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Abstract
Estimating the rupture risk of small intracranial aneurysms (IAs) to determine whether to treat is difficult but
crucial. We aimed to construct and external validation a convenient machine learning (ML) model for
assessing the rupture risk of small IAs.1004 patients with small IAs recruited from two hospitals were
included in our retrospective research. The patients at hospital 1 were stratified into training (70%) and
internal validation set (30%) randomly, and the patients at hospital 2 were used for external validation. We
selected predictive features using the least absolute shrinkage and selection operator (LASSO) method, and
constructed five ML models applying diverse algorithms including random forest classifier (RFC), categorical
boosting (CatBoost), support vector machine (SVM) with linear kernel, light gradient boosting machine
(LightGBM) and extreme gradient boosting (XGBoost). The Shapley Additive Explanations (SHAP) analysis
provided interpretation for the best ML model.The training, internal and external validation cohorts included
658, 282, and 64 IAs, respectively. The best performance was presented by SVM as AUC of 0.817 in the
internal [95% confidence interval (CI), 0.769-0.866] and 0.893 in the external (95% CI, 0.808-0.979) validation
cohorts, overperformed than the PHASES score significantly (all P < 0.001). SHAP analysis showed
maximum size, location and irregular shape were the top three important features to predict rupture. Our SVM
model based on readily accessible features presented satisfying ability of discrimination in predicting the
rupture IAs with small size. Morphological parameters made important contributions to prediction result.

Introduction
Intracranial aneurysms (IAs) occurring in around 3% adults, are relatively common in the general population
[1]. Ruptured IAs leads to aneurysmal subarachnoid hemorrhage with high case morbidity and disability [2].
Of note, most incidentally detected IAs have small sizes (≤7mm in diameter) [3]. Small IAs account for more
than 40% of all ruptured IAs [4], which may push patients with small IAs to accept preventive treatment and
endure some additional treatment risks. Therefore, early evaluation of the rupture risk of small IAs is of great
significance to provide some reference for physicians and patients to formulate treatment strategies.

Scoring systems for evaluating the rupture risk of IAs have been reported [5,6]. These researches studied the
relationships between various risk factors and rupture outcome according to the traditional statistical
methods such as logical regression. However, the relationships are usually complex and nonlinear which
makes conventional methods less reliable. In addition, on account of the difference of pathophysiological
characteristics between small and large IAs [7], these scoring systems do not apply for small IAs well. As a
result, it is necessary to apply new approaches to the rupture risk prediction model of small IAs.

Machine learning (ML), as a novel kind of modeling method, could identify the correlation between features
of a multivariate large sample data set [8]. It is superior to conventional statistical methods in dealing with
non-linear relations and complicated pattern problem [9]. The potency and effectiveness of ML approaches in
predicting the rupture risk of IAs have been testified. Liu et al. proposed a ML model achieving an overall
prediction accuracy of 94.8% in evaluating the rupture risk of IAs located at anterior communicating artery
[10]. Another research used ML to stratify the risk of developing IAs for those taking health examinations, and
recommended further screening tests for those at high risk [11].
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In this study, we constructed prediction models for the rupture risk of small IAs based on ML methods and
clinical data, and validated according another cross-regional center dataset. To improve the interpretability,
we introduced a model interpretation technique to rank the importance of the selected input features. We
aimed to develop a convenient tool to facilitate clinical decision and optimize treatment options.

Method
Study population

We recruited a continuous series of patients with IAs from two hospitals (Hunan Provincial people's Hospital
and the second affiliated Hospital of Nanjing Medical University) between September 2015 and December
2020 and obtained data retrospectively from cerebrovascular images and medical records. The ethics
committee of Hunan Provincial People's Hospital have authorized this study ([2015]-10). The inclusion
criteria were as follows: (1) patients with IA(s) confirmed by digital subtraction angiography (DSA), (2)
patients ≥18 years old, (3) patients with the size of IAs ≤ 7mm, and (4) patients with available clinical
information and imaging data. Patients who were diagnosed as malignant brain tumors, fusiform or
dissecting IAs, arteriovenous fistulas, moyamoya disease, other cerebrovascular diseases, and incomplete
clinical and imaging data were excluded.

Data collection and data pre-processing

The baseline data of patients were as follows: age; gender; drinking; smoking; presence of hypertension,
coronary heart disease (CHD) and diabetes mellitus (DM); and history of subarachnoid hemorrhage (SAH).
Morphological parameters (such as size, location, shape and etc.) were extracted from 3D-DSA images and
were measured by two researchers, which was supervised by two senior neurosurgeons. The maximum neck
width, neck-to-dome length (from the neck center to the IA dome) and IA width (perpendicular to the neck to
the dome) were measured on a 0.1 mm scale. Size of IAs was explained as the aneurysm neck-to-dome
length or the largest distance within the aneurysm sac. IAs were categorized into narrow neck aneurysm
(NNA) and wide neck aneurysm (WNA) (with a neck width exceeding 4 mm or a ratio of maximum diameter
to neck width less than 2). According to the position relative to the parent vessel, IAs were divided into
sidewall type and bifurcation type. Shape of IAs was categorized as regular and irregular shape (with the
presence of aneurysm wall protrusions, bi- or multi-lobular or small blebs). The location of IAs was
specifically divided into internal carotid artery (ICA), anterior communicating artery (ACOA), anterior cerebral
artery (ACA), posterior cerebral artery (PCA), middle cerebral artery (MCA), posterior communicating artery
(PCOA), vertebral artery (VA), basilar artery (BA), posterior inferior cerebellar artery (PICA) and others, which
was further dichotomized as anterior vs posterior circulation. The largest IA was used for analysis when a
patient was detected with at least two IAs.

Feature selection and model development

The eligible patients at hospital 1 were assigned into derivation cohort (70%) and internal validation cohort
(30%) using a stratified random sampling method, and the eligible patients at hospital 2 were used for
external validation. Feature selection, model derivation and hyper-parameter tuning described below were



Page 5/19

performed using the training cohort only. Before developing the ML models, z-score was applied to normalize
the continuous data [12] while one-hot encoding was employed to transform the categorical data [13]. The
least absolute shrinkage and selection operator (LASSO) method was applied to selected predictive features
[14], in which the features with non-zero coefficients were selected as predictive features to train the ML
model. We constructed ML models used to classify ruptured versus unruptured IAs with random forest
classifier (RFC), extreme gradient boosting (XGBoost), support vector machine (SVM) with linear kernel, light
gradient boosting machine (LightGBM) and categorical boosting (CatBoost) algorithms, and tuned model
hyper-parameters using ten-fold cross-validation combined with grid search [15]. In the process of ten-fold
cross-validation, our training dataset was randomly stratified into 10 smaller subsets. For each fold, 9
subsets were used for model construction with a specific set of hyper-parameters, and the remaining one for
model evaluation. Eventually, the models were retrained using the set of hyper-parameters with the best
average AUC among the 10 models, that is, the optimal hyper-parameters.

Model evaluation

Model performance measurement was the area under the curve (AUC) of receiver operating characteristic
(ROC). We also compared our five ML models with the PHASES score [5] in which higher score denotes higher
rupture risk. For instance, patients scoring 2 have a 5-year rupture risk of 0.4%, while those scoring 11 have a
risk of 7.2%. The method of DeLong et al. was adopted to compute confidence intervals (CIs) of the AUC
values and compare the different ROC curves [16]. The cut-off threshold corresponding to the maximum
Youden Index was selected as the optimal cut-point that dichotomize the predictions from the ROC curves
[17]. Values of specificity, sensitivity and accuracy, positive predictive value (PPV), and negative predictive
value (NPV) were calculated at the optimal threshold.

Model interpretation

ML models were often criticized as black boxes because the function between input features and model
output was invisible to researchers. We applied a model interpretation technique named Shapley Additive
Explanations (SHAP) [18] to our best performing model to reveal the importance of each included feature in
order to improve its interpretability and trustworthiness. Besides, we used 2 correctly predicted and 2 falsely
predicted cases that were randomly sampled from the derivation set to make explanation for individual
prediction, which clarified the causes of the model’s correct and incorrect prediction.

Statistical analyses

Statistical analysis was performed for comparison of patient and IA characteristics across training, internal
and external validation sets, thereinto, continuous data employing the analysis of variance (ANOVA) while
categorical data employing the Fisher’s exact test. Besides, in the univariable analysis of the clinical features
difference between the ruptured and unruptured group, Mann-Whitney U test or Student's T-Test were applied
to continuous data while Chi-squared test for categorical data. A two-tailed P < 0.05 was deemed as
statistical significance. Data were analyzed with the SPSS software (IBM Corporation, USA).

Result
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Study population

Totally 1004 patients were included in this retrospective research. Their mean age was 59.06 ± 10.48 years,
and 70.2% of them were female. Patients and IAs characteristics of the training (n = 658) and internal
validation (n = 282) cohorts from hospital 1, and external validation (n = 64) cohorts from hospital 2 were
presented in Table 1. Significant differences in age, history of DM, irregular shape and rupture status were
observed across the three groups (all P < 0.05, Table 1), while no significant differences in any variable could
be found between the training and internal validation sets (p = 0.060 –1.000, Supplementary Table 1).
Results of the univariable analysis showed that maximum size, location, irregular shape, presence of
hypertension and DM were significantly related to IA rupture (all P < 0.05, Supplementary Table 2).

Model performance

The prediction models were trained using 9 predictive features and 5 ML algorithms (including RFC, SVM,
XGBoost, LightGBM and CatBoost). Predictive features were age, hypertension, DM, irregular shape, NNA,
maximum size, location at ACOA, location at ICA, and location at PCOA, which were determined by LASSO
analysis (Table 2). The hyper-parameters of each algorithm were presented at Supplementary Table 2.

Values of AUC, specificity, sensitivity and accuracy, PPV, and NPV derived from the five ML models was
summarized in Table 3. ROC curves and AUC values of the PHASES score and our four models were shown at
Fig.1a-c, in which the SVM model achieved the highest AUC values (0.817 [95% CI, 0.769-0.866]) in the
internal validation, followed by the LightGBM (0.791 [95% CI, 0.740-0.843]), the RFC (0.789 [95% CI, 0.736-
0.841]), the CatBoost (0.785 [95% CI, 0.733-0.838]) and XGBoost (0.773 [95% CI, 0.719-0.827]). All our four
ML models overperformed than PHASES score significantly (All P < 0.001). Besides, in the external validation,
SVM model also had a significantly higher AUC (0.893 [95% CI, 0.808-0.979]) than others.

Model interpretation

SHAP analysis was introduced to reveal the contribution to the prediction outcome of each feature in the
SVM model. The model tended to correlate larger size, location at ACOA, location at PCOA, and NNA with
increased rupture risk, represented as positive SHAP values (Fig. 2). Based on the order of importance, the top
three features that have important contribution to classification of rupture and unruptured IAs are maximum
size, location (ACOA and ICA) and irregular shape (Fig. 3).

We also randomly sampled 2 correctly predicted and 2 falsely predicted cases from the training dataset, as
plotted in Supplementary Fig. 1. The true positive prediction that the first case was correctly classified as a
ruptured IA mainly resulted from maximum size of 6.3mm, irregular shape, no hypertension and location at
PCOA. The true negative prediction that the second case was classified as an unruptured IA mainly relied on
maximum size of 2.7mm, regular shape and absence of hypertension. Maximum size of 6.1mm, location at
PCOA and irregular shape are the main reasons for the false positive prediction that the third case was a
ruptured IA, while maximum size of 3mm and regular shape are the main reasons for the false negative
prediction.

Discussion
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In this study, we combined the simple variables obtained in routine clinical practice and the ML algorithm to
establish a model for predicting the rupture risk of small aneurysms. The best models, SVM, carried out a
satisfying ability of discrimination in screening IAs with high risk of rupture, with an AUC value of 0.817 and
0.893 in the internal and external validation. In SHAP analyze, size, location, shape and presence of
hypertension exerted great influences on predicting outcome.

Physicians and patients are often caught in a dilemma when making treatment decisions for unruptured IAs,
especially in small ones. On the one hand, the low rupture risk of small IAs makes conservative treatment
seem more reasonable. On the other hand, the disastrous consequences lead by rupture make many patients
incline to receive preventive treatment. Nevertheless, treatment is always accompanied by risks. The former
study indicates that among patients without history of hemorrhage, the total morbidity and mortality rate of 1
year after open surgery and endovascular treatment are 12.6% and 9.8%, respectively [1]. Accordingly,
accurately and quickly screening IAs with high risk of rupture for preventive treatment of these IAs is
extremely crucial.

Traditional statistical methods have been widely employed to correlate ruptured aneurysms with related risk
factors. However, the fact of the complex relationship between various features and the outcome would bring
some problems to the analysis based on the assumption of a simple linear relationship. ML has shown great
potential in dealing with variables with nonlinear relationships and missing values [8,9]. It could enable us to
have a more comprehensive understanding of the relationships from different perspectives. Furthermore, with
the wide application of electronic medical record system and the progress of technology, ML model could be
integrated into some systems that could automatically process a large amount of data, and bring great
convenience in aiding clinical decision for doctors and providing individualized diagnosis and treatment for
patients.

The prime advantage of our model was convenient to apply and serve for physicians and patients.
Considering that it could be a difficult task for physicians to spend much time on collecting complex
additional information in their busy work, we only collect patient and morphological characteristics that can
be accessed in routine clinical practice for modeling. This design could improve the convenience of our
model in clinical environment well. On the contrary, two previous studies constructed ML models based on
complex hemodynamics and pyradiomics-derived morphological features, which may limit their clinical
promotion [19,20]. At the same time, another two researches employed convolutional neural networks to
develop prediction model, which worked by identifying information from 3D-DSA [21,22]. However, ignoring
important patient characteristics could exert some impact on the clinical efficacy of their models in the real
world.

Another advantage of our model is the interpretability by introducing SHAP algorithm to rank the importance
of the selected input features of IAs patients. ML has gradually become a research hotspot because of its
excellent ability to handle large samples and nonlinear relationships. However, a significant defect of ML
models is that they tend to operate like “black boxes”, which makes them seem less reliable for experts. What
we did to conquer this flaw was to interpret the predictions made by our models according to the SHAP
method [18]. By this way, the rules behind prediction of our ML model could be better revealed; and
physicians could validate the interpretation of the ML model based on professional knowledge.
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Researchers have extensively studied and discussed various factors related to ruptured IAs, in which larger
size [3,23], irregular shape [24], or location at ACOA and PCOA [25] associated with higher rupture risk have
been recognized by most studies. Same results could be concluded in our study. Interestingly, patients with
history of hypertension in our cohort showed a lower risk of rupture, which were different from some studies.
This may be attributed to the changes brought about by the use of antihypertensive drugs. In a previous
animal model study, they found that the normalization of blood pressure by antihypertensive drugs can
reduce the rupture rate of aneurysms in mice [26]. In addition, one Finland research pointed that drug-treated
hypertension may relate to the formulation of IAs instead of the rupture, and bring higher rupture risk only if
not be treated [27]. Similarly, several studies regarded DM as a protective factor, and attributed it to the
consume of hypoglycemic agents [28,29]. More well-designed researches were required to sufficiently
investigate the connection between IAs rupture and drug-treated hypertension.

There are still certain limitations in our study. First and foremost, the retrospective nature of this study may
introduce impacts to our analysis. Second, most IAs of the patients had ruptured during the study period.
Although ruptured IAs were indeed unstable, there were reports considered that post rupture morphology
should not be considered as an adequate alternative indicator in evaluating the rupture risk [30]. Third, we
only took into account clinically accessible factors. Some complex factors, such as morphology and
hemodynamics parameters, were rarely included in the current study. Finally, although our model is satisfying
in external validation, it remains problematic that the external validation dataset is relatively small. Going
forward, prospective multicenter validation and long-term follow-up is needed to better improve our results.

Conclusions
Our study combined readily accessible clinical and morphological features to derive ML models for predicting
the risk of small IAs rupture. In internal and external validation, our SVM model showed satisfying ability of
discrimination. Morphological parameters (size, location and shape) made important contributions to
prediction result.
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Tables
Table 1 Patient and aneurysm characteristics of the training, internal validation and external validation set
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Characteristics Training set Internal validation
set

External validation
set

P-value

Patient characteristics

Age, years, mean ± SD 59.032 ±
10.52

58.170 ± 10.09 63.33 ± 10.09 0.002*

Female, n (%) 194 (29.5 %) 82 (29.1 %) 23 (35.9 %)  0.531

Hypertension, n (%) 395 (60 %) 169 (59.9 %) 39 (69.9 %) 1.000

DM, n (%) 62 (9.4 %) 19 (6.7 %) 14 (21.9 %) 0.002*

AF, n (%) 8 (1.2 %) 6 (2.1 %) 0 (0 %) 0.458

CHD, n (%) 64 (9.7 %) 28 (9.9 %) 8 (12.5 %) 0.722

SAH, n (%) 10 (1.5 %) 1 (0.4 %) 1 (1.6 %) 0.263

Smoking, n (%) 109 (16.6 %) 43 (15.2 %) 6 (9.4 %) 0.329

Drinking, n (%) 47 (7.1 %) 19 (7.1 %) 3 (4.7 %) 0.835

Aneurysm characteristics

PC, n (%) 52 (7.9 %) 26 (9.2 %) 2 (3.1 %) 0.266

Bifurcation location, n (%) 54 (8.2 %) 19 (6.7 %) 3 (4.7 %) 0.568

Irregular shape, n (%) 269 (40.9 %) 134 (47.5 %) 7 (10.9 %) <0.001*

NNA, n (%) 201 (30.5 %) 82 (29.1 %) 22 (34.4 %) 0.684

Maximum size, mm, mean ±
SD

4.13 ± 1.45 4.08 ± 1.46 4,21 ± 1.35 0.746

Location, n (%)       0.052

 ACA 34 (5.2 %) 17 (6.0 %) 3 (4.7 %)  

 PCOA 117 (17.8 %) 49 (17.4 %) 8 (12.5 %)  

 ICA 125 (19.0 %) 41 (14.5 %) 24 (37.5 %)  

 MCA 86 (13.1 %) 34 (12.1 %) 6 (9.4 %)  

 PCOA 244 (37.1 %) 115 (40.8 %) 21 (32.8 %)  

 PCA 12 (1.8 %) 7 (2.5 %) 0 (0 %)  

 VA 7 (1.1 %) 6 (2.1 %) 1 (1.6 %)  

 PICA 8 (1.2 %) 7 (2.5 %) 0 (0 %)  

 BA 16 (2.4 %) 2 (0.7 %) 0 (0 %)  

 Others 9 (1.4 %) 4 (1.4 %) 1 (1.6 %)  
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Ruptured IAs 336 (51.1 %) 144 (51.1 %) 20 (31.3 %) 0.009*

DM, diabetes mellitus; AF, atrial fibrillation; CHD, coronary heart disease; SAH, subarachnoid hemorrhage;
PC, posterior circulation; NNA, narrow necked aneurysm; ACA, anterior cerebral artery; PCOA, anterior
communicating artery; ICA, internal carotid artery; MCA, middle cerebral artery; PCOA, posterior
communicating artery; PCA, posterior cerebral artery; VA, vertebral artery; PICA, posterior inferior cerebellar
artery; BA, basilar artery; IA, intracranial aneurysm. * Statistical difference across the three groups on
intergroup comparison.

Table 2 Predictors determined by LASSO analysis

Feature Coefficients

ICA 0.335

ACOA 0.290

DM 0.115

Size 0.102

Hypertension 0.080

Shape 0.077

PCOA 0.016

NNA 0.008

Age 0.002

Table 3 Model performance in the training, internal validation and external validation set
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Data Set Model AUC
(95%
CI)

Sensitivity Specificity PPV NPV Accuracy P-value

Training PHASES 0.635
(0.592
-
0.678)

0.848 0.457 0.620 0.742 0.657 Reference

RFC 0.887
(0.863
-
0.910)

0.810 0.792 0.802 0.799 0.801 <0.001*

SVM 0.823
(0.792
-
0.855)

0.821 0.699 0.740 0.789 0.761 <0.001*

XGBoost 0.889
(0.865
-
0.913)

0.783 0.820 0.819 0.783 0.801 <0.001*

CatBoost 0.876
(0.859
-
0.901)

0.872 0.730 0.771 0.845 0.802 <0.001*

LightGBM 0.854
(0.825
-
0.883)

0.744 0.826 0.817 0.756 0.784 <0.001*

Internal
validation

PHASES 0.616
(0.550
-
0.683)

0.896 0.391 0.606 0.783 0.649 Reference

RFC 0.789
(0.736
-
0.841)

0.771 0.645 0.694 0.730 0.709 <0.001*

SVM 0.817
(0.769
-
0.866)

0.854 0.623 0.703 0.804 0.741 <0.001*

XGBoost 0.773
(0.719
-
0.827)

0.743 0.645 0.686 0.706 0.695 <0.001*

CatBoost 0.785
(0.733
-
0.838)

0.826 0.594 0.680 0.766 0.713 <0.001*

LightGBM 0.791
(0.740

0.708 0.681 0.699 0.691 0.695 <0.001*



Page 16/19

-
0.843)

External
validation

PHASES 0.667
(0.536-
0.789)

0.800 0.545 0.444 0.857 0.625 Reference

RFC 0.852
(0.744-
0.960)

0.900 0.614 0.514 0.931 0.703 <0.001*

SVM 0.893
(0.808-
0.979)

0.900 0.636 0.529 0.933 0.719 <0.001*

XGBoost 0.842
(0.728-
0.956)

0.900 0.500 0.450 0.917 0.625 <0.001*

CatBoost 0.869
(0.770-
0.967)

0.900 0.500 0.450 0.917 0.625 <0.001*

LightGBM 0.877
(0.788-
0.967)

0.900 0.500 0.500 0.929 0.688 <0.001*

AUC, area under the curve of receiver operating characteristic; CI, confidence interval; RFC, random forest
classifier; SVM, support vector machine; XGBoost, extreme gradient boosting; LightGBM, light gradient
boosting machine; CatBoost, categorical boosting. * P-value was calculated using Delong test.

Figures
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Figure 1

a-c Receiver-operating characteristic curves (ROCs) of prediction models in the training (a), internal validation
(b), and external validation (c) cohorts. AUC, area under the curve; SVM, support vector machine; RFC, random
forest classifier; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; CatBoost,
categorical boosting.
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Figure 2

Model explanation provided by Shapley Additive Explanations (SHAP) analysis for SVM model. This shows
the impact of predictive features to the output. The dots correspond to the case of the dataset. A blue dot
means a low feature value, whereas a red dot means a high feature value. The horizontal axis displays the
value of SHAP analysis corresponding to the feature. If it is a positive SHAP value, the contribution to fracture
prediction is positive, and vice versa. DM, diabetes mellitus; NNA, narrow necked aneurysm; ACOA, anterior
communicating artery; ICA, internal carotid artery; PCOA, posterior communicating artery.
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Figure 3

Feature importance ranking based on SHAP values in SVM model. Draw and sort the standard bar graph of
the mean absolute value of SHAP value of each feature in the SVM model. DM, diabetes mellitus; NNA,
narrow necked aneurysm; ACOA, anterior communicating artery; ICA, internal carotid artery; PCOA, posterior
communicating artery.
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