1. Williams, R. S. What's Next?[The end of Moore's law]. Computing in Science & Engineering 19, 7-13 (2017).
2. Misra, J. Saha, I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing 74, 239-255 (2010)
3. Ielmini, D. Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 31, 092001 (2019).
4. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507-519 (1971).
5. Strukov, D. B., Snider, G. S., Stewart, D. R. Williams, R. S. The missing memristor found. Nature 453, 80-83 (2008).
6. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64 (2015).
7. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641-646 (2020).
8. Ielmini, D. Wong, H. S. P. In-memory computing with resistive switching devices. Nature Electronics 1, 333-343 (2018).
9. Nandakumar, S. R. et al. A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano letters 16, 1602-1608 (2016).
10. Lee, M. J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta 2 O 5− x/TaO 2− x bilayer structures. Nature materials 10, 625-630 (2011).
11. Kim, K. M. et al. Self‐limited switching in Ta2O5/TaOx memristors exhibiting uniform multilevel changes in resistance. Advanced Functional Materials 25, 1527-1534 (2015).
12. Chanthbouala, A. et al. A ferroelectric memristor. Nature materials 11, 860-864 (2012).
13. Schranghamer, T. F. Oberoi, A. Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nature communications 11, 1-11 (2020).
14. Zhu, X. Li, D. Liang, X. Lu, W. D. Ionic modulation and ionic coupling effects in MoS 2 devices for neuromorphic computing. Nature materials 18, 141-148 (2019).
15. Terabe, K. Hasegawa, T. Nakayama, T. Aono, M. Quantized conductance atomic switch. Nature 433, 47-50 (2005).
16. Xue, W. et al. Controllable and stable quantized conductance states in a Pt/HfOx/ITO memristor. Advanced Electronic Materials 6, 1901055 (2020).
17. Yi, W. et al. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nature communications 7, 1-6 (2016).
18. Yu, S. et al. Characterization of low-frequency noise in the resistive switching of transition metal oxide HfO 2. Physical Review B 85, 045324 (2012).
19. Jacob, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE conference on computer vision and pattern recognition. (2018).
20. Franchi, G. Bursuc, A. Aldea, E. Dubuisson, S. Bloch, I. TRADI: Tracking deep neural network weight distributions. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16. Springer International Publishing, (2020).
21. Bellido, I. Fiesler, E. Do backpropagation trained neural networks have normal weight distributions? International Conference on Artificial Neural Networks. Springer, London, (1993)
22. Nakagawa, N. Hwang, H. Y. Muller, D. A. "Why some interfaces cannot be sharp. Nature materials 5, 204-209 (2006).
23. Lee, H. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nature materials 17, 231-236 (2018).
24. Ohtomo, A. Hwang, H. Y. A high-mobility electron gas at the LaAlO 3/SrTiO 3 heterointerface. Nature 427, 423-426 (2004).
25. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature materials. 6, 493–496 (2007).
26. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).
27. Mannhart, J. Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).
28. Cheng, G. et al. Sketched oxide single-electron transistor. Nature Nanotechnology. 6, 343–347 (2011).
29. Wu, S. et al. Nonvolatile Resistive Switching in Pt/LaAlO3/SrTiO3 Heterostructures PHYSICAL REVIEW X 3, 041027 (2013).
30. Mitra, C. Lin, C. Robertson, J. Demkov, A. A. Electronic structure of oxygen vacancies in SrTiO 3 and LaAlO 3. Physical Review B 86, 155105 (2012).
31. Zhong, Z. Xu, P. X. Kelly, P. J. Polarity-induced oxygen vacancies at LaAlO 3∕ SrTiO 3 interfaces. Physical Review B 82, 165127 (2010).
32. Chandrasekaran, S. Simanjuntak, F. M. Saminathan, R. Panda, D. Tseng, T. Y. Improving linearity by introducing Al in HfO2 as a memristor synapse device. Nanotechnology 30, 445205 (2019).
33. Jiang, Y. et al. Linearity improvement of HfOx-based memristor with multilayer structure. Materials Science in Semiconductor Processing 136, 106131 (2021).
34. Krizhevsky, A. Hinton, G. Learning multiple layers of features from tiny images. 7 (2009).
35. He, K. Zhang, X. Ren, S. Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. (2016).
36. Xiao, H. Rasul, K. Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv: 1708.07747 (2017).
37. Nair, V. Hinton, G. E. Rectified linear units improve restricted boltzmann machines. Icml. (2010).
38. Robbins, H. Monro, S. A stochastic approximation method. The annals of mathematical statistics 400-407 (1951).
39. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural computation 1, 541-551 (1989).