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Abstract

Background: Cancer is a complex disease with a high rate of mortality. The
characteristics of tumor masses are very heterogeneous; thus, the appropriate
classification of tumors is a critical point in the correct treatment. A high level of
heterogeneity has also been observed in breast cancer. Therefore, detecting the
molecular subtypes of this disease is a worthwhile issue for medicine that could
be facilitated using bioinformatics.

Method: Numerous methods have already classified breast cancer based on gene
expression data; however, they are not reliable due to the dynamic nature of
these data. In contrast, gene mutation data are relatively stable and may lead to
better classification. The aim of this study is to introduce a novel method for
detecting the molecular subtypes of breast cancer. In this study, somatic
mutation profiles of tumors are used; nonetheless, the somatic mutation profiles
are very sparse. To address this issue, we made use of the network propagation
method on gene interaction network and made the mutation profiles dense.
Afterward, we used deep embedded clustering (DEC) method to classify breast
tumors into four subtypes. In the next step, gene signatures of each subtype
obtained by Fisher exact test and Benjamini-Hochberg procedure.

Results: Clinical and molecular analyses are executed, besides enrichment of
results in numerous databases have shown that the proposed method, using
mutation profiles can efficiently detect the molecular subtypes of breast cancer.
Finally, a supervised classifier is proposed based on discovered subtypes to predict
the molecular subtype of a new patient.

Keywords: Machine learning; Cancer; Molecular subtypes; Breast cancer; Tumor
classification; Cancer heterogeneity

1 Introduction

Breast cancer is a heterogeneous disease at the molecular and clinical level; thus,

the effectiveness of a treatment is hugely different based on the patients. This het-

erogeneity is a challenge for tumor classification to reach an appropriate clinical

outcome. To solve this problem, researcher developed numerous methods to classify

tumor masses, such as histopathological classification based on the morphological

characteristics or immunohistochemical (IHC) markers like estrogen receptor (ER),

progesterone receptor (PR), and HER2 [1, 2, 3, 4, 5, 6, 7]. Moreover, Sørlie et al.

used hierarchical clustering on gene expression data that led to the identification of

significant breast cancer subtypes namely luminal A, luminal B, HER2 (human

epidermal growth factor receptor 2) and basal − like [2]. The high cost of gene ex-

pression analysis for a large number of genes was a significant obstacle in applying
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this method. To overcome this issue, researchers reduced the gene list to relevant

gene signatures for the breast cancer subtypes. Parker et al. [8] have presented

biomarker genes that can efficiently separate molecular subtypes, which could be

an excellent alternative to whole transcriptome micro-array analysis.

Diversity of gene expression data in the subtypes is an indicator for clinical prog-

nosis of the patients, such as survival outcome [9]. Especially, luminal A subtype

patients are found to have better prognosis while basal-like subtype patients have

the poorest prognosis. Importantly, this molecular classification has successfully dis-

covered subtypes of ER+ and/or PR− breast cancer as luminal A and luminal B.

[3, 4, 5, 6, 7, 9].

In some studies, the microarray-based breast cancer classification has been con-

sidered as the gold standard [10]. However, the critical limitation of the microarray-

based method is its failure to classify tumors consistently to specific molecular

subtypes [11, 12, 13]. The main reason for this failure is that gene expression is dy-

namic within a patient, and this may yield misleading results for classification. In

contrast, somatic mutations can be used for stable subtypes detection. As all can-

cers lead somatic mutations and mutational heterogeneity broadly exists in tumor

masses, the classification of cancers based on the mutation profile can be helpful for

cancer diagnosis and treatment. On the other side, with the development of new

sequencing technologies, genome sequencing has become an applicable tool for di-

agnostic purposes. Therefore, cancer classification based on gene mutation profiles

and association of the classification into the clinical decisions can be a key point in

the personalized medicine of cancer patients.

Some studies have merged different kinds of molecular data for breast cancer clas-

sification. Curtis et al. [14] developed a method to classify breast cancer via inte-

grating genome and transcriptome data of 2000 breast cancer patients. Based on the

impact of somatic copy-number alterations on the transcriptome, they introduced

new subtypes of breast cancer. Furthermore, Ali et al. [5] classified breast cancer

into ten subtypes based on the combination of Copy Number Alterations (CNA)

and gene expression data. In another study, List et al.[6] proposed a computational

method that merges gene expression and DNA methylation data to execute machine

learning-based classification of breast cancer patients. In a novel recent study, Hofree

et al. [7] proposed a network-based stratification algorithm to classify tumors via

fusing somatic mutation profiles with gene interaction network and identified four

subtypes of breast cancer. As somatic mutations are often sparse, it is sometimes

challenging to predict cancer subtypes from somatic mutations. Therefore, previ-

ous studies used somatic mutation data along with other molecular information to

classify cancers [7].

In most of the previous works, conventional clustering methods are used for clus-

tering tumors, and novel, innovative clustering methods are not used.

Moreover, the number of clusters typically has been determined using the sil-

houette criterion, which sometimes leads to biologically meaningless clusters. In

addition to the mentioned issues, the discovered clusters in previous works are not

analyzed extensively. In this study, we proposed a novel method to classify breast

cancer based on the integration of somatic mutation profiles and gene interaction

network. We analyzed the somatic mutations and CNAs data from 861 breast tu-

mors in The Cancer Genome Atlas (TCGA) database [15]. We used the network
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propagation method for smoothing somatic mutation profiles besides the gene in-

teraction network and used deep embedded clustering [16] to find breast cancer

subtypes. Moreover, for finding the best number of clusters, we used novel metrics

such as AUMF [17] and MMR [18] and examined the biological associations of the

subtypes that are discovered. Finally, we developed a supervised model to predict

the subtypes of a new breast cancer patient. Also, the Random Forest (RF) used

to find the most important genes for classification.

2 Material and Methods

2.1 Data Extraction and Smoothing

We used somatic mutation profiles collected by Zhang et al. [19]. They obtained

somatic mutation data of 861 breast tumors from the TCGA. A gene recognized

altered if at least one of the following conditions satisfies:

• It has a non-silent somatic mutation.

• It is a well-defined oncogene or tumor suppressor.

• It happens within a CNA.

The somatic mutation profiles are sparse; i.e., in each tumor, the number of genes

that are mutated is relatively small compared to the total number of genes. In

most machine learning techniques, sparse data cannot train the model well, so data

needs to be smoothed. One of the most effective solutions for smoothing data is

network propagation. By combining somatic mutation profiles and gene interaction

network, we can obtain profiles that are not sparse. This study used protein-protein

interaction (PPI) information in the STRING database [20] to create a gene inter-

action network. For this purpose, the Homosapiense PPI network obtained from

the STRING database. Then, the gene interaction network created from the PPI

network. For each tumor, its mutation profile integrated with the gene interactions

network. In fact, for each tumor, the entire vertex of the network is labeled, such

that if a gene in the tumor has a mutation, the corresponding vertex for that gene

is labeled one and zero otherwise.

Now the network propagation process applies a random walk with the following

function over the networks:

Di+1 = αDiA+ (1− α)D0 i = 0, 1, 2, ... (1)

The adjustment parameter α sets the amount of distance that a mutation can be

propagate on the network. The optimal value of α varies for each network (in this

study it is subjectively set to 0.4). The network propagation operation iterates until

Di+1 is converged (i.e. ||Di+1 −Di|| < 1 × 10−6), where D0 is the original profile

of tumor mutations, which is a k ∗ n matrix where k is number of tumors and n is

number of genes, Di is the modified profile of mutations in the ith iteration. Matrix

A is a n∗n matrix that is computed by A = H ∗D, which H = [hij ] is the adjacent

matrix of the network and D = [dij ] is a diagonal matrix such that:

dij =

{

1∑
j
hij

If i = j

0 Otherwise
(2)
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2.2 Clustering Method

After the propagating step, the mutation profile is a matrix with values between zero

and one. In order to cluster this data, we used Deep Embedded Clustering (DEC)

method. Suppose we have n tumors with the feature vectors Xi = (xi1, ..., xim) in

space X with m dimension that should be clustered to k classes. Each cluster center

is represented with µj , j = 1, . . . , k. Instead of clustering the data in the initial space

X, the data are mapped to the latent feature space Z. The mapping is done by a

nonlinear function fθ : X → Z which θ is a set of trainable parameters. Usually,

in order to avoid the curse of dimensionality, the dimension of Z is less than m.

The deep neural network can be used to implement fθ, because of its theoretical

function approximation characteristics [21], and the capabilities of learning features

[22].

DEC is an iterative method, which learns feature maps and clusters using deep

neural network simultaneously. In each iteration, the clustering representative {µj ∈
Z}kj=1 as well as parameters θ of deep neural network are learned. This algorithm

consists of two parts:

1 Initializing parameters using the stacked auto-encoder and centroids by k-

means algorithm.

2 Parameter optimization that eventually leads to clustering. This section con-

tains the continuous iteration of two-step: calculation of the auxiliary target

distribution function, and minimization of the Kullback-Leibler divergence

metric.

We tuned hyper-parameters of the model, and the best number of neurons in the

stacked auto-encoder layers are 514, 500, 200, 500, and 514, respectively. There is

also a layer with four neurons for clustering. See [16] for more details of DEC. The

schema of the method is presented in Figure 1.

2.3 Finding the Best Number of Clusters

The clustering method needs the number of clusters (k) as input. Here, to select

the best number of clusters, the clustering algorithm is implemented with different

ks. There are some appropriate criteria to compare results and choose the best

number of clusters. An approach to finding the number of clusters is to evaluate the

classification based on microarray-based classes (PAM50) as the gold standard. For

this purpose, a weighted bipartite graph G is formed, where the nodes of one part

are the clusters of PAM50, represented by pi symbols, and the nodes of another

part are the clusters of the method, represented by cj symbols. We weighted the

edge ( pi, cj) by the number of tumors shared between the cluster pi and cj . In

Figure 2 you can see the general scheme of such a graph. After creating the graph,

the following metrics are calculated in order to find best number of clusters:

PPV =

∑K

j=1 maxi vij
∑L

i=1

∑K

j=1 vij
(3)

SN =

∑L

i=1 maxj vij
∑L

i=1 li
(4)

ACC =
√
SN × PPV (5)
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Figure 1 The schema of the proposed method
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Figure 2 Bipartite graph between method to be evaluated and PAM50

These criteria have been introduced by Brohee and Holden [18]. In fact, ACC is

the geometric mean of the two criteria PPV and SN. So ACC is a more compre-

hensive measure than PPV and SN.

Another important criterion is MMR [18]. To calculate this criterion, graph G is

made and the weight on its edges is calculated based the threshold θ and the affinity

score NA(pi, cj), which represents the similarity of pi and cj .

vij =







NA(pi, cj) NA(pi, cj) ≥ θ

0 (pi, cj) < θ
(6)

NA(pi, cj) =
|pi ∩ cj |2
|pi||cj |

(7)
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MMR is calculated as follows:

MMR =

∑

vij∈Matchw(P,C,θ) vij

|P| (8)

where Matchw(P, C, θ) is the maximum weighted matching of G.

The criteria discussed are qualitative criteria for comparison. Another approach

of comparisons is the quantitative one. Suppose we have a graph similar to that

made for computing MMR, and we have now ignored the weight of the edges. Let

Match(P, C, θ) to be the maximum non-weighted matching of this graph:

N+
p = |{pi | ∃cj , NA(pi, cj) ≥ θ, (pi, cj) ∈ Match(P, C, θ)}| (9)

N+
c = |{cj | ∃pi, NA(pi, cj) ≥ θ, (pi, cj) ∈ Match(P, C, θ)}| (10)

Precision+ =
N+

p

|P| (11)

Recall+ =
N+

c

|C| (12)

F −measure+ =
2× Precision+ ×Recall+

Precision+ +Recall+
(13)

This set of criteria introduced by Maddi et al. [17], in which F −measure+ is the

harmonic mean of the two criteria Precision+ and Recall+. So F −measure+ is

a more comprehensive and meaningful measure than the Precision+ and Recall+

criteria. All criteria examined are in the [0, 1] range.

One of the most comprehensive criteria in this area is the AUMF [17], which

combines qualitative and quantitative attitudes. In fact, in this criterion the area

under the curve (MMR+Fmeasure+, θ) considered as a clustering measure called

AUMF, which is in the [0, 2] range.

We executed DEC on different number of clusters and results showed that best

number of clusters is four (see additional file #1). Also, to evaluate the performance

of the proposed clustering method, this method is compared with other popular

and common clustering methods such as Hierarchical Clustering (HC), k −means

clustering, and Spectral Clustering (SPC). DEC can achieved better performance

on comparison with other clustering methods.

2.4 Supervised Classification for new tumors

Using the discovered breast cancer subtypes, we labeled each tumor with its dis-

covered label and proposed a supervised classifier to understand how accurate new

breast tumors can be predicted based on their somatic mutations. With this model,

we can predict the subtype of a new patient, using mutation profile as input.

We labeled each tumor with its assigned subtype and run five common machine

learning methods: random forest, Support Vector Machine (SVM), Multi-layer Per-

ceptron (MLP), Näıve Bayes (NB), and k-Nearest Neighbors(KNN) to classify the

tumors into k subtypes {Ci}ki=1.

The 10-fold cross-validation is used for evaluation of different classifier perfor-

mances. In 10-fold cross-validation, the whole set of tumors is randomly divided
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into ten subset with almost the same size. Then, one of the subsets is eliminated

and the model is trained with the remaining nine subsets and evaluated with re-

moved subset. This process is repeated such that each of ten subsets is considered

as test data once. In this study, the 10-fold cross-validation is repeated 100 times

and average performance of model is reported. The performance of the model is

measured by standard evaluation criteria such as accuracy, sensitivity, precision,

F-measure and AUC.

Accuracy =

∑k

i=1
TPi+TNi

TPi+TNi+FPi+FNi

k
(14)

Precision =

∑k

i=1 TPi
∑k

i=1(TPi + FPi)
(15)

Recall =

∑k

i=1 TPi
∑k

i=1(TPi + FNi)
(16)

F −measure =
2 · Precision ·Recall

Precision+Recall
(17)

Where TPi, TNi, FPi, and FNi stand for the number of True Positives, True

Negatives, False Positives, and False Negatives of class {Ci}ki=1. Since the values of

accuracy, precision, recall, and F-measure is dependent to the value of the threshold,

we also evaluate methods via AUC, which is the area under the receiver operating

characteristic (ROC) curve. These criteria indicate the efficiency of methods inde-

pendent of the threshold value.

3 Results

After Clustering tumors using DEC method, four clusters are obtained.

• Subtype 1: 182 tumors

• Subtype 2: 82 tumors

• Subtype 3: 499 tumors

• Subtype 4: 98 tumors

We did the following evaluations for investigation of the results and their correlations

with PAM50 clusters.

3.1 Finding the Gene Signatures for Each Subtype

One of the efficient evaluations is finding influential genes in each subtype. This

evaluation is important in two ways. First, it is possible to examine the biological

significance of clustering method; second, these genes can be considered as candi-

dates for the therapeutic purposes in each subtype patients. For this purpose, the

Fisher exact test with Benjamini-Hochberg correction was used to find the gene sig-

natures of each subtype. In the gene signature list, the top 50 genes with the p-value

lower than 0.05 are calculated and shown in Additional Files (See Additional File

#2). The gene interaction subnetwork of each subtype is obtained by enriching the

gene signatures into STRING. Figure 3 illustrates the subnetworks of each subtype.

Many important genes are found in the gene signatures of the first subtype. For

example, the PIK3CA mutations occur in 20− 30% of breast cancer patients [23],

which is a good diagnostic factor for hormone receptor-positive breast cancer pa-

tients [24]. Various treatments have been suggested for people with the PI3KCA
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Figure 3 Subnetworks of all subtypes

mutation [25]. Another important gene in subtype1 is CDH1. Its mutation rate

varies significantly across subtypes. This gene is highly expressed in the luminal A

and luminal B subtypes, while it has low activity in the other two subtypes [26].

One of the genes that mutate with PIK3CA is the MAP3K1 gene. In 11% breast

tumors, both of these genes are mutate [27]. Extensive studies on genetic sequencing

data suggest that the MAP3K1 mutations often occur in tumors of the luminal A

subtype [23]. Moreover, this gene is one of the driver genes that is important in the

diagnosis of breast cancer [23]. CDKN1B is another gene involved in many cancers

such as prostate cancer, small intestine cancer, and breast cancer. The CDKN1B

is one of the driver genes in the mentioned cancers [28].

Many important genes like ERBB2, TP53, MYC and BRCA1 are presented in

the gene signatures of the subtype2. One of the driver genes in breast cancer is

ERBB2, which is an indicator for tumor invasion [29]. Mutations and overexpres-

sion of this oncogene shows the tendency of a tumor mass to become an invasive

subtype of breast cancer and is one of the predictors of poor prognosis. One of

the critical regulators of cell growth, proliferation, metabolism, differentiation, and

apoptosis is MYC. Mutations of this gene have many roles in the development

and progression of breast cancer, activation of oncogenes, and inactivation of tumor
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suppressors. The MYC gene is highly expressed in the basal-like subtype of breast

cancer, which is being targeted for treatment in these patients. The BRCA1 repres-

sor gene inhibits the expression and activity of MYC. Mutations of the BRCA1

and MYC genes exacerbate breast cancer, especially basal-like subtype [30]. The

TP53 gene also is mutated in about 20-40 % of breast cancer patients. It is useful

to note that the mutation frequency of this gene is higher in patients with recur-

rent breast cancer [31]. Therefore, the second subtype is more invasive because its

significant genes are mostly mutated in invasive cancers. The probability of poor

prognosis and metastasis may be high in this subtype.

The third subtype contains many important genes, such as Notch, CCND1, and

IGF1R. The Notch family genes, including Notch1, Notch2, Notch3 and Notch4,

are highly expressed in breast cancer patients. These genes play an important role

in the differentiation, proliferation, and cell cycle [32]. The Notch1 gene also indi-

cates aggressive breast cancer. About 80% of cancers have estrogen receptors and

are treated with anti-estrogen drugs. One of the leading causes of death in such pa-

tients is their resistance to anti-estrogen drugs. Estrogen pathways have a positive

association with anti-estrogen drug resistance in ER-positive breast cancers via sup-

pressing Notch1 [33]. In ER positive breast cancers, the amount of cyclinD1 is high

due to overexpression of the CCND1 gene and overexpression of the insulin-like

growth factor receptor (IGF1R) [34].

Central genes of subtype4 have a high intersection with the central genes of the

subtype2. Also, many essential genes are found among the gene signatures of this

subtype. The MET gene is the tyrosine kinase receptor, which initiates the activity

of its downstream pathways by binding to its ligand, the hepatocyte growth factor

(HGF ). It has different cellular activities in cell growth and cancer progression.

Mutation of this gene often occurs in the basal-like subtype, where there is no

estrogen receptor and HER2 [35].

3.2 Survival Analysis

We used cox hazard regression [36] for survival analysis in each subtypes. In order

to investigate the significance of subtypes in the prediction of patient survival, chi2-

test was used, which showed that subtypes are important features in cox hazard

regression (p-value=0.00475). Cox hazard regression analysis showed that molecu-

lar subtypes have a significant correlation with the hazard rate. Figure 4 shows a

diagram of cox hazard regression. It was mentioned in subsection 3.1 that subtype2

is invasive, due to the set of significant genes in this subtype. This issue is in con-

sistent with survival Analysis. It can be seen that the second subtype has lower

survival.

3.3 KEGG Enrichment

To find important pathways in each subtype, we enriched gene signatures of each

subtype into KEGG database [37]. The results are described in the Additional Files

(see Additional file #3).

One of the most important pathways in subtype1 is PI3K/AKT/mTOR, which

promotes cell growth and tumor proliferation in breast cancer. This pathway has a

significant role in resistance to Endocrine and Trastuzumab drugs in breast cancer
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Figure 4 Cox Hazard Regression Survival Diagram

patients [38, 39]. Many studies have examined the relationship between the MAPK

pathway and the PI3K/AKT pathway [40]. In fact, PI3K suppresses the path of

MAPK. This may be consistent with the TCGA study that nonsense mutations

and truncating MAPK mutations are present simultaneously in breast cancer tu-

mors [23]. Although PIK3CA mutations often occur in luminal A tumors [23];

the PI3K/AKT messenger pathway is usually active in basal-like tumors [39]. The

TP53 mutations and the PI3K/AKT/mTOR pathway activity are found in breast

tumors, especially the basal-like subtype [23].

3.4 Investigation of Protein Complexes of each Subtype

Since most of the cell activity is carried out by protein complexes, we have also

investigated protein complexes in each subtype. The gene signatures of each subtype

are entered to the iRefWeb website; then, the ordered list of complexes of each

subtype is obtained [41]. More information on these complexes is available in the

CORUM database [42]. The results are described in Additional Files (see Additional

file #4). However, we discussed some results below.

One of the notable complexes in the first subtype is the p27− cyclinE − CDK2

complex, which contains two CDK2 and CDKN1B genes. This complex is involved

in cell cycle regulation, cell cycle control, and DNA processing. One of the crucial

regulators of the cell cycle is CDKN1B, which inhibits G1/S via clinging to CDK2

and suppressing it. Over-expression of CDKN1B gene in specific cancer cells in

mice prevents DNA replication and tumorigenesis, while its deficiency plays an

inhibitory role in human cancers and decreases the chance for developing breast,

prostate, colon, lung, and esophagus [43].
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BRCC complex includes the genes BRCA1, BRCA2, BRCC3, RAD51, and BRE,

which is among the influential complexes in the second subtype. The function of

the BRCA1 gene in DNA repair and cell cycle control in response to DNA damage

is regulated by other complexes. Interaction of BRCA1 with RAD51 has a direct

impact on the double-strand breaks of DNA [44]. Not only does ERCC complex has

a direct interaction with TP53 in the destruction of DNA, but also it causes the

displacement of DNA. Recently, the expression of two new members of the complex,

namely BRCC36 and BRCC45 has been discovered in breast cancer cells [45].

The set of TBL1X, HDAC3, and NCOR2 genes together make the SMRT com-

plex, which plays a vital role in subtype3 tumors. The SMRT complex is both an

activator and a suppressor of the estrogen receptor-ℵ (ER − ℵ), which its overex-

pression in breast cancer can make therapeutic outcomes more complicated. The

activity of this complex inhibits the regulated cell death via the genes involved in

apoptosis. This complex activates the anti-apoptotic genes and suppresses the pro-

apoptotic genes. Thus, by activating multiple pathways, this complex leads to the

progression and proliferation of breast cancer and declining the apoptosis [46].

ESR1 − MDM4 complex that is consisted of two genes ESR1 and MDM4

proteins is essential in the fourth subtype. The estrogen hormone receptor ESR1

is a nuclear hormone receptor that is expressed in approximately 70% of patients

with breast cancer [47]. Expression of MDM4 gene is positively correlated with

expression of ERα in primary breast tumors. Also, ERα enhances the expression

of MDM2 [48].

3.5 Clinical Examination

We investigated the relationship between each subtype and its clinical features

such as ER status, PR status, HER2 status, TP53 status, PAM50 subtypes, and

histopathological subtypes with chi2-test. The results are shown in Additional Files

(see additional file #5). The discovered subtypes have a significant relation with the

mentioned clinical features. The discovered subtypes1 and subtype3 mostly contain

luminal A and luminal B tumors, while the majority of tumors in discovered

subtypes2 and subtypes4 are Her2− positive and basal − like.

In particular, subtypes1 and subtype3 are consisted of tumors that are ER+,

PR+, have wild type TP53, and their most significant genes are PI3KCA, CDH1,

and MYC. Moreover, subtypes2 and subtypes4 mostly contain tumors that are

PR−, have mutant P53, and TP53, ERBB2, MYC are their significant genes.

It is noteworthy that although the majority of tumors in subtypes1 and subtype3

are luminal A and luminal B, numerous Her2− positive and basal− like tumors

are included in these two subtypes. A similar issue is shown in the case of subtypes2

and subtypes4. Thus, the discovered subtypes are not fully matched with PAM50

subtypes.

To compare the illustration of discovered and microarray-based subtypes in two-

dimensional space, we used Principal Component Analysis (PCA) and reduced so-

matic mutation profiles of tumors to two-dimension. Figure 5.a shows that the

discovered subtypes are linearly separable and reveals more discriminant features

than PAM50 subtypes. Furthermore, figure 5.b shows the illustration of PAM50

clusters based on somatic mutation and figure 5.c shows the illustration of PAM50

clusters based on gene expression data does not demonstrate a high separability.
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Figure 5 Visualization of each Classification

3.6 Supervised Methods Evaluation

After clustering tumors, they are labeled according to the discovered subtypes.

Then, five classifiers, namely, random forest, support vector machine, multi-layer

neural network, k nearest neighbors, and naive Bayes, have been implemented to

classify tumors based on the discovered subtypes. Ten-fold cross-validation was

used to evaluate the performance of the classifiers. The evaluation criteria Accuracy,

AUC, F-measure, Precision, and Recall are calculated for each method. According to

additional file #7, naive Bayes has the worst performance. Support vector machines,

k nearest neighbor, and multilayer perceptron have average performance. The best

method in all criteria is the random forest with AUC 99%, the accuracy of 86%,

the precision of 90%, recall of 85%, and F-measure of 87%, which has achieved

great results. It can be concluded that the discovered subtypes by DEC method

are separable; also, these subtypes can be predicted only by receiving mutations of

important genes for new tumors. According to additional file #6, we enriched these

important genes in GSEA, and surprisingly, many of them are the most important

genes in cancer. Results are available in Additional File. Figure 6 shows the Roc

curves of random forest classifier for each subtype. The value of AUC is excellent

for each subtype and very close to one. However, the value of AUC for the third

subtype is equal to one, which indicates that the model fits well on the tumors of

the third subtype.

3.7 GSEA Enrichment

To find a family of genes that are related to cancer, we enriched gene signatures

by Gene Set Enrichment Analysis (GSEA) tool [49]. We recognized many essential

genes in transcription factor and protein kinase gene families that are well known to
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Figure 6 Area under curve plot of random forest

be associated with the progression of breast cancer. We found out that many gene

signatures are related to cancer, and they are the essential genes in each subtype.

The results are described in Additional Files (see additional file #7).

4 Conclusion

Cancer is a very heterogeneous disease; so, accurate classification of cancer is an

important step to find the appropriate treatment. Recent advances in molecular

biology have provided high quality and diverse data for the researchers. These data

are included sequencing, transcriptomics, copy number variation, and methylation

profiling. In this study, a novel cancer classification method was developed that iden-

tifies breast cancer subtypes using the profile of somatic mutations. The proposed

method uses network propagation with deep embedded clustering and classified

breast tumors into four subtypes. This method utilizes somatic mutation profile

data of breast tumors in TCGA. DNA mutation data are more appropriate for

identifying molecular cancer subtypes; however, gene expression is dynamic and

variable in a time-dependent manner. Therefore, in this study, a deep clustering

method based on somatic mutation data was used to classify breast tumors. Find-

ing the gene signatures of each subtype can help better detection of the subtypes.

These genes may also be targeted in the future to treat patients. In this study,

the gene signatures of each subtype were detected via Fisher’s exact test; then, the

families of these genes were identified via GSEA tool. Significant complexes, bio-

logical processes, molecular functions, cellular components, and pathways regulated

via these genes have also been identified. Gene signatures are enriched in KEGG

to check the critical pathways of each subtype. Besides, the association of different

clinical features with each subtype has been investigated. Finally, the random forest

classification algorithm was used for supervised classification to provide predictions
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for new breast cancer patients, which could provide insights about the disease and

its highly effective genes. The results of this study indicate that the subtypes of

breast cancer can be clinically diagnosed using somatic mutation profiles. Besides,

the proposed method can be used to predict the subtypes of new tumors. This study

is not cancer-specific, and it can be used to classify any other cancers as well. For

future research, we intend to address the following:

• To use the proposed method to detect subtypes of other cancers, such as brain

cancer.

• To use other data such as gene expression, methylation, etc. Furthermore, we

aim to examine the importance of each data in detecting cancer subtypes.

• To use cell-line samples along with tumors to study a larger dataset. The

larger the dataset is, the more the accuracy can be improved.

• To use semi-supervised methods to classify cancer subtypes.
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Area under curve plot of random forest
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