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Abstract

Recently, we found DNA/RNA heteroduplex oligonucleotide-based antimiR (HDO-antimiR) can more
efficiently inhibit the target miRNA than conventional antimiR after its cellular uptake. But the mechanism
of HDO-antimiR about the target-silencing is unknown. We here tried to elucidate the interaction
mechanism of HDO-antimiR to miRNA using molecular dynamics (MD) simulation. When interaction of
the conventional antimiR or HDO-antimiR and the target miRNA was simulated, they combined with each
other in various forms. In the hydrogen bond analyses, base site of the antimiR formed hydrogen bond
with miRNA. On the other hand, phosphate site of the HDO-antimiR formed hydrogen bond with miRNA.
These results suggested that there were differences about the binding mechanisms between antimiR and
HDO-antimiR to the target miRNA. In particular, there was a difference in the binding site between antimiR
and HDO-antimiR. Additionally, it was found that guanine in the miRNA is mainly involved in the binding
to the antimiR or HDO-antimiR. MD simulation method is useful in understanding the mechanism of
oligonucleotide therapeutics.

Introduction

MicroRNA (miRNA), which is one of the short endogenous RNAs, regulates various biological phenomena
by suppressing more than 100 types of messenger RNA (MRNA)’. In recent years, it has been reported
that abnormalities in miRNA expression and function are associated with various diseases such as
cancer and intractable neurological diseases?3. Therefore, miRNA as a biomarker for diagnosing various
diseases centering on cancer has already been clinically applied, and miRNA itself has been given
particular importance as a therapeutic target molecule. One of the most promising methods for
controlling miRNA is the use of antimiR, a nucleic acid drug that specifically binds to miRNA via Watson-
Crick base pairing by hydrogen bond and suppresses its function®. AntimiR consists of a single-stranded
oligonucleotide which is chemically modified to improve its stability and affinity to its target miRNA.
However, the silencing efficacy in vivo of antimiR is inadequate for clinical application and molecular
design of antimiR for efficient silencing in vivo remains limited.

We have developed a novel molecular design of nucleic acid drugs, heteroduplex oligonucleotide (HDO)
consisting of antisense oligonucleotide (ASO) targeting mRNA and its complementary RNA (cRNA)?, and
HDO greatly improves the silencing activity of conventional single-stranded ASO at the hepatocyte®, brain
microvascular endothelial cells’ and brain®? in vivo. Next, we designed double-stranded HDO-antimiR
which comprises an antimiR strand and its cRNA-strand’%'1. HDO-antimiR also showed the improvement
of its target miRNA control ability and the avoidance of toxicity. Interestingly, while the conventional
single-stranded antimiR binds directly to the target miRNA and suppresses its function on a one-to-one
basis, HDO-antimiR not only binds to but also degrades the therapeutic target miRNA. However, the
mechanism by which HDO-antimiR affects target miRNAs has not been elucidated. Also, traditional
single-stranded antimiR is thought to form Watson-Crick base pairs with the target miRNA, whereas HDO-

ntimiR alreadv forms siich hase nairs with the comnlem ntary RNA strand. Therefore, it is unclear in
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detail how antimiR binds the target miRNA since it is not straightforward to observe such a dynamic
process directly from experimental approach. To this end, molecular dynamics (MD) simulation is a
powerful tool, which can handle the motion of all atoms at finite temperature directly'2. Especially, it is an
advantage of the MD simulation over static energy calculations that the steric effect can be treated
inherently in the simulation since it is one of key factors to determine the interaction between nucleic
acids'3 including miRNA and antimiR.

In this study, we attempted to elucidate the binding mechanism of antimiR by introducing a molecular
dynamics simulation method together with the target miRNA and analyzing its operation for antimiR and
HDO-antimiR.

Methods

Building and generation of models

AntimiR and HDO-antimiR containing chemically modified nucleotides were designed to target miRNA
(miR122 or miR21) based on a previous report'? and built by using Nucleic Acid Builder (NAB) tool of
AMBER'415. The force field (FF) parameters for the two modified nucleic acids, locked nucleic acid (LNA)
and phosphorothioate (PS) bond, were available on a previous report'®. Although each PS linkage is
chiral and the chirality is known to influence the potency and safety of ASO'”-'8 we used only Sp-PS
linkage in this study. The index for each atom assigned by AMBER is shown in Supplementary Figure 7.
The individual modifications and sequences of the nucleic acids are shown in Table 1.

The frcmod files and lib files have been generated and have been used to build the antimiR/HDO-antimiR
and target miRNA sequences for running MD simulations. Distance and angle between antimiR/HDO-
antimiR and target miRNA were set using Python program.

Molecular dynamics protocol

The MD simulations were carried out using AMBERToo0ls20 program. All the systems were neutralized by
adding K* counter ions and solvated with TIP3P water box. All the systems were minimized by using the
steepest descent method for 2000 steps. Then the systems were heated from 0 to 310 K in 20 psec. Initial
structure of miRNA and antimiR or HDO-antimiR are shown in Figure 1 and Supplementary Figures 1 and
2. Followed by these steps, MD simulations were carried out for 5 nsec. MD integration was carried out
using a 1 fsec time step. The pairlist was updated at every 1000 steps. Constant pressure (1 atm) and
temperature (310 K) were maintained throughout the production simulation run.

All the data was collected on 1-picosecond snapshots of simulation data. The trajectories and structures
were visualized using VMD. The PTRAJ module of AmberTools20 was used to measure the distance
between geometric center of the sequence of miRNA and antimiR. The number of hydrogen bonds was
calculated using VMD program. A distance shorter than 3 A indicates that a hydrogen bond is formed
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between the atoms of the antimiR or HDO-antimiR and miRNA are considered to be paired. All data
represent mean + s.e.m.

Results

Binding of antimiR or HDO-antimiR and miRNA from 20 A
away

At first, the distance between the antimiR or HDO-antimiR and the miRNA was fixed at 20 A in initial state,
and the angles were set in 8 directions at horizontal section of helix at 45° interval to consider the effect
of initial configuration on the interaction (Figure 1, Supplementary Figures 1 and 2). Molecular
simulations were performed 8 times (miR122) or 4 times (miR21) at each angle. We categorized the
patterns of interaction between antimiR and miRNA as follows; Separated (no interaction), One-point
interaction, Two-point interaction, Multiple-point interaction (more than two-point interaction).

As a result of simulation, all the four patterns were observed in both antimiR and HDO-antimiR (Figure 2).
Then we investigated how the bonds occurred in patterns of Two-point or Multiple-point interaction. When
a nucleic acid binds to a target one, hydrogen bonds are the main component, therefore we evaluated
hydrogen bonds between the antimiR or HDO-antimiR and miRNA (Figure 3). From these results, there
was no difference in the frequency of binding between antimiR and HDO-antimiR. So, we analyzed the
number and location of hydrogen bonds formed between antimiR and HDO-antimiR about Two-point or
more interaction pattern to investigate the mechanism of the difference in effect between antimiR and
HDO-antimiR.

In the Two-point interaction pattern about antimiR with miRNA, hydrogen bonds were formed mainly
through the atoms in the base site of the antimiR and miRNA near both ends, and no hydrogen bonds
were observed in the phosphate site and the sugar site of antimiR. Similar to antimiR, hydrogen bond was
mainly observed at the base site in the miRNA (Figure 4a, Supplementary Table 1). In the Multiple-point
interaction pattern about antimiR with miRNA, which was observed only once, hydrogen bonds were
formed at the middle part of antimiR and miRNA, and there was no selectivity about the binding site in
the residues of antimiR. Similar to Two-point interaction pattern, hydrogen bonds were observed mainly
at the base site of the miRNA (Figure 4b, Supplementary Tables 1 and 3). HDO-antimiR was bound to
miRNA at multiple points from 3' end of antimiR-strand (5' end of cRNA-strand) to the middle part of
HDO-antimiR in the Two-point and Multiple-point interaction pattern. Importantly, hydrogen bonds
between HDO-antimiR and miRNA were formed through the atoms in the phosphate site and the sugar
site of HDO-antimiR, and no hydrogen bond was observed in the base site of the HDO-antimiR. In HDO-
antimiR, cRNA-strand was mainly bound to miRNA and there was no difference in binding frequency
depending on the type of RNA. On the other hand, guanine bases mainly formed hydrogen bonds in
miRNA (Figure 4c and 4d, Supplementary Tables 2 and 3).
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While most of the hydrogen bonds of antimiR are formed via the nucleobase, those of HDO-antimiR are
formed via atoms at the phosphate site except for the both ends of antimiR-strand and cRNA-strand.
Then we evaluated the time course of the hydrogen bonds in the simulations about Two-point interaction
pattern of antimiR and Multiple-point interaction pattern of HDO-antimiR. When the simulation was
performed up to 5 nsec, the number of hydrogen bonds increased up to 4 (Two-point interaction pattern)
or 6 (Multiple-point interaction pattern) in each case. In antimiR, the site where hydrogen bonds are
formed is initially abundant at the 5' end of the antimiR, and then the hydrogen bonds further increase
around the 5' end of the antimiR with the passage of time (Figure 5a). On the other hand, in HDO-antimiR,
the site where hydrogen bonds are formed is initially abundant at the 5' end of the c-RNA strand and
miRNA, and then the hydrogen bonds gradually increase toward the 3' end of the miRNA with the passage
of time, and we observed miRNA entwined with HDO-antimiR (Figure 5b). During the simulation, most of
the hydrogen bonds on the HDO-antimiR were phosphate site, and the atoms in the base site were not
observed except for some of the both ends of antimiR-strand and cRNA-strand (Figure 5b).

Difference in binding site at the binding of antimiR or HDO-
antimiR and miRNA

Next, in order to perform simulation from a state in which antimiR or HDO-antimiR and miRNA are closer
to each other, nucleic acids were placed 5 A away to the vertical axis direction (Figure 6, Supplementary
Figures 3 and 4), then miRNA was placed in the major groove of HDO-antimiR shifted to -5 A from miRNA
(Figure 6), or minor groove of HDO-antimiR shifted to +5 A from miRNA (Supplementary Figure 4). It is
unlikely that miRNA will fit in the minor groove of HDO-antimiR, which is a narrow and shallow groove, so
we considered the pattern that fits in the deep major groove. In the case of antimiR and miRNA, most
hydrogen bonds were formed between the bases of each other as similar to the case of 20 A separation
on the axial section of helix (Figure 6a, Supplementary Tables 4 and 5). Like antimiR, HDO-antimiR and
miRNA formed hydrogen bonds via the atoms at the base of HDO-antimiR, not the phosphate site of the
nucleic acid, unlike when they were separated by 20 A on the axial section of helix (Figure 6b,
Supplementary Tables 4 and 5).

We further analyzed these results about the Two-point interaction pattern and Multiple-point interaction
pattern when antimiR or HDO-antimiR is 5 A shifted from miRNA in the vertical axis direction (both
miR122 and miR21). At first, to find out which sites contribute to nucleic acid binding, we calculated the
number of hydrogen bonds confirmed in this simulation for each binding site in the nucleic acid (Figure
7a-d and Supplementary Figure 5). In these results, there are several types of interaction patterns between
HDO-antimiR or antimiR and miRNA. The atoms in the base part mainly form hydrogen bonds in antimiR,
whereas in HDO-antimiR, the atoms in the phosphate bond site are mainly involved. On the miRNA side,
the atoms at the base were mainly bound either to antimiR or HDO-antimiR. It was also found that the
appearance rate of the Multiple-point interaction pattern, which seems to be the strongest binding form,
differs depending on the initial conditions between HDO-antimiR and antimiR and miRNA.
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In the time course about Multiple-point interaction pattern of HDO-antimiR and miRNA showed hydrogen
bonds were not fixed, and the atom that once formed a hydrogen bond with another atom, then HDO-
antimiR bound to the target miRNA gradually. By repeating these movements, it was expected that the
miRNA would entwine in the major groove of HDO-antimiR. On the other hand, when HDO-antimiR and
miRNA were placed 5 A away to the vertical axis direction, miRNA was placed in the major groove of
HDO-antimiR in the initial state. In the result of this simulation, HDO-antimiR and miRNA formed
hydrogen bonds via the atoms at the base of HDO-antimiR, not the phosphate site of the nucleic acid.

Next, in order to investigate which bases affect the binding, we calculated the number of hydrogen bonds
for each base in the nucleic acid, then it was corrected by dividing by the number of each base in the
sequence in order to eliminate the variation in the number of bases since the number of bases differs
depending on the sequence (Figure 7e-h and Supplementary Figure 6). In the results about shifted 5 A in
the vertical axis direction, antimiR showed the number of hydrogen bonds between guanine and cytosine
is larger than them between thymine and adenine. These results partly can reflect the fact that the
number of hydrogen bonds between guanine and cytosine is 3 and the number of hydrogen bonds
between thymine and adenine is 2 when antimiR and miRNA form a complete double strand. On the other
hand, there was no difference in the number of hydrogen bonds depending on the base in HDO-antimiR.
Binding site analyses showed HDO-antimiR and miRNA formed hydrogen bonds via the atoms at the
base of HDO-antimiR, not the phosphate site of the HDO-antimiR when HDO-antimiR and miRNA were
placed 5 A away to the vertical axis direction, and these data suggested HDO-antimiR is bound to miRNA
via a base, but it is bound by a mechanism different from that of antimiR and miRNA. These results
indicated it is not affected by the base sequence in HDO-antimiR because not base site, but phosphate
site affects the bond in HDO-antimiR.

Discussion

In MD simulation, all atoms that make up a nucleic acid molecule can be displayed in coordinates in XYZ
space. MD simulation of HDO-antimiR or antimiR and the target miRNA at a distance of 20 A separation
on the axial section of helix confirmed that HDO-antimiR and antimiR bind to the target miRNA actually. It
was also found that hydrogen bonds are important for binding, and computational studies have been

useful in predicting and understanding molecular phenomena with H-bond interactions®.

Our results show the simulations of 20 A separation on the axial section of helix, representing the very
early changes leading to the coupling, and the simulations of 5 A separation to the vertical axis direction,
representing the situation after the coupling has progressed. Nucleobases formed hydrogen bonds in the
simulations about antimiR and miRNA both 20 A separation and 5 A separation. On the other hand, in the
simulation about HDO-antimiR and miRNA, phosphate groups were mainly involved in the bond at 20 A
separation, while atoms at the base site were mainly involved in the bond at 5 A separation. The result
that the phosphate site of HDO-antimiR formed a hydrogen bond in 20 A separation suggests that it
binds in a sequence-independent manner. Since the base part formed a hydrogen bond in 5 A separation,

Loading [MathJaxl/jax/output/CommonHTML/fonts/TeX/fontdatajs duence-dependent bond. This is a different

Page 6/18



result from the simulation in the single-strand antimiR, and it is considered that it is a phenomenon
peculiar to HDO-antimiR having a double-strand structure. In the sequence of miRNA, guanines had the
largest effect on hydrogen bonds between antimiR or HDO-antimiR and miRNA. Compared to miR122,
miR21 has a lower number of guanines in the sequence and it may be associated with a lower number of
the bindings more than two-point interaction between antimiR and HDO-antimiR. The difference in the
number of potential hydrogen bond acceptor sites and donor sites between guanine and other bases may
have an effect.

There have been few reports about simulations of nucleic acid and target genes using molecular
dynamics. Shen et a/.2% described the potential of estimating melting temperature for oligonucleotides
including short interference RNA (siRNA) and ASO by using the standardized molecular dynamics
protocol. In another report, Uppuladinne et al.'® also described structural properties of ASO using
molecular dynamics simulations in the duplex of ASO and its complementary RNA, and they evaluated
binding energy of the duplex. But they mentioned about the influence of the several chemically
modifications about ASO, and had only performed the simulation with ASO and its targeted RNA from the
binding status. Therefore, unlike our reports, they did not evaluate how ASO binds to a target gene from a
distant. Galindo-Murillo et a/.?" reported antisense inhibition by acyclic analogs of nucleic acids using
molecular dynamics simulations, and they estimated the potentially identify target ASO analogs by root-
mean-square (RMS) values. As just described, there are increasing reports on the function of antisense
oligonucleotide using molecular dynamics because it is useful for functional evaluation of antisense
nucleic acids.

Several proteins including plasma protein and intracellular protein affect pharmacokinetics of the
phosphorothioate modified ASO?2, especially in the RNase H1-dependent ASO23. Recently we reported the
identification of RNase H-dependent tocopherol-conjugated HDO interacting proteins*. Probably HDO-
antimiR also have the interacting protein to affect to target miRNA, our results suggested that HDO-
antimiR alone can bind to the target gene.

Our simulations were only in very short time, which is insufficient as a simulation of therapeutics
oligonucleotide showing efficacy every few days, but new findings on how the nucleic acid binds to a
target gene. In particular, it was suggested that the initial interaction with the target miRNA differs
between the antimiR and the HDO-antimiR. In the future, if it becomes possible to simulate multiple and
long-term oligonucleotide therapeutics with various proteins by using higher-performance computers
including supercomputers, it is expected that more precise functions of therapeutic oligonucleotides will
be verified.
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Tables

Table 1. The sequences and chemically modification of the antimiR or HDO-antimiR and targeting miRNA
(miR-122)
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antimiR (5 - 3)

miRNA (5 — 3)

HDO

miRNA (5 — 3)

antimiR-strand (5 — 3) | cRNA-strand (5 — 3)
ILC1 G16 U31
DC?2 G17 G32
LA3 Al18 G33
DT4 G19 A34
DT5 U20 G35
LG6 G21 U36
LT7 U22 G37
DC8 G23 U38
DA9 A24 G39
ILCI0 C25 A40
DA11 A26 C41
LC12 A27 A42
DT13 U28 A43
1L.C14 G29 U44
LC15 G30 G45
G46
Uu47
G48
U49
Ub0
Ub1
G52
U53

LC1 Ulo6
DC2 G17
LA3 G18
DT4 Al9
DT5 G20
LGb U21
LT7 G22
DC8 U23
DA9 G24
LC10 A25
DA11l C26
LC12 A27
DT13 A28
LC14 U29
LC15 G30
G31
U32
G33
U34
U35
U36
G37
U338

LX: LNA, DX: DNA, X: RNA
G: Guanine, A: Adenine, U: Uracil, T: Thymine, C: Cytosine
LC: 5-Methylcytosine LNA
Internucleotide linkage: phosphorothioate in the antimiR and antimiR-strand of HDO-antimiR,
phosphodiester in the miRNA and cRNA-strand of HDO-antimiR

Figures
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antimiR

HDO-antimiR

3" (cRNA-strand)

-

Figure 1

Initial structure of miR122 (single strand) and antimiR122 (single strand) or HDO-antimiR122 (double
strand). White: H, Red: O, Light blue: C, Blue: N, Gold: P, Yellow: S
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¥ antimi R
antimil

antimil antimilt

HDO-antimiR ‘_ HDO-antimiR

HIM)-antimiR HIDM{)-antimiR

Figure 2

Various patterns of structure about antimiR or HDO-antimiR and miRNA at final step. a) antimiR122; No
interaction pattern, b) antimiR122; One-point interaction pattern, ¢) antimiR122; Two-point interaction
pattern, d) antimiR122; Multiple-point interaction pattern, €) HDO-antimiR122; No interaction pattern, f)
HDO-antimiR122; One-point interaction pattern, g) HDO-antimiR21; Two-point interaction pattern, h) HDO-
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Magenta: Hydrogen bonds between antimiR or HDO-antimiR and miRNA (The hydrogen bonds are

indicated by dashed lines)

a) b) Figure 3
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N.D. _ N.D. N.D.
0 — N 0
No interaction One-point Two-point Multiple-point No interaction One-point Two-point Multiple-point
interaction interaction interaction interaction interaction interaction
Figure 3

Frequency of several types of structure at final step between antimiR or HDO-antimiR and targeted
miRNA. a) miR122 (n = 64). N.D., not detected. b) miR21 (n = 32). N.D., not detected.
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antimilk Figure 4

antimilt

HIM)-antimiR

HD-antimiR

Figure 4

Effect of hydrogen bond in Two-point and Multiple-point interaction pattern. a) antimiR21; Two-point

interaction pattern, b) antimiR122; Multiple-point interaction pattern, c) HDO-antimiR21; Two-point
interaction pattern, d) HDO-antimiR122; Multiple-point interaction pattern White: H, Red: O, Light blue: C,
Blue: N, Gold: P, Yellow: S, Magenta: Hydrogen bonds between antimiR or HDO-antimiR and miRNA (The
hydrogen bonds are indicated by dashed lines)
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Figure 5
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Figure 5

Time course of Two-point interaction pattern between antimiR and miRNA or Multiple-point interaction
pattern between HDO-antimiR and miRNA a) antimiR122; Two-point interaction pattern, b) HDO-
antimiR122; Multiple-point interaction pattern White: H, Red: O, Light blue: C, Blue: N, Gold: P, Yellow: S,
Magenta: Hydrogen bonds between antimiR or HDO-antimiR and miRNA (The hydrogen bonds are
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Figure 6

0.0 nsec

5.0 nsec

Major groove of HDO-antimiR

0.0 nsec

5.0 nsec

Figure 6

Shift antimiR122 or HDO-antimiR122 from miR122 -5 A away to the vertical axis direction, initial state (0
nsec) and final step (5 nsec). a) antimiR122, b) HDO-antimiR122 White: H, Red: O, Light blue: C, Blue: N,
Gold: P, Yellow: S, Magenta: Hydrogen bonds between antimiR or HDO-antimiR and miRNA (The hydrogen
bonds are indicated by dashed lines)
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Figure 7

Analyses about binding site (a-d) or base site (e-h) of the

number of hydrogen bonds between HDO-

antimiR122 or antimiR122 and miR122. a) antimiR122; 20 A shifted from miR122 in the horizontal
section, Two-point interaction pattern. The results are presented as mean + SEM (n = 3). b) HDO-
antimiR122; 20 A shifted from miR122 in the horizontal section, Multiple-point interaction pattern. The
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direction. The results are presented as mean + SEM (n = 3). N.D., not detected. d) HDO-antimiR122;-5 A
shifted from miR122 in the sagittal direction. The results are presented as mean + SEM (n = 3). e)
antimiR122; 20 A shifted from miR122 in the horizontal section, Two-point interaction pattern. The results
are presented as mean * SEM (n = 3). N.D., not detected. f) HDO-antimiR122; 20 A shifted from miR122 in
the horizontal section, Multiple-point interaction pattern. The results are presented as mean + SEM (n =
5). g) antimiR122; -5 A shifted from miR122 in the sagittal direction. The results are presented as mean *
SEM (n = 3). h) HDO-antimiR122; -5 A shifted from miR122 in the sagittal direction. The results are
presented as mean = SEM (n = 3).
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