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MCGNet™: An improved motor imagery
classification based on Cosine similarity

Yan Li!, Ning Zhong?, David Taniar® and Haolan Zhang**

It has been a challenge for solving the motor imagery classification problem in the brain informatics area.
Accuracy and efficiency are the major obstacles for motor imagery analysis in the past decades since the
computational capability and algorithmic availability cannot satisfy complex brain signal analysis. In
recent years, the rapid development of Machine Learning (ML) methods has empowered people to tackle
the motor imagery classification problem with more efficient methods. Among various ML methods, the
Graph neural networks(GNNs) method has shown its efficiency and accuracy in dealing with inter-related
complex networks. The use of GNN provides new possibilities for feature extraction from brain structure
connection. In this paper, we proposed a new model called MCGNet™, which improves the performance of
our previous model MutualGraphNet. In this latest model, the mutual information of the input columns
forms the initial adjacency matrix for the cosine similarity calculation between columns to generate a new
adjacency matrix in each iteration. The dynamic adjacency matrix combined with the spatial temporal

outperforms the current state-of-the-art methods.

graph convolution network(ST-GCN) has better performance than the unchanged matrix model. The
experimental results indicate that MCGNet™ is robust enough to learn the interpretable features and

Keywords: Graph Convolutional Networks; Electroencephalography(EEG); Brain-computer Interfaces(BCI)

1 Introduction

Brain-computer-interface(BCI) technology has drawn
much attention globally due to its significant meaning
and extensive applications [1]. It enables their users to
interact with the machine through the brain signals [2],
such as the task of converting the psychological imag-
ination of motion into a command[3], which can be
utilized to help people with disabilities as a rehabilita-
tion device[4] and could be considered the only way for
people with motor disabilities to communicate[5]. The
motor imagery classification based on the features ex-
tracted from the EEG imagination data of moving the
body parts without actual movement, but the feature
extraction process often relies heavily on prior knowl-
edge to exclude certain features[6]. Consequently, more
robust feature extraction techniques will continue to
drive the development of BCI technologies.

A typical brain-computer interface system consists of
four main processes[7]: brain-electric raw data acqui-
sition, data pre-processing, feature extraction and fea-
ture classification. The previous studies show that the
feature extraction and classification are two important
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phases, which determine whether the system is effec-
tive or not. The feature extraction process is designed
to describe EEG signals by relevant values[8], and fea-
tures should contain the information embedded in the
original EEG signals while filtering out the noise and
other irrelevant information. The classification phase
is critical because an efficient classifier can take ad-
vantage of as many extracted features as possible and
greatly improve the accuracy of the classification. The
motor imagery classification is an EEG-based task that
focuses primarily on the feature extraction and classi-
fication, which have been studied extensively in previ-
ous work. Some research highlights two most common
types of features that include frequency band power
features and time point features[9], both of which
benefit from extracting zone after spatial filtering[10].
Principal component analysis(PCA) and independent
component analysis(ICA) are two classic unsupervised
spatial filter methods[11], supervised spatial filters in-
clude the common spatial patterns(CSP) and filter
bank common spatial patterns(FBCSP)[12]. In terms
of the classifiers for motor imagery task, many state-
of-the-art methods have been proven effective, such as
linear discrimination analysis(LDA) and support vec-
tor machine(SVM)[13].
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Nowadays, the deep learning methods have been ef-
ficiently applied to various areas. Much recent work
has explored the application of deep learning to EEG-
based analytical tasks[14]. The deep learning methods
improve the analytical efficiency and accuracy and pro-
vide end-to-end learning for EEG-based tasks, such as
sleep stage detection, anomaly detection, motor im-
agery classification and so on[15]. In spite of the typ-
ical deep learning methods, such as convolution net-
works, can learn from the raw data without manual
feature extraction, they still have some major limita-
tions. For instance, typical deep learning methods re-
quire large datasets to train the models, which can be
a disadvantage for EEG based tasks because the col-
lection of EEG data usually costs a lot. In addition,
EEG datasets represent the unique characteristics of
an individual, and the data collected from different
areas of the brain. Therefore, the spatial connection
between the EEG data can’t be ignored. However, ex-
isting methods including recent deep learning methods
are unable to effectively learn the connections between
different brain regions[16].

Graphs are the most appropriate data structure for
brain connections, and graph neural networks(GNNs)
has been shown to be effective in classifying graph
structures[17], the core idea of GNNs is to update
each node’s embedding iteratively through aggregat-
ing the representations of its neighbors and itself. The
EEG channels could be represented as nodes in the
graph and the connections between the channels cor-
respond to the edges of the graph, but the graph convo-
lutional networks need adjacency matrix to be given
in advance which is the representation of the graph
connection[18], so determining a suitable brain map
structure is still a challenge due to the limitations of
cognition of brain structure. And there are some meth-
ods that could be used to generate the adjacency ma-
trix, we could utilize the position to calculate the dis-
tance between the electrodes as the degree of correla-
tion or utilize the features collected from the electrodes
to calculate the correlations. Moreover, the collection
of EEG data is usually in chronological order, so in
addition to spatial characteristics the temporal char-
acteristics also need to be taken into account.

In this paper, we proposed a novel model called
MCGNet™ based on the our proposed MutualGraph-
Net, combined the spatial-temporal filter and graph
convolutional networks to learn the temporal and spa-
tial characteristics, which achieved robust performance
on the motor imagery classification tasks. The contri-
butions of this paper are as follows:

e The model could realize end-to-end learning. Fur-
thermore, the model is specially designed to adapt
to the characteristics of EEG data, so it could be
able to utilize the features to the great extend.
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e For the first time, we use mutual information to
generate the initial adjacency matrix and use co-
sine similarity to update the adjacency matrix dy-
namically, and achieve better performance.

e Experimental results demonstrate that the newly
proposed model have better performance than
state-of-the-art methods.

2 Related Work

A motor imagery classification task is of great sig-
nificance for people with disabilities. Numerous work
has been done to improve classification performance.
In earlier studies, traditional machine learning meth-
ods were commonly used for motor imagery classifi-
cation task, such as support vector machine(SVM),
K-Nearest-Neighbor(KNN) and artificial neural net-
work(ANN) are frequently used[19], but these tradi-
tional methods have limited performance on EEG-
based classification tasks. Currently, the deep learn-
ing methods are utilized in EEG-based classification
tasks, Deep Belief Network(DBN)[20] was proposed
to manually extract features from the channels then
fed them into the network. Convolutional Neural Net-
works(CNN) could automatically learn features from
EEG data and perform better than DBN due to
their regular structure and the degree of ambiguity
of the translational structure[21]. Two CNN models
were specially designed for motor imagery classifica-
tion called Shallow ConvNets and Deep ConvNets[14],
both of them have better performance than the state-
of-the-art methods. Then another CNN model called
EEGNet[15] was proposed, which utilizes the Depth-
wise and Separable convolutions to replace the tradi-
tional convolutions for the motor imagery task that
have better performance than the ConvNets.

The CNN models can effectively extract the local
patterns of data, but it can only be applied for the
standard grid data[22], graph convolutional networks
have been proven to have better performance on the
graph structure data. Much has been done to im-
prove the performance of the graph convolutional net-
works. So far, GCNs have been applied in many fields,
the spatial-temporal graph convolution network(ST-
GCN)[23] is proposed to learn the dynamic graphs for
the human action recognition tasks, the spatiotempo-
ral multi-graph convolution network(ST-MGCN)[24]
is proposed for ride-hailing demand forecast which
encodes the non-Euclidean correlations among re-
gions into multiple graphs, GraphSleepNet[16] based
on spatial-temporal convolution network(ST-GCN)
is proposed for automatic sleep stage classification.
When using GCNs, the connection relationship be-
tween each electrode need to be given as a prior knowl-
edge, in other words, the adjacency need to be calcu-
lated as input.
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There are different methods that can be used to gen-
erate the adjacency matrix, the distance between two
electrodes can be used directly to represent the degree
of correlation between electrodes and there are many
different vector distance calculation methods such as
the euclidean distance[25] which only need the physical
position of the electrodes, the chebyshev distance[26] is
defined as the maximum difference between two vec-
tors in any coordinate dimesion, hamming distance,
manhattan distance and so on. Furthermore, we can
use the correlations of vectors to determine the degree
of relevance of the different channels, such as cosine
similarity[27] that calculates the similarity relationship
between the characteristics of different electrode chan-
nels, pearson correlation that evaluates the linear rela-
tionship between two continuous variables, spearman
correlation that evaluates the monotonic relationship
between two continuous variables, kendall correlation,
Point-Biserial correlation and so on. Also, we could use
some machine learning methods, such as the informa-
tion gain[28] that evaluates the gain of each variable
in the context of the target variable and mutual in-
formation is the name given to information gain when
applied to variable selection that calculates the statis-
tical dependence between two variables.

Motivated by the studies mentioned above, consid-
ering the graph structure and the dynamic spatial-
temporal characteristic of the EEG data, also the
graph structure of different motor imagery may be dif-
ferent, the traditional GCNs models may be not opti-
mal for EEG-based motor imagery classification task.
We propose the novel model to best suit to the charac-
teristics of EEG data which uses the mutual informa-
tion to generate the initial adjacency matrix and use
the cosine similarity to update the adjacency matrix
after each iteration.

3 Preliminaries

In this study, the EEG data could be defined as an
undirected graph G = (V, E, A) , where V is a finite
set of |V| = N nodes and N represents the number
of the EEG data channel; E is a set of edges, indi-
cating the connectivity between different channels; A
represents the adjacency matrix of graph G. Figure
1 shows how the graph is generated from the EEG
raw data. The recorded EEG signals are divided into
several labeled segments called trials, the d — th trial
can be denoted as X?¢ = (x},22,...,2])F € RNXF
where N denotes the number of the EEG electrodes
and F denotes the values of all nodes within the
time steps t. The dataset can be described as D =
(X1 yh, (X2, 92),...,(XE y") , L denotes the number
of the trials and y represents the label corresponding
to the trial, there are four motor imagery categories in-
cluding left hand, right hand, feet and tongue, so the

Page 3 of 10

EEG Raw Data

Time E1l E2 E32

0 30.62997 8.051328 37.19137|
0.001 31.00115 8.134437 37.46626
0.002 31.18674  8.13885 37.53345 !
0.003 31.20832 8.074863 37.40517
0.004 31.09179 7.952038 37.11807
0.005 30.85872  7.782878

177.001 3317724 2.016712 176.999

Graph Generation

o

oo

Gq

Figure 1 The structure generation of EEG data, where the
data at the range of time d forms a graph.

label can be denoted by 0-3 respectively. The goal of
the task is to learn the mapping relationship between
the EEG data and the motor imagery categories rep-
resented as labels and the problem can be defined as:
given a input trial X* € RV*F (0 <4 < L identify the
corresponding label y*.

4 Methodology

The overall framework of the model proposed in this
paper is presented in Figure 2, it includes three main
parts: feature extraction and adjacency matrix genera-
tion part, spatial-temporal attention part and spatial-
temporal graph convolution part. Spatial-temporal at-
tention part puts more attention on the more valuable
spatial-temporal information, then spatial-temporal
graph convolution part extracts both spatial and tem-
poral features. And the complete algorithm can be seen
as follows:

4.1 Adjacency matrix generation

4.1.1 Relevance calculate methods

The relevance of different electrodes can be obtained
through calculating the correlations or the information
gain of the features of the electrodes. The correlations
of different channels can be represented by the dis-
tances of the channels. The euclidean distance of the
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Algorithm 1 The process of motor imagery classification

Input: The input data X € RV*M Jabel Y € {1,2,3,4}.
Output: The corresponding classification 3.
1: Calculate the mutual information of the columns of X and get
the adjacency matrix A € RNV*N
2: repeat
3: Put the A and X in to the spatial-temporal attention block
and get the get the attention matrix S.

4: Put A, X, S into a GCN layer and get the embedding X e
RN*L.

5: Calculate the cosine similarity of the column of the embed-
ding, get a new matrix A e RN*N,

Update the adjacency matrix A = A and the input X = X.
. until The repeat times are equal to the number of ST-layers.
: Then the output § = softmax(linear(X)).

electrodes can be represented as:
p=((x2— 1)+ (g2 — 11)* + (22 — 21))"? (1)

the euclidean distance can be understood as the
straight-line distance between two points, but the elec-
trodes are distributed on the surface of the cerebral
cortex, so it is not suitable to directly express the
relationships between the electrodes. The chebyshev
distance is defined as the maximum difference between
two vectors in any coordinate dimension, it’s the max-
imum distance along an axis, and the chebyshev dis-
tance of the electrodes can be denoted as:

p =max(|ze — 21, [y2 — 1], |22 — 21]) (2)

the calculation of the distances of the electrodes only
utilizes the positions of the electrodes, we can also use
the features of the electrodes to obtain the correla-
tions. The cosine similarity of two vector can be de-
fined as:

s (3)

cos(z,y) = ———
[l

However, the cosine similarity does not consider the
magnitude of the vectors, but only consider the direc-
tions. The jacquard index, also known as the intersec-
tion ratio and jacquard similarity coefficient, can be
used to compare the similarity and diversity of sample
sets:

|21 ()22

|z | = @ N

J(l‘l,xg) (4)

one of the main disadvantage of the jacquard index is
that it is greatly affected by the size of the data. Large
data sets have a great impact on the index, because it
can significantly increase the union while maintaining
similar intersection. Moreover, we could use informa-
tion gain between the feature vectors to obtain the

g
E Cosine similarity
= computation
2
5] /——\
Feature
extraction 19
X a4 i . - -" /
~a¥y |.
o oy |
g —
Generated adjacency matrix
Spatial
attention
Temporal Spation-temporal
attention

graph convolution

convolution

??:\%

Figure 2 The overall structure of the proposed model consists
of three parts : the feature extraction and the mutual
information computation part, the spatial-temporal attention
mechanism part and spatial-temporal graph convolution part.

degree of relevance, information gain is calculated by
comparing the entropy of the dataset before and after
a transformation. The mutual information calculates
the statistical dependence between two variables and
is the name given to information gain when applied to
variables selection.

4.1.2 Adjacency matrix update

In order to make full use of and adjust the input prior
knowledge in time according to the embedding learned
by GCNs, we use the mutual information to generate
the initial adjacency matrix and use the cosine similar-
ity to update the adjacency matrix during the training
process.

Mutual Information(MI)[29] is used to indicate
whether there is a relationship between two variables
and the strength of the relationship. The mutual in-
formation of two variables X and Y can be defined
as:

I(X,Y)=Y > pla, y)log DY) (5)

S5 p(z)p(y)
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Mutual information is related to entropy, which is the
expected or mean value of the information of all vari-
ables. The entropy of X is defined as:

H(X) = Z P(a:)log%
reX (6)
=— Y P(x)logP(x) = —ElogP(X)

Then MI of X and Y can be computed by the equa-
tions:

I(X,Y)=H(X)+H(Y) - H(X,Y)
= H(X)— H(X|Y) = H(Y) - HY|X)
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where the aéﬂ denotes the element of the ¢ — th row

and j—th column of the adjacency matrix at the [+1th
iteration, and e, eé— represents the ¢ —th, j —th column
of the embedding at | — th iteration. The process of
generating and updating the adjacency matrix can be
seen in Figure 3.

4.2 Spatial-temporal attention

The spatial-temporal attention mechanism could cap-
ture the dynamic spatial and temporal correlations
of the motor imagery network. In the spatial dimen-
sion, the activities of one brain region has influence on
other brain regions and generally different brain ac-
tivities convey different information, so the dynamic
spatial-temporal capture mechanism is required. We
use a spatial attention mechanism[31], which could be

H(X)Y)= Z Zp(x,y)log; = —FlogP(X,Y)represented as:
S p(z,y)
S =V, xo((x" VW) Wa(Wax"")T +b,)
1 p P
H(Y|X) = p(z)p(ylr)log————
) g(;, @p(ylz) p(y|r) o exp(Siy) (10)
i TN e
— —ElogP(Y|X) 2= €op(Sis)

(7)

where H(X,Y) is the joint entropy of X and Y, and
H(Y|X) is the conditional entropy that X is given in
advanced. Thus, I(X,Y) is the reduction in the uncer-
tainty of the variable X by the knowledge of another
variable Y, equivalently, it represents the amount of
information that Y contains about X.

Considering the features of EEG data X = {z!,22, ...,
v }e RV*F we could compute the mutual informa-
tion m;j of z', #7 and use it as the weight of the
connection of 2%, 27, then we could generate a N x N
weight matrix which could be used as the input ad-
jacency matrix of the graph convolution networks. In
our proposed work[30], we kept the initial adjacency
matrix unchanged during the training process. How-
ever, the embedding changes after each iteration, so we
update the adjacency matrix after each iteration syn-
chronously to improve the performance of the model.
Here we compute the cosine similarity of two columns
of the embedding as the weight of the adjacency ma-
trix. The cosine distance of two vector x,y is defined
as:

o xy
<0s(@:9) = ol ®)

the updated weight can be defined as:

Ll
G 9)
Y el

where S denotes the spatial attention matrix, which
is computed by current layer. V,,,b, € RVN*N, X —
1) = (X1, X2, .0, X7, € RVXCraxTror 04 s the
number of channels of the input data in the rh layer.
Wy € RT”’17W2 S RC"’IXTT’I,WE; S ROT"l, Si,j in
S represents the correlation strength between node 4
and j, then a softmax function is used to normalize the
attention weights. Combine the adjacency matrix and
the spatial attention matrix, the model could adjust
the impacting weights between nodes dynamically.

In the temporal dimension, there are correlations
during each motor imagery trial, since that the brain
waves are transmitted in the cerebral cortex and the
active areas of the brain will change over time, so the
collected EEG data also changes over time. Therefore,
a temporal attention is utilized to capture dynamic
temporal information. The temporal attention mecha-
nism is defined as:

E =V, o((x"")T M) My(Msx =) +b,)

’ exp(Ei ;) (11)

E =

m,n

: T,
Zj:ll exp(E; ;)

where V., b, € RTi-1xTi-1 A € RN My € ROV,

My € RC—1, L, denotes the strength of the corre-
lation between motor imagery network m,n, and FE is
normalized by the softmax function, so the temporal
attention matrix can be directly applied to the input.
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Initial adjacency matrix

mutual information —~— [ =
computation \“12 | LT

—... P

Update adjacency matrix

Cosine similarity computation \

/—\ uu ﬂlN

| azn

\ embedding

Figure 3 The process of generating and updating the adjacency matrix.

4.3 Spatial-temporal graph convolution

The spatial-temporal convolution consists of a graph
convolution in the spatial dimension and a normal con-
volution in the temporal dimension, which could ex-
tract both the spatial features and the temporal fea-
tures.

The spatial features are extracted by aggregating in-
formation from neighbor nodes, we use graph convolu-
tion to extract the spatial features. The graph convo-
lution is based on laplacian matrix and Fourier trans-
form, the graph laplacian can be defined as:

L=1-D"'2AD1/? (12)
where A € RVX¥ ig the adjacency matrix associated
with the graph, D € RY*Y is the diagonal degree
matrix, I € RV*N is the identity matrix. L is a real
symmetric positive semidefinite matrix, it can be de-
composed as L = UAUT and A € RV*V is the diag-
onal matrix of eigenvalues that represent the frequen-
cies of their associated eigenvectors. Let x € R™ be a
signal defined on the vertices of a graph G, the graph
fourier transform of the signal is defined as x = U7 x.
The graph convolution uses the linear operators that
diagonalize in the flourier domain to replace the clas-

sical convolution operator, the graph convolution can
be defined as:

9o(L)z = go(UAUT )z = Ugp(M)U" & (13)
where 6 is a vector of fourier coefficients, gy is the
filter that could reduce the computational complexity,
go can be approximated by a truncated expansion in
the terms of Chebyshev polynomials[32]:

k—1

go(A) =D 0,T,(A) (14)

where k is the order of the Chebyshev polynomi-
als, 0, € R¥ is the vector of Chebyshev coefficients,
T,(A) € RV*N is the Chebyshev polynomial of order
k and A = 2A/Amaz — I ranges in [—1,1]. Then the
j — th output feature can be calculated as:

Z”jgo J

where x; denotes the ¢ — th row of input matrix, Fj,
equals to the input dimension, the outputs are col-
lected into a feature matrix Y = [y1,99,...,yF,.,] €
RN*Four In this work, we generalize the above def-
inition to the nodes with multiple channels, the [ —
th layer’s input is XD = (1,22, ..., T(1,_,)) €
RN*CraxTi1 C(—1) denotes the channel’s number
and T;_; denotes the [ — th layer’s temporal dimen-
sion.

After the graph convolution having captured the
neighboring information for each node in the spatial
dimension, a standard convolution layer is used in the
temporal dimension, we use a standard two-dimension
convolution layer to extract the temporal information,
the r — th convolution layer could be defined as:

(15)

X\ = ReLU(® % (ReLU (g * GRY" ™)) (16)
where ® is the parameter of the temporal dimension
convolution kernel, and * represents the convolution
operation, ReLU is the activation function.

5 Experiment
In order to evaluate the effectiveness of our model, we
carried out the comparative experiments on a public
dataset BCI Competition IV dataset 2a(SMR) for mo-
tor imagery task.
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5.1 Dataset description

The BCI Competition IV dataset 2a consists of
EEG data from nine subjects, there are two sessions
recorded, one for training and the other one for testing.
Each session includes 288 trials, which are recorded
with 22 EEG electrodes and 3 electrooculogram chan-
nels, we only utilize the 22 EEG channels in this ex-
periment and the distribution of the EEG electrodes
can be seen in Figure 4. There are four types of la-
bels in this dataset, corresponding to movements of
the left hand, right hand, feet and tongue. The origi-

100 100

Figure 4 The distribution of the electrodes in 3D space.

nal dataset is sampled at 250Hz and bandpass-filtered
between 0.5Hz and 100Hz, and we low-pass filter the
dataset to 4-40Hz. Also in our experiment, we set the
length of each trial to 4.5s which starts from 500ms
before the start cue of each trial until to the end cue,
then we extract 11 differential entropy features(DE)
for each channel and double fold the features to make
it have the same shape as the adjacency matrix, and
combine the two as the input of the graph convolu-
tional network, then we standard scale the data to
make it suitable for the machine learning model. To
show the effectiveness of our proposed model learn-
ing from the raw data and ensure the model could be
used for wider range of tasks, we don’t do much more
preprocessing of the raw EEG data.

5.2 Experiment settings

We compare our model with some state-of-the-art
methods as well as the proposed MutualGraphNet, the
baseline methods are listed as follows:

1 Filter Bank Common Spatial Patterns(FBCSP)[33]:

It extracted the band power features of EEG ,then
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use the features to train the classifier to predict
the labels.

2 Shallow ConvNet[14]: An end-to-end learn method,
which use convolutional networks to do all the
computations.

3 Deep ConvNet[14]: It has more convolution-
pooling blocks and is much deeper than Shallow
ConvNet.

4 EEGNet[15]: It uses the depthwise and separa-
ble convolution and has two convolution-pooling
blocks.

In addition to the above baseline methods, we also
compared traditional machine learning methods, sup-

port vector machine(SVM)[34] and random forest(RF)[35].

In order to prove that the model can effectively ex-
tract features and has the ability to eliminate the
influence of individual differences, we no longer con-
duct experiments on each subject separately, we mixed
the experimental data of nine subjects, and a total
2592 training trials and 2592 testing trials, and we use
four-fold cross-validation to evaluate the performance.
Since that the training set is not big enough, so in or-
der to reduce the impact of over-fitting, we adopt a
loss flooding strategy[36] during the training process,
which is defined as:R(g) = |R(g) — b| + b and R(g) is
the loss of the model, b is a constant called loss flood-
ing level, here we set b as 0.5. The hyper-parameters
are shown in Table 1. As for the baseline methods,

Table 1 The hyper-parameters of the model and their
corresponding values

Hyperparameter Value
Learning rate 9.6e-4
Learning rate decay 0
Dropout rate 0.5
Optimizer Adam
L1,L2 regularization 0.002, 0.001
Training epochs 500
Batchsize 32
Chebyshev polynomial 2

in order to evaluate the performance of the models
more reasonably, we use 250Hz sampling 4.5s EEG
data for all experiments. Since that the EEGNet[15]
used the 128Hz resampled data to conduct experiment
in the original paper, so we double the lengths of tem-
poral kernels and average pooling size of the original
model for double sampling rate to better adapt the in-
put which proven to have better performance than the
original model. In response to changes in the length
of the sampling time, we also adjusted the parameters
of each model accordingly, conducted experiments and
selected the best model performance. The training pa-
rameters of other baseline methods are the same as in
the paper [15].
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5.3 Results and discussion

We compare our model with the six baseline meth-
ods on SMR, we use the accuracy, fl-score and pre-
cision as the evaluation metrics to evaluate the per-
formance of the models. Table 2 shows the perfor-
mance of the different models on the SMR dataset,
the results show that our model have better perfor-
mance compared to the other baseline methods and the
proposed MutulaGraphNet. For the traditional meth-

Table 2 The performance comparison of the state-of-the-art
approaches on the SMR dataset
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—— Accuracy
—e— Fl-Score
—— Precision

0.52

0.51 4

0.50

0.49 4

Value

0.48

0.47 1

Model Accuracy Fl-score  Precision 0.46

SVM 0.3488 0.3485 0.3486 x T T T . T p 7
Deep ConvNet 0.3507 0.3191 0.4148 Layers

FBCSP 0.3511 0.3366 0.3714

EEGNet 822(1)2 giggg 8:88;1 ;g_uézlg Il;’e;:rmance of the proposed model with different
Shallow ConvNet 0.4857 0.4789 0.4978 yers.
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ods, the random tree(RF) has better performance than
the support vector machine(SVM), but both of them
aren’t good enough. The FBCSP cannot extract and
utilize complex features in multi-subject tasks, though
it has good performance in single-subject tasks. And
the results show that the traditional machine learn-
ing methods can’t learn the complex features well, the
deep learning models EEGNet and ShallowConvNet
all outperform the traditional methods which demon-
strate the effectiveness of deep convolutional neural
networks for EEG-bask classification tasks, however
the performance of DeepConvNet demonstrates that
the deeper convolutional network doesn’t work better.

In order to evaluate the effect of the depth of net-
work, we study the impact of the layers of ST-GCN in
Figure 5. The horizonal axis in Figure 5 represents the
layers of ST-GCN and the vertical axis represents the
corresponding performance of the model. The results
show that the MCGNet™ with more ST-GCN layers
doesn’t work better, the best performance is achieved
with 4 layers and with the number of layers increases
the performance gets worse. That is because the in-
crease in the number of layers leads to an increase in
training parameters, but the training data set is too
small to train the model with more parameters.

In this paper, we extract differential entropy(DE)
feature as the input of the model, and in EEG-
based tasks there are other five different features[37]:
power spectral density(PSD), differential asymme-
try (DASM), rational asymmetry(RASM), asymme-
try(ASM) and differential caudality(DACU) features
from EEG. The DASM and RASM can be expressed
as:

DASM = DE(Xes¢) — DE(Xyignt) (17)

RASM = DE(Xef1)/DE(Xrignt) (18)

ASM features are the direct concatenation of DASM
and RASM features. DCAU features are the difference
between DE features of frontal-posterior electrodes,
which can be defined as:

DCAU = DE(Xfrontal) - DE(Xposterior) (19)
We also evaluate the performance of our models on
these features. All the experiments are performed with

4-fold cross-validation and the training settings are
the same as above. The results are presented in Ta-

Table 3 The performance of models for different features

Model Feature  Accuracy Fl-score Precision
PSD 0.2716 0.2695 0.2726

DSAM 0.4124 0.4049 0.4052

ASM 0.4039 0.3842 0.3877

MCGNet™ ASDM 0.3973 0.3881 0.3881
DCAU 0.4375 0.4381 0.4435

DE 0.5227 0.5239 0.5278

PSD 0.2604 0.2286 0.2595

DSAM 0.3646 0.3523 0.3541

ASM 0.3815 0.3820 0.3879

MutualGraphNet | \py 03811 03777 0.3764
DCAU 0.4162 0.4144 0.4191

DE 0.5190 0.5175 0.5208

ble 3, the PSD feature still has the worst performance
and the DE feature outperforms the other features,
DCAU feature also achieves comparable performance,
but ASDM and DSAM feature contain less informa-
tion which leads to limited performance. All the fea-
tures have better performance with the new model,
which indicated the effectiveness of the newly proposed
method. Moreover, the results indicate that there ex-
ists some kind asymmetry of the brain which has dis-
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criminative information and our knowledge of the hu-
man brain is still very limited, the deeper understand-
ing of brain is still required to obtain more effective
and valuable information from EEG data. The new
approach is compared with the several different adja-
cency matrixes that we designed:

1 KNN: For each channel, select the nearest N chan-
nels to establish a connection.

2 The Euclidean distance(ED): According to the ac-
tual distance of each electrode on the brain, select
adjacent points to establish a connection.

3 Random: Randomly select channels and establish
connections between channels.

4  Mut_Euclidean : Use the euclidean diatance to es-
tablish connections and calculate the mutual in-
formation.

5 Mut_KNN: Use KNN to establish connections and
calculate mutual information between connected
channels.

6 Mut_ED: Use the euclidian distance to conform
connection and calculate mutual information be-
tween connected channels

The results of classification with different kind of adja-
cency matrix are shown in Figure 6. It can be seen that

® Accuracy Fl-score Precision

0.5
0.4
0.3
0.2
0.1 I
0
RD ED ME MK

KNN  MlI(ours) MC(ours)

Value

Method

Figure 6 The performance of the proposed model with
different kind of adjacency matrix. RD represents the random,
ED represents the educlidean distance, ME represents
Mut_Euclidean, MK denotes the Mut_KNN, MI denotes
Mutual Information and MC denotes Mutual_Cos.

the MI_cos adjacency matrix has better performance
than the MI adjacency matrix, Mul_ KNN and Mul_ED
are better than KNN and ED which means that mu-
tual information could provide valuable information
for ST-GCN. Furthermore, the adjacency matrix surly
could effect the performance of classification.

6 Conclusion

In this paper, we improve the original model for mo-
tor imagery classification task based on our previous
work[30]. Instead of using the stable adjacency ma-
trix, we calculate the cosine similarity of the columns
of the embedding to generate the dynamic adjacency
matrix. The main advantage of the new model is that
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it could adjust the input matrix during the training
process to utilize the features fully. The experiment
results demonstrate that the new model outperforms
the state-of-the-art methods as well as our previous
model. Furthermore, the adjacency matrix has much
more impact on the performance of the GCNs, and
more suitable adjacency matrix can still be explored.

The current understanding on brain mechanisms is
still limited, more influencing factors will be taken into
account to further improve the forecasting accuracy.
Moreover, motor imagery EEG data presents individ-
ual differences, such as FBCSP has different perfor-
mances when experimenting with EEG data that from
different subjects, and it can achieve good results when
using the same subject’s data for training and testing,
but it does not perform well in mixed data of multiple
subjects. Individual differences also affected the devel-
opment of solutions for the classification task of motor
imagery. How to eliminate individual differences and
extract valuable features is still key for wider applica-
tion of EEG-based tasks. Some current transfer learn-
ing methods may be deployed to eliminate individual
differences and further expand the scope of EEG ap-
plications.
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