.S. 2013. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochimica et Biophysica Acta, 1832: 940-947. doi: 10.1016/j.bbadis.2012.11.011
[5] Xiao, H., Li, H., Wang, J.J., Zhang, J.S., Shen, J., An, X.B., et al. 2018. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal, 39: 60-69. doi: 10.1093/eurheartj/ehx261.
[6] Khalil, H., Kanisicak, O., Prasad, V., Correll, R.N., Fu, X., Schips, T., Vagnozzi, R.J., et al. 2017. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation, 127: 3770-3783. doi: 10.1172/JCI94753.
[7] Forrester, S.J., Booz, G.W., Sigmund, C.D., Coffman, T.M., Kawai, T., Rizzo, V., et al. 2018. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiological Reviews, 98: 1627-1738. doi: 10.1152/physrev.00038.2017.
[8] Rodriguez, P., Sassi, Y., Troncone, L., Benard, L., Ishikawa, K., Gordon, R.E., et al. 2019. Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. European Heart Journal, 40: 967-978. doi: 10.1093/eurheartj/ehy188.
[9] Liu, X., Kwak, D., Lu, Z., Xu, X., Fassett, J., Wang, H., et al. 2014. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension, 64: 738-744. doi: 10.1161/HYPERTENSIONAHA.114.03811.
[10] Lin, Y., Zhang, X., Xiao, W., Li, B., Wang, J., Jin, L., et al. 2016. Endoplasmic reticulum stress is involved in DFMO attenuating isoproterenol-induced cardiac hypertrophy in rats. Cellular Physiology And Biochemistry, 38: 1553-1562. doi: 10.1159/000443096.
[11] Shih, Y.C., Chen, C.L., Zhang, Y., Mellor, R.L., Kanter, E.M., Fang, Y., et al. 2018. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circulation Research, 122: 1052-1068. doi: 10.1161/CIRCRESAHA.117.312130.
[12] Wu, Q.Q., Xiao, Y., Yuan, Y., Ma, Z.G., Liao, H.H., Liu, C., et al. 2017. Mechanisms contributing to cardiac remodelling. Clinical Science (London, England: 1979), 131: 2319-2345. doi: 10.1042/CS20171167
[13] Verma, S.K., Garikipati, V.N.S., Krishnamurthy, P., Schumacher, S.M., Grisanti, L.A., Cimini, M., et al. 2017. Interleukin-10 inhibits bone marrow fibroblast progenitor cell-mediated cardiac fibrosis in pressure-overloaded myocardium. Circulation, 136: 940-953. doi: 10.1161/CIRCULATIONAHA.117.027889.
[14] Song, L., Wang, L., Li, F., Yukht, A., Qin, M., Ruther, H., et al. 2017. Bone marrow-derived tenascin-C attenuates cardiac hypertrophy by controlling inflammation. Journal of the American College of Cardiology, 70: 1601-1615. doi: 10.1016/j.jacc.2017.07.789.
[15] Schafer, S., Viswanathan, S., Widjaja, A.A., Lim, W.W., Moreno-Moral, A., DeLaughter, D.M., et al. 2017. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature, 552: 110-115. doi: 10.1038/nature24676.
[16] Wang, L., Zhang, Y.L., Lin, Q.Y., Liu, Y., Guan, X.M., Ma, X.L., et al. 2018. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration. European Heart Journal, 39: 1818-1831. doi: 10.1093/eurheartj/ehy085.
[17] Menu, P., Mayor, A., Zhou, R., Tardivel, A., Ichijo, H., Mori, K., et al. 2012. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death & Disease, 3: e261. doi: 10.1038/cddis.2011.132.
[18] Agostini, L., Martinon, F., Burns, K., Mcdermott, M.F., Hawkins, P.N., & Tschopp, J. 2004. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20: 319-325. doi: 10.1016/s1074-7613(04)00046-9.
[19] Bracey, N.A., Duff, H.J., & Muruve, D.A. 2015. Hierarchical regulation of wound healing by NOD-like receptors in cardiovascular disease. Antioxidants & Redox Signaling, 22: 1176-1187. doi: 10.1089/ars.2014.6125.
[20] Bracey, N.A., Gershkovich, B., Chun, J., Vilaysane, A., Meijndert, H.C., Wright Jr, J.R., et al. 2014. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. Journal Biological Chemistry, 289: 19571-19584. doi: 10.1074/jbc.M114.550624.
[21] Zhang, B., Liu, Y., Sui, Y.B., Cai, H.Q., Liu, W.X., Zhu, M., & Yin, X.H. 2015. Cortistatin inhibits NLRP3 inflammasome activation of cardiac fibroblasts during sepsis. Journal of Cardiac Failure, 21: 426-433. doi: 10.1016/j.cardfail.2015.01.002.
[22] Liu, W., Zhang, X., Zhao, M., Zhang, X., Chi, J., Liu, Y., et al. 2015. Activation in M1 but not M2 macrophages contributes to cardiac remodeling after myocardial infarction in rats: a critical role of the calcium sensing receptor/NRLP3 inflammasome. Cellular Physiology and Biochemistry, 35: 2483-500. doi: 10.1159/000374048.
[23] Nur, B.B., Sevtap, H., Saba, K.G.S., Orhan, U., & Emine, D.Y. 2019. Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. Journal of Pharmacy and Pharmacology, 71: 1809-1821. doi: 10.1111/jphp.13169.
[24] Zhang, Y., Chen, W., & Wang, Y. 2020. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomedicine & Pharmacotherapy, 125: 110022. doi: 10.1016/j.biopha.2020.110022.
[25] Zhang, S.Y., Xu, M.J., & Wang, X. 2018. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. British Journal of Pharmacology, 175: 1230-1240. doi: 10.1111/bph.13814.
[26] Ni, X., Zhang, J., Tang, C., & Qi, Y. 2014. Intermedin/adrenomedullin2: an autocrine/paracrine factor in vascular homeostasis and disease. Science China-Life Sciences, 57: 781-789. doi: 10.1007/s11427-014-4701-7.
[27] Yang, J.H., Cai, Y., Duan, X.H., Ma, C.G., Wang, X., Tang, C.S., et al. 2009. Intermedin1-53 inhibits rat cardiac fibroblast activation induced by angiotensin II. Regulatory Peptides, 158: 19-25. doi: 10.1016/j.regpep.2009.05.012.
[28] Ge, C.X., Xu, M.X., Qin, Y.T., Gu, T.T., Lou, D.S., Li, Q., et al. 2019. Endoplasmic reticulum stress-induced iRhom2 up-regulation promotes macrophage-regulated cardiac inflammation and lipid deposition in high fat diet (HFD)-challenged mice: Intervention of fisetin and metformin. Free Radical Biology and Medicine, 141: 67-83. doi: 10.1016/j.freeradbiomed.2019.05.031.
[29] Teng, X., Song, J., Zhang, G., Cai, Y., Yuan, F., Du, J., et al. 2011. Inhibition of endoplasmic reticulum stress by intermedin(1-53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. Journal of molecular medicine (Berlin, Germany), 89: 1195-1205. doi: 10.1007/s00109-011-0808-5.
[30] Chang, J.R., Duan, X.H., Zhang, B.H., Teng, X., Zhou, Y.B., Liu, Y., et al. 2013. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Experimental biology and medicine (Maywood, N.J.), 238:1136-1146. doi: 10.1177/1535370213502619.
[31] Li, H., Bian, Y., Zhang, N., Guo, J., Wang, C., Lau, W.B., & Xiao, C. 2013. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovascular Diabetology, 12: 91. doi: 10.1186/1475-2840-12-91.
[32] Yang, S.M., Liu, J., & Li, C.X. 2014. Intermedin protects against myocardial ischemia-reperfusion injury in hyperlipidemia rats. Genetics and Molecular Research, 13: 8309-8319. doi: 10.4238/2014.October.20.7.
[33] Li, Y., Zhang, H., Jiang, C., Xu, M., Pang, Y., Feng, J., et al. 2013. Hyperhomocysteinemia promote insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. Journal of Biological Chemistry, 288: 9583-9592. doi: 10.1074/jbc.M112.431627. Epub 2013 Feb 17.
[34] Moilanen, A.M., Rysä, J., Mustonen, E., Serpi, R., Aro, J., Tokola, H., et al. 2011. Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circulation Heart Failure, 4: 483-495. doi: 10.1161/CIRCHEARTFAILURE.110.958033.
[35] Serpi, R., Tolonen, A.M., Huusko, J., Rysä, J., Tenhunen, O., Ylä-Herttuala, S., et al. 2011. Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovascular Resesrch, 89: 204-213. doi: 10.1093/cvr/cvq267. .
[36] Skoumal, R., Tóth, M., Serpi, R., Rysä, J., Leskinen, H., Ulvila, J., et al. 2011. Parthenolide inhibits STAT3 signaling and attenuates angiotensin II-induced left ventricular hypertrophy via modulation of fibroblast activity. Journal of Molecular Cell Cardiology, 50: 634-641. doi: 10.1016/j.yjmcc.2011.01.001
[37] Chang, J.R., Guo, J., Wang, Y., Hou, Y.L., Lu, W.W., Zhang, J.S., et al. 2016. Intermedin1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney International, 89: 586-600. doi: 10.1016/j.kint.2015.12.029.
[38] Li, T.T., Li, X.Y., Jia, L.X., Zhang, J., Zhang, W.M., Li, Y.L., et al. 2016. Whole Transcriptome Analysis of Hypertension induced cardiac injury using deep sequencing. Cellular Physiology And Biochemistry, 38: 670-682. doi: 10.1159/000438659.
[39] Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocol, 7: 562-578. doi: 10.1038/nprot.2012.016.
[40] Lu, W.W., Jia, L.X., Ni, X.Q., Zhao, L., Chang, J.R., Zhang, J.S., et al. 2016. Intermedin1-53 attenuates abdominal aortic aneurysm by inhibiting oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 36: 2176-2190. doi: 10.1161/ATVBAHA.116.307825.
[41] Zhang, J., Lang, Y., Guo, L., Pei, Y., Hao, S., Liang, Z., et al. 2018. MicroRNA-323a-3p promotes pressure overload-induced cardiac fibrosis by targeting TIMP3. Cellular Physiology & Biochemistry, 50: 2176-2187. doi: 10.1159/000495059.
[42] Song, Q., Liu, L., Yu, J., Zhang, J., Xu, M., Sun, L., et al. 2017. Dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress. European Journal of Pharmacology, 807: 159-167. doi: 10.1016/j.ejphar.2017.04.014.
[43] Wu, Q., Wang, Q., Guo, Z., Shang, Y., Zhang, L., & Gong, S. 2014. Nuclear factor-κB as a link between endoplasmic reticulum stress and inflammation during cardiomyocyte hypoxia/reoxygenation. Cell Biology International, 38: 881-887. doi: 10.1002/cbin.10272.
[44] Li, F., Zhang, H., Yang, L., Yong, H., Qin, Q., Tan, M., et al. 2018. NLRP3 deficiency accelerates pressure overload-induced cardiac remodeling via increased TLR4 expression. Journal of Molecular Medicine (Berlin, Germany), 96: 1189-1202. doi: 10.1007/s00109-018-1691-0.
[45] Bujisic, B., & Martinon, F. 2017. IRE1 gives weight to obesity-associated inflammation. Nature Immunology, 18: 479-480. doi: 10.1038/ni.3725.
[46] Keestra-Gounder, A.M., Byndloss, M.X., Seyffert, N., Young, B.M., Chávez-Arroyo, A., Tsai, A.Y., et al. 2016. NOD1 and NOD2 signalling links ER stress with inflammation. Nature, 532: 394-397. doi: 10.1038/nature17631.
[47] Ribeiro, C.M., & Lubamba, B.A. 2017. Role of IRE1α/XBP-1 in cystic fibrosis airway inflammation. International Journal of Molecular Sciences, 18: 118. doi: 10.3390/ijms18010118.
[48] Yin, J., Gu, L., Wang, Y., Fan, N., Ma, Y., & Peng, Y. 2015. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes. Mediators of Inflammation, 2015: 272313. doi: 10.1155/2015/272313.
[49] Chen, H., Wang, X., Tong, M., Wu, D., Wu, S., Chen, J., et al. 2013. Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One, 8: e64757. doi: 10.1371/journal.pone.0064757.
[50] Wei, P., Yang, X.J., Fu, Q., Han, B., Ling, L., Bai, J., et al. 2015. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways. International Journal of Clinical Experimental Pathology, 8: 9836-9844. eCollection 2015.
[51] Ji, T., Han, Y., Yang, W., Xu, B., Sun, M., Jiang, S., et al. 2021. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. Journal of Cellular Physiology. 41: 272-277. doi: doi: 10.1097/WNO.0000000000001267.
[52] Ke, R.,Wang, Y., Hong, S., & Xiao, L. 2020. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Experimental Cell Research, 396: 112293. doi: 10.1016/j.yexcr.2020.112293
[53] Zhang, J.S., Hou, Y.L., Lu, W.W., Ni, X.Q., Lin, F., Yu, Y.R., et al. 2016. Intermedin 1-53 protects against myocardial fibrosis by inhibiting endoplasmic reticulum stress and inflammation induced by homocysteine in apolipoprotein E-deficient mice. Journal of Atherosclerosis Thrombosis, 23: 1294-1306. doi: 10.5551/jat.34082.
[54] Zhang, L.S., Liu, Y., Chen, Y., Ren, J.L., Zhang, Y.R., Yu, Y.R., et al. 2020. Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacological Research, 159: 104926. doi: 10.1016/j.phrs.2020.104926.
[55] Wu, D., Shi, L., Li, P., Ni, X., Zhang, J., Zhu, Q., Qi, Y., et al. 2018. Intermedin 1-53 protects cardiac fibroblasts by inhibiting NLRP3 inflammasome activation during sepsis. Inflammation, 41: 505-514. doi: 10.1007/s10753-017-0706-2.