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Abstract
PURPOSE: Non-small cell lung cancer (NSCLC), the most prevalent subtype of lung cancer, tends to
metastasize to the brain. Between 10-60% of NSCLCs harbor an activating mutation in the epidermal
growth factor receptor (EGFR), which may be targeted with selective EGFR inhibitors. However, due to a high
discordance rate between the molecular profile of the primary tumor and the brain metastases (BMs),
identifying an individual patient’s EGFR status of the BMs necessitates tissue diagnosis via an invasive
surgical procedure. We employed a deep learning (DL) method with the aim of noninvasive detection of the
EGFR mutation status in NSCLC BM.

METHODS: We retrospectively collected clinical, radiological, and pathological-molecular data of all the
NSCLC patients who had been diagnosed with BMs and underwent resection of their BM during 2006-2019.
The study population was then divided into 2 groups based upon EGFR mutational status. We further
employed a DL technique to classify the 2 groups according to their preoperative magnetic resonance
imaging features. Finally, we established the accuracy of our model in predicting EGFR mutation status of
BM of NSCLC.

RESULTS: Fifty-nine patients were included in the study, 16 patients harbored EGFR mutations. Our model
predicted mutational status with mean accuracy of 89.8%, sensitivity of 68.7%, specificity of 97.7%, and a
receiver operating characteristic curve )ROC( value of 0.91 across the 5 validation datasets.

CONCLUSION: DL based noninvasive molecular characterization is feasible, has high accuracy and should
be further validated in large prospective cohorts.

Introduction
Lung cancer is the most commonly diagnosed type of cancer and the leading cause for cancer-associated
mortality worldwide, with an incidence of 2.1 million new cases each year [1]. Non-small cell lung cancer
(NSCLC) is the most prevalent among the lung cancer subtypes, accounting for about 85% of cases [2].
Brain metastases (BMs) are the most common intracranial neoplasm, and lung cancer is their main
source [3]. Between 10-50% of NSCLC metastasize to the brain, depending upon characteristics of the
primary tumor such as stage, molecular profile, and previous oncological treatments [4, 5]. Historically,
patients with BMs were considered to have a very poor prognosis, with a median survival rate of 1-3
months [6]. Recent progress in this field has led to much improvement in survival in selected cases
amenable to the new generation therapies [6]. 

Many genetic alterations have been found in NSCLC tumors, and the most fundamental driver mutations
among them is the activation of mutations of the epidermal growth factor receptor (EGFR). EGFRs are
proteins located on the cell membrane, and their endpoint is cell proliferation, which is activated in part by a
cascade of tyrosine kinase signaling [7]. Activating mutations of EGFR are observed between 10-60% of
NSCLC patients, influenced, among other factors, by geographic and ethnic characteristics [8]. Targeted
therapy against EGFR, a subset of tyrosine kinase inhibitors (TKI) has recently replaced standard
chemotherapy as first-line treatment in advanced metastatic NSCLC with improved response rates [9–11],
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even among the subgroup of patients with BMs [12]. Unfortunately, resistance to EGFR TKIs is not
uncommon, as manifested in some cases by restoration of a wild-type EGFR profile [13]. Moreover, there is
30-55% of discordance between the molecular profile of the primary tumor and it's BMs, thus making it
impossible to extrapolate the EGFR status of the BMs from the original tumor source [14–16].

Although knowing the EGFR status of each BM is crucial for treatment planning, it had been possible only
via the information derived from a tumor specimen. Tailoring specific treatments for different mutations of
NSCLC and diagnose changes in their molecular profile by radiological tools, may preclude the need for
invasive procedures. 

In recent years there has been significant progress in the use of artificial intelligence methods in the form of
conventional machine learning [17] and deep learning (DL) for medical image analysis [18]. Indeed DL
methodologies have become the state-of-the-art approach in various computer imaging capabilities, with
extensive applications in medical image analysis [19–21]. Several studies have investigated the feasibility
of conventional machine learning methods for the differentiation of NSCLC molecular subtypes, 2 of which
targeted BM and used a radiomics approach [22, 23]. While radiomics has been suggested to have a real
clinical impact in lung cancer [24], it also harbors some structured limitations [25, 26].

To the best of our knowledge, there has not been any analysis in which DL tools were assigned to delineate
EGFR status in of BM in NSCLC patients. We therefore designed this work to apply DL analysis for this
purpose.

Methods

Study Design
This experimental, analytic, comparative study aimed at assessing the reliability of a noninvasive tool for
classifying BMs from an NSCLC source according to their EGFR status. Data were collected retrospectively
from the medical files of the study population. Pathological data based on histology were extracted from
pathological reports following tissue biopsy, and EGFR status, as part of the clinical process, was
determined by reverse transcription polymerase chain reaction. 

Study Population
We retrospectively collected the records of all NSCLC patients with BMs who underwent resection of their
BMs in 2 institutions, Tel-Aviv Medical Center, Tel-Aviv, Israel between 2006-2019 (46 patients),
and Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy (13 patients). The patients were divided
into 2 groups based upon their EGFR status of being positive or negative for EGFR mutation. 

Included were all diagnosed NSCLC patients with BMs who underwent resection of their BMs and for whom
a histology-based pathological report, the molecular-based EGFR status, and a preoperative magnetic
resonance imaging (MRI) study of sufficient quality were available. Our analysis was restricted to specific
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metastases which had been resected and for which their EGFR status had been determined. Preoperative
MRI scans with major artifacts or of low quality, and scans of patients who had undergone radiation
treatment to their BMs prior to the MRI were excluded. The study was approved by the local institutional
review boards (IRB) in both centers, Tel-Aviv Medical Center, and Fondazio ne IRCCS Istituto Neurologico C.
Besta, (IRB approval numbers 0200-10, and 81/2021, respectively).

Image Analysis
Preprocessing

Analysis was performed on the post contrast T1 weighted MRI images (T1W+c), and included bias field
correction with an intensity inhomogeneity correction algorithm (SPM, part of MATLAB R2019b) [27], and
intensity normalization by the equation:    where xi is the value of given voxel in the image,   are the mean
and standard deviation of the brain extracted image. Tumor segmentation was performed by senior
neurosurgeon and using commercial software (AnalyzeDirect 11.0) at the slice (2D) level. The extracted
mask was then used to generate crop images (i.e., delimitation of the lesion mask and its surrounding). 

Data splitting

The entire dataset was split at the subject level into 80% training and 20% validation datasets in a stratified
5-fold cross-validation manner proportional to group size, and ensuring that all images belonging to a given
patient would be allocated to the same group. 

DL analysis

DL model training and evaluation were performed by means of the Fast.ai framework built on top of the
PyTorch environment [28].

The input data for the DL analysis were cropped images of the mid-tumor region and ±2 slices (total of 5
slices), all extracted from the normalized T1W+c image and resized to a 96X96 image size (Fig. 1). Data
augmentation was performed in order to increase the dataset size and variance, and it included random
rotations, zooming, and contrast modification. In addition, mixup augmentation [29] was applied for
combining training samples by means of their linear combinations.

A ResNet-50 [30] convolutional neural network was setas the network’s architecture. Network training was
carried out by means of F1 loss function with an initial learning rate of 4e-2 and a batch size of 32. The
metric for evaluating the model during training was the F1 score. Data oversampling was employed in order
to cope with the imbalanced datasets, enabling sampling of the 2 groups in roughly equal amounts.

Due to the relatively small data size that was available for this study a transfer learning was performed, the
network was trained using a pre-trained ResNet-50 model, trained on an ImageNet data set as previously
described in detail elsewhere [31, 32]. Training was performed with a total of 40 epochs while preserving the
model which achieved the best level of accuracy during the process.
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Post-processing of the predicted results was performed at the subject level by calculation of a predication
score for the adjacent slices and tested based upon median, maximum, minimum, and mean metrics (Fig.
1).

The classification results were evaluated on the validation datasets, for each one of the 5-folds, using
accuracy, precision, recall, F1 score and receiver- operating characteristic curve (ROC).

Results

Patient characteristics
Preoperative post-contrast T1-weighted images (T1WI+c) of 59 patients with NSCLC BMs were reviewed.
Forty-three of those patients (62±12 years old, 15 females) had a negative EGFR mutational status and 16
patients (62±11 years old, 11 females) had a positive EGFR mutational status. The study patients’
characteristics are summarized in Table 1. There were no significant differences between the positive and
negative status groups except for female dominance in the EGFR mutant group and male dominance in
EGFR wild-type group, t = 2.403, p = 0.02). 

Classification Results
The 5-fold cross validation results are presented in Table 2. The best classification results were obtained by
using the median metric for the post-processing of the predicted results, with an overall accuracy of 89.8%,
a sensitivity of 68.7%, and a specificity of 97.7% for the detection of a positive EGFR mutation status. The
mean and median metrics achieved similar results of a mean ROC of 0.91, while the variability was lower
for the median metric (0.07) compared to the mean metric (0.09), indicating the stability of the median
metric. While the specificity of all post-processing methods was same (97.7%), both best performing
methods (median and mean) achieved better sensitivity (68.7%), indicating that some slices were more
informative than others in the EGFR mutation status prediction task. Figure 2 shows an ROC curve for the
classification for the best performing post-processing metric (median) between the positive and negative
EGFR mutations. The mean ROC value across the 5 validation datasets was 0.91±0.07 (Fig. 2). 

Discussion
This study provides a proof of concept that DL analysis can be applied for the prediction of EGFR mutation
status in NSCLC BMs. By extracting data from a limited number of patients (n=59), applying the above-
described augmentation technics and the transfer learning approach, together with post-processing of the
predicted results, we were able to classify the patients according to their EGFR mutation status. This
allowed us to reach an overall accuracy of 89.8%, a sensitivity of 68.7%, and a specificity of 97.7% for the
detection of a positive EGFR mutation status. 

Looking forward, one should expect machine learning technologies to become an inseparable part of our
diagnostic workup and decision-making process. Chest computerized tomographic (CT)-based radiomics
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analysis was established as a ground-breaking tool for discriminating between different molecular
subtypes of NSCLC (including EGFR, ALK and KRAS mutations) [33]. Oikonomou et al. used positron
emission tomography-CT-based radiomics to predict response to stereotactic body radiotherapy in lung
cancer patients. Those authors found radiomics as being the only predictor for local control [34]. Hosny et
al. investigated the predictive value of DL for mortality risk stratification in NSCLC. They incorporated
several datasets to build a database of 1200 patients, and applied convolutional neural networks based
upon an analysis of CT scans to predict the response to radiation therapy and surgery. They reported area
under the curve (AUC) values of 0.70 and 0.71, respectively, and succeeded in stratifying patients into low
and high mortality risk following both radiotherapy (p < 0.001) and surgery (p = 0.03) using the same
tool [35]. Trebeschi et al. showed that standard-of-care imaging may serve as a base for machine learning
to predict response to immunotherapy in NSCLC and melanoma patients. Their radiomics-based prediction
tool for anti PD-L1 response achieved an AUC up to 0.83 for patients with NSCLC, with a survival advantage
of 25% at 1 year following treatment [36].

It is highly significant to have the ability to combine a comprehensive molecular profile of each involved
site while minimizing the invasiveness of the diagnostic workup and providing tailored treatment in the
setting of BMs. Ramón et al. used MRI-based radiomics tools to differentiate lung origin of BMs from
breast and melanoma origins with an accuracy of 90% [37]. 

Two trials were recently conducted in the field of machine learning for the prediction of EGFR status in
NSCLC BM. Ahn et al. applied MRI based radiomics on 210 metastases (61 patients, of whom 29 were
EGFR positive according to their lung pathology findings) and reached a diagnostic accuracy of 86.7%
(AUC 0.868) [22]. Park et al. reached a diagnostic accuracy and an AUC of 78.6% and 0.73, respectively,
utilizing radiomics tools based upon MRI features of 99 BMs (51 patients, of whom 42 were EGFR positive
as confirmed by biopsy of at least one of the BMs) [23]. While trying to demonstrate a proof of concept for
radiomics prediction of EGFR status in NSCLC BMs, both of these trials assumed an identical molecular
profile between the sampled tissue and the rest of the metastases, an assumption that has since been
shown to be not necessarily accurate [13–15]. Moreover, radiomics analysis is based upon a handcrafted
image processing pipeline which includes feature extraction, feature selection, and machine learning model
building. Any small change in any one of these steps may impair its prediction accuracy and stability. 

Our results demonstrated a promising potential of utilizing a DL approach based on standard clinical MRI
for noninvasive assessment of EGFR mutation status in BM of NSCLC patients. Although less accurate
than histology-based results, it might be useful for treating patients who are not suitable for surgery and for
those with eloquent-seated lesions or poly-metastatic disease. 

Study Limitations

The main limitation of this study derives from the relatively small number of patients. Our sample size
stems partly from the stringent study inclusion criteria and the current trend to radiate upfront many of
those patients without pathological diagnosis. This limitation apparently represents a real-world challenge
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when attempting to conclusively verify the utility of DL for predicting EGFR mutation status in patients with
BM from lung cancer. 

Conclusions
Determining the molecular profile of NSCLC BMs non-invasively is feasible with standard imaging studies
by applying a DL tool. This technology has the potential to improve the personalized treatment paradigm of
these patients.  Despite being trained on a small cohort of patients, our classifier accurately predicted EGFR
mutations when compare to previous works. Further research based on larger cohorts from different
centers in diverse communities is warranted in order to create a reliable tool for widespread clinical use.
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Tables
Table 1: Clinical characteristics of NSCLC patients with BMs who underwent resection of their BMs.
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Characteristics EGFR wild type (N=43) EGFR mutant (N=16) P-value

Age (years, Median + SD) 61.81 )11.82( 62.13 )10.65( 0.709

Sex      

Male 28 (65%) 5 (31%) 0.02

Female 15 (35%) 11 (69%) 0.02

Location (involved lobe) Lt. Rt. Lt. Rt. Lt. Rt.

Frontal 20.4% 26.06% 24.75% 20.96% 0.680 0.658

Parietal 5.79% 1.35% 4.52% 9.77% 0.815 0.114

Temporal 6.79% 0.57% 1.11% 3.35% 0.230 0.188

Occipital 1.16% 2.09% 0.26% 0.12% 0.566 0.570

Limbic 5.55% 2.05% 0.48% 2.01% 0.076 0.983

Subcortical 6.58% 7.06% 6.43% 1.30% 0.977 0.244

Cerebellar 2.41% 11.75% 5.94% 19.01% 0.486 0.475

Brainstem 0.17% 0.22% 0% 0% 0.523 0.507

Tumor Volume (cm3, Mean + SD)      

T1WI+c 1.21 )0.58( 0.96 )0.52( 0.125

Data are median (SD) or number (%).

Abbreviations: EGFR, epidermal growth factor receptor  

 

Table 2: 5-Fold cross validation results for the different post-processing metrics. 

  Cross validation ROC Overall ROC At network result threshold 0.5

Fold 1 2 3 4 5 Mean SD Sensitivity Specificity Accuracy

Min 0.84 0.93 0.93 0.92 0.81 0.88 0.05 62.5% 97.7% 88.1%

Max 0.91 1.00 1.00 0.67 0.78 0.87 0.13 62.5% 97.7% 88.1%

Median 0.88 1.00 0.96 0.92 0.81 0.91 0.07 68.7% 97.7% 89.8%

Mean 0.94 1.00 1.00 0.83 0.78 0.91 0.09 68.7% 97.7% 89.8%

Abbreviations: ROC, receiver operating characteristic curve 
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Figures

Figure 1

Post-processing phase. The numbers for each slice indicating the predicted model EGFR score. Each post-
processing metric was calculated based upon the 5-slice context scores.

Figure 2

Receiver operating characteristic, median slice metric, 5-fold combined.
Abbreviations: ROC, receiver
operating characteristic curve, ResNet, residual neural network.


