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Abstract  

The function of the omasum is incompletely understood; however, the omasum plays 

an important role in the transport of appropriately sized feed particles from the 

reticulorumen to the abomasum, oesophageal groove closure, fermentation of ingesta, 

and absorption of water, volatile fatty acids, and minerals. The aim of this study is to 

evaluate the suitable hyperelastic anisotropic model based on biomechanical 

properties of sheep omasum. The results show that all five (5) hyperelastic models 

may be suitable for the evaluation of sheep omasum. The average coefficient of 

determination (R2) of Fung, Polynomial (Anisotropic), Holzapfel (2000), Holzapfel 

(2005) and Four-Fiber-Family hyperelastic models were found to be 0.79 ± 0.19, 0.95 

± 0.05, 0.92 ± 0.07, 0.93 ± 0.05 and 0.94 ± 0.03, respectively. Also, it was found that 

the best hyperelastic model for fitting uniaxial data of the sheep omasum was 

Polynomial (Anisotropic) with EI of 100.0 followed by the Four-Fiber-Family model with 

EI of 96.18.  

 

Keywords: Soft tissue mechanics; hyperelastic models; hyperelastic fitting; sheep 

omasum 
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1. Introduction 

Ruminant digestive physiology is largely dependent on pregastric fermentation 

in the forestomach. Therefore, in contrast to monogastric species the ruminant 

stomach system consists of a non-secretory forestomach functioning as a specialized 

mixing and fermentation vat and an acid and pepsinogen-secreting compartment 

functioning as stomach in the classical sense, the abomasum. The forestomach 

system anatomically consists of three primary structures: rumen, reticulum, and 

omasum[1]. Tumours of the omasum, reticulum, and rumen occur most often in cattle 

but are uncommon in most parts of the world. Papilloma, fibro papilloma, and fibroma 

are the most common tumours in the forestomach of cattle [2]  . 

There are many challenges that the field of tissue engineering must overcome 

to realise its clinical promise. These include concerns related to infection, adverse 

immune response, biochemical elements, and mechanical performance [3]. A 

biomechanical approach can be useful to investigate the stomach mechanical 

functionality [4]. The development of a computational model of the stomach can allow 

to examine in depth its functioning, related with complex neuro-gastrointestinal 

phenomena [5]. Models definition requires experimentations to characterise the organ 

geometrical conformation and the tissues mechanical behavior as such it is paramount 

to investigate the mechanical properties of omasum [6]. 

Computational modelling  remains useful modality to validate experimental data 

and the mechanical behaviour of soft tissues [7-11]. However, to study the behaviour 

of these models it is essential to develop constitute model [12-16]. The Fung model is 

a widely utilised hyperelastic model which was originally developed for artery tissues. 

This hyperelastic model uses the strain energy function that depends on exponential 

function. Recently, a comparative study was presented for unfilled and highly filled 

rubbers using hyperelastic constitutive models [17]. In previous work, determination of 

layer-specific mechanical properties of human coronary arteries using Holzapfel 

constitute model was carried out [18-20]. The to develop these models the use of curve 

fitting is paramount [12]. Uniaxial testing remains the most common modality of 

mechanical analysis for biological and other soft materials [19]. It has been observed 

that Specimen mounting presents one of the most challenging tasks during soft tissue 

testing due to the fact that there is no widely accepted universal standard for clamp 

design for soft tissues. As a result there are many techniques that have been used to 

ensure that appropriate boundary conditions are imposed during soft tissue testing 

[21].    

Study of mechanics of soft tissue is still relevant especially for the possible 

development of accurate computational models [7, 8, 11, 12, 16, 22-26] to study how 

diseases develop and advances. Sheep have been previous utilised to study 

mechanical properties of various important organs [12]. Currently there is no 

mechanical data on the sheep omasum. Therefore, this study aims to understand the 

mechanical properties of sheep omasum under uniaxial loading. Also, various 

hyperelastic models like Fung, Polynomial (Anisotropic), Holzapfel (2000), Holzapfel 

(2005) and Four-Fiber-Family were fitted in the biomechanical data to evaluate the 

best model that may be utilised for the development of computational models. 
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2. Experimental methods 

2.1. Tissue acquisition  

The fresh sheep stomach was collected from the local abattoir. The stomach were 

then placed in the cooler box before transportation to the Biomechanics Lab for 

preparation and testing. The omasum was then isolated and taken out from the 

stomach.   

2.2. Uniaxial mechanical testing   

Twelve (N = 12) specimen of the omasum was cut out from the sheep stomach from 

an unknown age, weight, and pre-stomach disease. The sheep omasum were 

delivered from the local abattoir four hours after the slaughter. The delivery was done 

in a temperature-controlled bag at between 0 0C and 3 0C. On arrival the temperature 

on the bag was measured to confirm and to ensure that mechanical properties were 

not compromised. The uniaxial testing was performed on the sheep strip of tissue (See 

Figure 1). Immediately after the arrival of the specimens, the sheep stomach were 

dissected to extract the selected omasum and thereafter stored in a 0.9 % NaCl 

physiological saline solution (PSS) for 20 minutes before mechanical testing. A total 

of 12 uniaxial tests were done on the omasum. During testing there were minimal 

challenges like tearing of tissue, fixation movement and tissue rapturing prematurely.  

The dissected omasum was then mechanically tested using CellScale UStretch 

(Watreloo, Canada) with a load cell of 44 N and force accuracy of 0.2 % of the load 

capacity. The specimens were deposited in a bath filled with 0.9 % NaCl physiological 

saline solution. Each sample was immersed for four minutes before actual testing 

happened. To minimise the effect of strain measurements, the needles of the BioRake 

were inserted at a minimum of 0.2 mm from the edge.  
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Figure 1: Experimental set-up of uniaxial testing of sheep omasum 

 

2.3 Tissue stress-stretch analysis 

The engineering stress and strain is determined from the force and displacement 

obtained during elongation of the muscle fibre of the sheep during uniaxial testing. 

𝜎" = $%&%                                                                                                                                                         (1) 

𝜀" = ()
)*                                                                                                                                                       (2) 

𝐴" = 𝑡 × 𝑙/	                                                                                                                                               (3) 

Where: 

Ai – is the cross sectional area of the sheep muscle fibre 

Δ𝑙 – is the change in length  

𝑙2 – Original length  

𝜎" – Engineering stress 

𝜀" – Engineering  strain? 

𝑡 – average thickness of the muscle fibre 

𝑙/	 – Breadth of the muscle fibre  

2.4 Evaluation index (EI) of the capability of anisotropic hyperelastic models 

To magnify the difference between coefficient of determination (R2) values, the 

evaluation index (EI) that can assess which models are better than the others was 

defined [13]. 
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𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛	𝐼𝑛𝑑𝑒𝑥	(𝐸𝐼) = @ ABAC%D%CECACFG%CECBAC%D%CECH                                                

(4) 

𝑟 = 𝑎𝑏𝑠[logPQ(1 − 𝑅U)]                                                             

(5) 

 

Where r is the quantity that is based on coefficient of determination (R2) and is 

expressed in Equation (5). The rminimum and rmaximum values are minimum r value for 

worst hyperelastic model and maximum r value for best hyperelastic model, 

respectively. When EI is 100 then it means that the hyperelastic model is the best. In 

addition, the greater the coefficient of determination (R2) the greater the EI value. 

 

2.5 Selected hyperelastic anisotropic constitutive models 

To develop computational models for simulation, the material parameters from 

hyperplastic constitutive models are required. These parameters are normally utilised 

to predict the mechanical response of the omasum of the sheep. In this study, Fung, 

Polynomial (Anisotropic), Holzapfel (2000), Holzapfel (2005) and Four-fibre Family 

models were selected. The selected hyperelastic constitutive models were fitted using 

Hyperfit® [27].  

 

2.5.1 Fung model  

The Fung model is a hyperelastic anisotropic material model proposed by Fung et al 

[28] for the stress-strain description of the arterial wall. The model is fully 

phenomenological and formulated through the components of Green-Lagrange strain 

tensor in cylindrical polar coordinates of the artery (R-radial, - circumferential, Z-axial). 

Exponential stress-strain behaviour is a characteristic feature of this model: 

𝜓(X) = Y
U (𝑒Z − 1)                                                                                                                                     (6)  

𝑄 = 𝑏P𝐸\\U + 𝑏U𝐸^Û + 𝑏_𝐸``U + 2𝑏b𝐸\\𝐸^^ + 2𝑏c𝐸^^𝐸`` + 2𝑏d𝐸``𝐸\\                                   (7) 

 

Where: 

𝜓 – is the strain energy density 

𝐸"e  – are components of Green-Lagrange strain tensor E referred to cylindrical polar 

coordinates (R, Ꝋ, Z) in the reference configuration 

C – is the stress-like material parameter 
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b1, b2…b3 are dimensions material parameters 

 

2.5.2 Polynomial (Aniso) Model 

Polynomial (Aniso) model is hyperelastic anisotropic material model defined through 

polynomial series of strain invariants (Ii). The model definition is adopted from the 

ANSYS finite element package and simplified to symmetrical configuration of fibre 

families and to only I1, I2, I4 (I6) dependence. Incompressible formulation of this model 

is used in Hyperfit implementation. 

𝜓(fg,fi,fj,fk) = ∑ 𝑎"(𝐼P − 3)" +∑ 𝑏e(𝐼U − 3)e_enP_"nP +∑ 𝑐p(𝐼b − 1)pdpnU +∑ 𝑒q(𝐼d − 1)qdqnU   

(8) 

𝐼b = 𝐶:𝐴Q; 		 					𝐼d = 𝐶:𝐵Q                                                                                                                       (9) 

𝐴Q = 𝑎Q⊗𝑎Q; 			𝐵Q = 𝑏Q⊗𝑏Q                                                                  

(10) 

for the specific coordinate system (corresponding to the supported data protocols) and 

for the symmetric configuration of fibre families: 

𝑎Q = w𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑0 z ;			𝑏Q = w 𝑐𝑜𝑠𝜑−𝑠𝑖𝑛𝜑0 z                                                           

(11) 

Where: 

Ψ - is strain energy density 

𝐼P, 𝐼U, 𝐼b, 𝐼d - are (pseudo-) invariants of C (and A0, B0) 

C - is right Cauchy-Green def. tensor 

𝐴Q, 𝐵Q - are structural tensors referenced to individual family of fibres 

𝑎Q, 𝑏Q - are the direction vectors defining the orientation of fibre families 

𝑎" , 𝑏e - are stress-like material parameters referenced to isotropic (matrix) properties 

𝑐p = (= 𝑒p) - are stress-like material parameters referenced to anisotropic (fiber) 

properties 

𝜑 - is material parameter defining the orientation angle of fibres (measured from axis 

"1") in the undeformed configuration. 

 

 

2.5.3 Holzapfel (2000) Model 
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The Holzapfel (2000) model is a hyperelastic anisotropic material model proposed by 

Gerhard Holzapfel et al [29] for stress-strain description of arterial layers. The model 

is characterised by an isotropic matrix of neo Hookean form and anisotropic 

contribution of two symmetrical (and mechanically equivalent) families of (collagen) 

fibres reinforcing a vessel wall layer. Incompressible and Nearly-Incompressible (NI) 

formulations of this model are available in Hyperfit. 

Ψ(fg,fj,fk) = Ψ|(fg) +Ψ}(fj,fk)                               

(12) 

Ψ|(fg) = ~
U (𝐼P − 3)                                  

(13) 

Ψ|�fj,fk� = pgUpi ∑ �𝑒pi(f%BP)Pi − 1�"nb,d                                                      

(14) 

 

Where: 

Ψ - is strain energy density 

𝐼P, 𝐼U, 𝐼b - are (pseudo-)invariants of C (and A0, B0) 

is stress-like material parameter referenced to matrix properties  

k1 - is stress-like material parameter referenced to fibre properties  

k2 - is dimensionless material parameter referenced to fibre properties  

𝜑	 - is material parameter defining the orientation angle of fibres (measured from axis 

"1") in the undeformed configuration  

d - is material parameter related to volumetric compressibility 

 

2.5.4 Holzapfel (2005) Model 

The Holzapfel (2005) model is a hyperelastic anisotropic material model proposed by 

Gerhard Holzapfel et al [18] for stress-strain description of arterial layers. The model 

represents a composite material reinforced by two families of (collagen) fibres that are 

mechanically equivalent and arranged in symmetrical spirals (in arterial layer). 

Incompressible formulation of this model is used in Hyperfit implementation. 

Ψ = 𝜇(𝐼P − 3) + ∑ Ψ},""nP,U (𝐼P, 𝐼b")                                       

(15) 
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Ψ}," = pgUpi �𝑒pi�(PB�)(fgB_)i��(fj%BP)i� − 1�                                               

(16) 

𝐼b" = 𝐴Q": 𝐶                               

(17) 

𝐴Q" = 𝑎Q" ⊗𝑎2"                                

(18) 

𝑎QP = w𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑0 z ; 	𝑎QU = w 𝑐𝑜𝑠𝜑−𝑠𝑖𝑛𝜑0 z                      

(19) 

Ψ - is strain energy density 

I1, I4 1, I4 2 - are (pseudo-)invariants of C  

C - is right Cauchy-Green def. tensor  

A01, A02 - are structural tensors referenced to individual family of fibres  

a01, a02 - are the direction vectors defining the orientation of fibre families 

µ - is stress-like material parameter referenced to matrix properties 

k1 - is stress-like material parameter referenced to fibre properties  

k2 - is dimensionless material parameter referenced to fibre properties  

𝜑 - is structure parameter defining the (mean) orientation angle of fibre families 

(measured from axis "1") in the undeformed configuration  

𝜌	- is the dimensionless parameter that can be seen as a weighting factor (from 0 to 

1: value of 0 specifies isotropic model similar to the Demiray model, value of 1 leads 

to Holzapfel, 2000 model) 

 

2.5.5 Four-fibre Family model (FFF)  

Four-fiber Family model is a hyperelastic anisotropic material model adopted from 

Ferruzzi et al [21] that refers to Baek et al [30]. The model is normally utilised for stress-

strain description of aortas and aneurysms. The model represents an elastin-

dominated amorphous matrix reinforced by four families of (collagen) fibres (in axial, 

circumferential and diagonal directions). The third constitutive model, called the Four-

fibre Family (FFF), is a hyperelastic anisotropic model proposed by Baek et al [30] and 

Ferruzzi et al [21] for the stress-strain description of aortas and aneurysms. It is a 

variation of the HGO model, in which two more fibre families are added in longitudinal 

and circumferential orientations, respectively. This model therefore presents a total of 
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four families of fibres; one axial, one circumferential and two symmetrical in diagonal 

directions. Its SEF adopts the following express: 

Ψ(�i&�%) = Ψ|(�) + Ψ}(�i&�%)                                 

(20)  

Ψ|(�) = P
U (𝐼P − 3)                                                                            

(21) 

Ψ}(�,&�%) = ∑ Yg%bYi%
b"nP {𝑒𝑥𝑝[𝑐U"(𝐼b" − 1)U] − 1}                                                                 

(22) 

 

Where: 

𝑎Q" = �010� ;	𝑎QU = �100� ; 𝑎Q_ = w𝑐𝑜𝑠𝜑Q𝑠𝑖𝑛𝜑Q0 z ;	𝑎Qb = w 𝑐𝑜𝑠𝜑Q−𝑠𝑖𝑛𝜑Q0 z                                              

(23) 

 

Ψ is strain energy density  

I1 is the first invariant of C  

I4i are (pseudo-)invariants of C and A0i (i=1 to 4)  

C is right Cauchy-Green def. tensor  

A01, A02 are structural tensors referenced to individual fibre families (i=1 to 4)  

a01, a02 are unit vectors defining the orientation of individual fibre families (i=1 to 4, i=1 

~ axis 2 (axial), i=2 ~ axis 1 (circ.), i=3,4 ~ diagonal dirs.) 

c is stress-like material parameter referenced to matrix properties  

c1i (i=1,2,34) are stress-like material parameters referenced to properties of individual 

fibre families c2i (i=1,2,34) are dimensionless material parameters referenced to 

properties of individual  fibre families 

𝜑Q is structure parameter defining the orientation angle of diagonal fibre families 

(measured from axis "1") in the undeformed configuration 

 

2.6 Numerical analysis  

This algorithm is the COBYLA method implemented as third-party library. SciPy library 

is adopted for this implementation. COBYLA method performs constrained 

optimisation by the linear approximation method. Coefficient of determination (R2) 

(also known as Nash-Sutcliffe coefficient) 
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𝑅U = 1 − ∑ (��B�C)iD%�g∑ (��B������)iD%�g                             

(24) 

Range: 

𝑅U𝜖〈−∞, 1〉 
 

For perfect fit: 

𝑅U = 1 

Where: 

ye is experimental (observed) value of the fitted function 

ym is the model (theoretical) value of the fitted function 

i is the data point index 

n is the number of data-points 

ye is the mean value from the experimental values calculated as follows: 

𝑦�� = P
�∑ 𝑦��"nP                           

(25) 

Correlation coefficient (r) is defined as follows: 

𝑟 = ∑ (��B������)(�CB�C�����)D%�g
�∑ (�CB�C�����)iD%�g .∑ (�CB�C�����)iD%�g

                          

(26) 

Where:  

𝑦q����  is the mean value from the models values (calculated below): 

𝑦q���� = P
�∑ 𝑦q�"nP                           

(27) 

Normalized RMS error (NRMSE) is defined as follows: 

𝑁𝑅𝑀𝑆𝐸 = �gD∑ (��B�C)iD%�g
� ¡(������)                            

(30) 

 Normalised error (NE) is defined as follows: 

𝑁𝐸 = gD∑ � ¡(��B�C)D%�g� ¡(������)         
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3. Results 

Figure 2 shows the stress-strain curves for all the samples (Test 1-12) tested on the 

sheep Omasum. The stresses are plotted up to 50 % strain, although half of the 

samples were tested up to 35% strain. Some of the stress-strain curves exhibit long 

toe regions that extend up to 25% strain. 

 
Figure 2. Stress vs Strain of the sheep Omasum for all the tested samples 

 

The elastic modulus was calculated two strain levels (15 and 20%). Figure 3 shows 

the elastic modulus of sheep omasum under axial loading for all the samples. Sample 

5 and 6 shows the highest elastic modulus at both the 15% and 20% strain. 

 

 
Figure 3. Elastic modulus of sheep omasum under axial loading up to 15% and 

20% strain 
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To examine the exact trend of the stress-strain curves of all the samples relative to 

each other, the stress was calculated at 30% strain as it covered all the samples and 

plotted in Figure 4. 

 
Figure 4. Stress value of all the samples at 30% of strain 

 
The study investigated material parameters differences across the sheep Omasum samples 

using five hyperelastic different models and their prediction capabilities. The models were the 

Fung, the Polynomial model, the two Holzapfel (2000 and 2005) and four-fiber-family models. 

The model material properties are presented for the five models in Table 1 to Table 5. 

 

Table 1. Fung hyperelastic model material parameters identification from 

uniaxial test of the sheep omasum 

 
 Sampl

e c b1 b2 b3 b4 b5 b6 R2 
r NRMS

E 
NE 

1 3.57 3.29 0.46 -0.14 0.01 0.15 -0.02 0.96 0.98 0.20 0.17 

2 3.61 3.81 3.54 0.27 0.27 0.25 0.00 0.94 0.97 0.23 0.18 

3 3.59 2.87 2.59 0.23 0.21 0.18 0.00 0.93 0.98 0.26 0.20 

4 3.64 6.51 1.36 0.59 -0.75 -0.18 -0.06 0.89 0.96 0.25 0.19 

5 3.59 8.23 2.59 0.45 -0.78 -0.16 -0.05 0.49 0.87 0.49 0.41 

6 3.65 9.70 1.28 0.61 -0.82 -0.17 -0.07 0.92 0.97 0.23 0.18 

7 3.65 4.33 1.35 1.11 -1.05 -0.16 -0.15 0.44 0.93 0.35 0.32 

8 3.65 3.42 1.50 0.69 -0.59 -0.18 -0.05 0.88 0.98 0.26 0.23 

9 3.59 2.80 2.59 0.29 0.31 0.27 0.00 0.71 0.92 0.42 0.34 

10 3.69 3.16 1.45 1.09 -0.73 -0.19 -0.08 0.61 0.94 0.38 0.35 

11 3.68 6.44 1.27 1.05 -0.97 -0.18 -0.13 0.75 0.93 0.93 0.28 

12 5.34 1.19 0.30 -1.89 -0.03 -0.22 0.12 0.92 0.96 0.29 0.26 

Mean 3.77 4.65 1.69 0.36 -0.41 -0.05 -0.04 0.79 0.95 0.36 0.26 

SD 0.50 2.52 0.95 0.81 0.52 0.19 0.07 0.19 0.03 0.20 0.08 
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Table 2. Polynomial (anisotropic) hyperelastic model material parameters (a1, a2, 

a3, b1, b2, b3 , c2, c3, c5, c6, 𝝋	and R2)  identification from uniaxial test of the sheep 

omasum 

 
 Sampl
e 

a1 a2 a3 b1 b2 b3 c2 c3 c4 c5 c6 𝜑 R2 r NRM
SE 

NE  

1 2.90 4.85 4.88 10.8
5 

10.85 10.85 -0.65 0.21 0.12 0.07 0.04 -
0.06 

0.9
8 

0.9
9 

0.16 0.14 

2 4.95 7.23 4.65 11.7
4 

11.74 11.74 -0.77 0.30 0.13 0.05 0.02 0.00 0.9
6 

0.9
8 

0.19 0.16 

3 13.35 2.36 1.07 2.59 2.59 2.59 -0.34 0.10 0.03 0.01 0.00 0.00 0.8
0 

0.9
6 

0.45 0.38 

4 13.32 5.70 4.59 5.18 5.18 5.18 -0.41 0.23 0.12 0.06 0.03 0.00 0.9
5 

0.9
9 

0.18 0.14 

5 32.04 3.35 1.30 2.59 2.59 2.59 -0.24 0.14 0.04 0.01 0.00 0.00 0.9
4 

0.9
9 

0.16 0.12 

6 19.97 11.7
5 

14.6
5 

5.18 5.18 5.18 -0.78 0.47 0.31 0.22 0.17 0.00 0.9
6 

0.9
9 

0.16 0.13 

7 8.84 -0.61 -0.33 5.24 5.24 5.24 0.04 -0.03 -0.01 0.00 0.00 0.00 0.9
4 

0.9
8 

0.11 0.09 

8 10.08 2.58 1.61 5.18 5.18 5.18 -0.31 0.11 0.05 0.02 0.01 0.00 0.9
6 

0.9
9 

0.16 0.13 

9 11.55 2.14 0.70 5.18 5.18 5.18 -0.26 0.08 0.02 0.01 0.00 0.00 0.9
4 

0.9
8 

0.20 0.14 

10 11.46 1.17 0.65 5.18 5.18 5.18 -0.14 0.05 0.02 0.01 0.00 0.00 0.9
8 

0.9
9 

0.10 0.07 

11 14.62 -0.44 -0.26 5.25 5.25 5.25 0.06 -0.02 -0.01 0.00 0.00 0.00 0.9
9 

0.9
9 

0.06 0.05 

12 3.48 5.82 5.85 10.8
5 

10.85 10.85 -0.78 0.25 0.15 0.09 0.05 -
0.06 

0.9
8 

0.9
9 

0.16 0.14 

Mean 12.21 3.83 3.28 6.25 6.25 6.25 -0.38 0.16 0.08 0.05 0.03 -
0.01 

0.9
5 

0.9
9 

0.17 0.14 

SD 7.94 3.50 4.18 3.12 3.12 3.12 0.30 0.14 0.09 0.06 0.05 0.02 0.05 0.01 0.10 0.08 

 

Table 3: Holzapfel (2000) hyperelastic model material parameters (𝜇,	k1, k2, 𝜑,	and 

R2)  identification from uniaxial test of the sheep omasum 
 Sample 𝜇 k1 k2 𝜑  R2

 
r NRMSE NE  

1 3.54 9.73 48.94 0.79 0.98 0.99 0.15 0.12 

2 16.45 7.07 13.10 0.81 0.81 0.94 0.42 0.35 

3 25.52 4.44 3.88 0.80 0.76 0.94 0.49 0.42 

4 26.54 6.25 24.06 0.81 0.91 0.98 0.23 0.18 

5 63.33 4.04 8.48 0.81 0.94 0.99 0.17 0.13 

6 40.08 10.06 44.00 0.81 0.92 0.98 0.23 0.19 

7 16.80 0.42 0.00 0.73 0.93 0.98 0.12 0.09 

8 19.95 4.62 8.10 0.81 0.92 0.98 0.21 0.19 

9 22.68 4.26 3.87 0.81 0.91 0.98 0.23 0.18 

10 22.43 2.54 5.01 0.81 0.97 0.99 0.11 0.09 

11 27.76 0.38 0.00 0.69 0.98 0.99 0.07 0.06 

12 4.25 11.31 48.65 0.79 0.98 0.99 0.15 0.12 

Mean  24.11 5.43 17.34 0.79 0.92 0.98 0.22 0.18 

SD 15.86 3.59 19.15 0.04 0.07 0.02 0.12 0.11 
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Table 4: Holzapfel (2005) hyperelastic model material parameters (𝜇,	k1, k2, 𝜑, 𝜌,	and R2)  identification from uniaxial test of the sheep omasum 

 
Sample 𝜇 k1 k2 𝜑 𝜌  R2

 
r NRMSE NE 

1 1.89 6.96 6.75 -0.95 0.37 0.98 0.99 0.14 0.12 

2 7.69 5.64 4.38 -0.90 0.35 0.86 0.95 0.36 0.30 

3 12.42 3.37 1.89 -0.85 0.43 0.80 0.96 0.45 0.38 

4 12.94 6.13 8.94 -0.90 0.21 0.93 0.98 0.21 0.16 

5 31.66 4.08 3.85 -0.88 0.23 0.94 0.99 0.17 0.13 

6 19.45 10.73 18.03 -0.91 0.14 0.94 0.99 0.19 0.15 

7 8.27 0.44 0.00 0.63 1.00 0.93 0.98 0.12 0.09 

8 9.57 3.68 3.31 -0.89 0.37 0.95 0.99 0.18 0.15 

9 10.92 2.93 1.65 0.87 0.39 0.93 0.98 0.20 0.15 

10 10.97 2.04 2.16 0.88 0.37 0.97 0.99 0.10 0.08 

11 13.52 0.45 -0.01 0.52 1.00 0.98 0.99 0.08 0.06 

12 2.30 8.17 6.82 -0.95 0.37 0.98 0.99 0.14 0.12 

Mean 11.80 4.55 4.81 -0.36 0.44 0.93 0.98 0.19 0.16 

SD 7.87 3.10 5.00 0.81 0.28 0.05 0.01 0.11 0.09 

 

Table 5: Four-Fiber-Family hyperelastic model material parameters (𝑐,	c11, c21, , 

c21, c12, c22, c134, c234, 𝜑Q ,	and R2)  identification from uniaxial test of the sheep 

omasum 

 
Sample c c11 c21 c12 c22 c134 c234 𝜑Q R2

 r NRMSE NE  

1 2.16 21.09 371605.07 2.70 1.49 11707.67 3.74 1.13 0.98 0.99 0.14 0.11 

2 13.75 0.74 0.00 2.45 1.28 -0.06 0.27 0.00 0.87 0.96 0.35 0.29 

3 18.72 1.32 9497.88 1.34 1.01 -0.01 0.00 0.00 0.92 0.98 0.29 0.24 

4 24.86 1.92 32045.40 2.48 2.00 0.00 163.06 0.78 0.92 0.98 0.21 0.17 

5 61.81 1.32 0.00 1.88 1.41 0.00 27.28 0.79 0.94 0.99 0.17 0.13 

6 37.98 0.72 0.00 3.60 3.14 11.19 0.00 2.12 0.93 0.99 0.21 0.17 

7 15.36 15.49 55032.35 0.65 0.00 2.69 0.00 0.75 0.92 0.98 0.13 0.10 

8 17.33 1.34 1487.15 1.67 1.11 0.00 58.24 1.68 0.96 0.99 0.15 0.13 

9 18.28 1.16 523965.65 1.02 0.97 3.16 0.27 0.78 0.94 0.98 0.18 0.16 

10 19.60 1.29 5523.90 1.02 0.98 1.55 0.93 0.79 0.98 0.99 0.09 0.07 

11 24.45 1.81 35573.78 0.34 0.54 4.90 -0.01 0.72 0.96 0.98 0.10 0.08 

12 2.71 2.26 -0.01 3.28 1.47 0.03 33249.22 1.72 0.98 0.99 0.14 0.11 

Mean  21.42 4.20 86227.60 1.87 1.28 977.59 2791.92 0.94 0.94 0.98 0.18 0.15 

SD 15.90 6.70 172903.51 1.04 0.77 3379.10 9591.68 0.64 0.03 0.01 0.08 0.07 
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Figure 5 shows the Evaluation Index (EI) with standard error based on coefficient of 

determination (R2) of individual samples for Fung, Polynomial (Anisotropic), Holzapfel 

(2000), Holzapfel (2005) and Four-Fiber-Family hyperelastic models showing the best 

model per sample based on the uniaxial testing of sheep omasum. The Polynomial 

(Anisotropic) model approximate the sheep Omasum behaviour better than the other 

models. 

 

 
Figure 5: Evaluation Index (EI) with standard error based on average 

coefficient of determination (R2) of Fung, Polynomial (Anisotropic), Holzapfel 

(2000), Holzapfel (2005) and Four-Fiber-Family hyperelastic models showing 

the best model based on the uniaxial testing of sheep omasum 

 

To examine the exact differences between the five models, Normalised Error (NE) and 

Normalised RMS Error (NRMSE) were calculated and plotted in Figure 6. The NE and 

NRMSE results show that the errors from Fung model has the biggest error as 

compared to the other models. 
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Figure 6: Normalised Error (NE) and Normalised RMS Error (NRMSE) of Fung, 

Polynomial (Anisotropic), Holzapfel (2000), Holzapfel (2005) and Four-Fiber-

Family hyperelastic models showing the best model based on the uniaxial 

testing of sheep omasum 

 

 

 

4. Discussion 
This is the first study to investigate the mechanical materials properties of sheep Omasum 

using different hyperelastic models. The sheep omasum samples showed large variability in 

stress strain response during uniaxial testing (Figure 2). The large variability could be a result 

from variations in the regions of the Omasum where the samples were cut.  

The results of the uniaxial tension tests of sheep Omasum stress-strain response were utilised 

to fit in the strain energy functions of Fung, Polynomial (Anisotropic), Holzapfel (2005), 

Holzapfel (2000) and Four-fiber family model. A direct comparison of hyperelastic constitutive 

models was made based on correlation coefficient (R2) and evaluation index (EI). The 

Polynomial (anisotropic) hyperelastic constitutive model was found to have the EI of 100. This 

means that it is the best performance constitutive model when compared to other four 

hyperelastic model considered in this study. In addition, Four-Fibre family hyperelastic 

constitutive model was found to have the EI of 96 and therefore regarded as second best in 

terms of performances when fitted on the uniaxial experimental data of the sheep Omasum. 

This was followed by both the Holzapfel models (2005, 2000) with EI of 83 and 63, 

respectively. Finally, the worst performer with EI of 0 was found to be Fung model. 

Limitations 
The measurement of sample thickness which was made difficult by the variable thickness of 

the Omasum. Errors in estimating the true sample thickness would affect the cross-sectional 

area, and hence the calculated stress. 

 

5. Conclusion 

As a first attempt to describe the mechanical material properties of the sheep omasum, 

five different hyperelatic models were used. This is the first step in understanding the 

mechanical material properties of Omasum and full characterisation of the tissue. The 

established anisotropic materials properties could be utilised in the understanding of 

tumours of the omasum. The identified material parameters will provide new platform 

for FE investigations of mechanical aspects of various therapies when using sheep 

omasum models. 
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