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 3 

Capabilities in continuous monitoring of key physiological parameters of disease have never been 1 

more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted 2 

electronics that incorporate high-bandwidth, miniaturized motion sensors represent a powerful 3 

class of technology for digital, wireless measurements of mechano-acoustic (MA) signatures of 4 

both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers 5 

(coughing count) with high fidelity and immunity to ambient noises. Here, we introduce an effort 6 

that integrates such an MA sensor, a cloud data infrastructure and data analytics approaches 7 

based on digital filtering and convolutional neural networks for comprehensive monitoring of 8 

COVID-19 infections in sick and healthy individuals in a population, both in the hospital and the 9 

home. This hardware/software system extracts diverse signatures of health status in an 10 

automated fashion from a single device and time series data stream.  Unique features are in 11 

quantitative measurements of coughing and other vocal events, as indicators of both disease and 12 

infectiousness. Systematic imaging studies demonstrate direct correlations between the time and 13 

intensity of coughing, speaking and laughing and the total droplet production, as an approximate 14 

indicator of the probability for disease spread.  The sensors, deployed on COVID-19 patients 15 

along with healthy controls in both inpatient and home settings, record coughing frequency and 16 

intensity continuously, along with a comprehensive collection of other biometrics, with recording 17 

times for individuals of more than a month after disease diagnosis. These pilot studies include 18 

3,111 hours of data spanning 363 days from 37 COVID-19 patients (20 females, 17 males) with 19 

27,651 coughs detected in total along with continuous measurements of heart rate, respiratory 20 

rate, physical activity, and skin temperature. Manual labeling of randomly sampled 10,258 vocal 21 

events from 10 COVID-19 patients (6 females, 4 males) suggests a sensitivity of 0.87 and a 22 

specificity of 0.96 in cough detection using automated algorithms. The collective results indicate a 23 

decaying trend of coughing frequency and intensity through the course of disease recovery, but 24 

with wide variations across patient populations. The methodology also opens opportunities to 25 

study patterns in biometrics across individuals and among different demographic groups. 26 

 27 



 4 

As of Nov. 1st, The Center for Disease Control’s (CDCs) tabulations (https://covid.cdc.gov/covid-data-1 

tracker/#cases_casesper100klast7days) indicate over 9 million recorded cases of COVID-19 and more 2 

than 229,000 in deaths in the U.S. The collective response to this global pandemic includes a mobilization 3 

of resources to diagnose, track, treat, and vaccinate against the SARS-CoV-2 virus that causes COVID-4 

19. Accurate and widespread testing is a key component of this response1. Although the capacity and 5 

availability of COVID-19 molecular diagnostics continues to increase, experts still note significant 6 

shortcomings associated with high variabilities in accuracy of tests across manufacturers, constraints in 7 

key materials and supplies, long turnaround times associated with certain types of tests, inadequate 8 

access to testing sites and a lack of human resources2. The wide range of clinical presentations of 9 

infection with SARS-CoV-2 causes additional difficulties. In particular, SARS-CoV-2 often leads to 10 

asymptomatic or mild infections such that individuals can spread the disease prior to the demonstration of 11 

symptoms or positive molecular tests3–5. Although certain patient characteristics (e.g. age, male gender6) 12 

accompany severe disease, there remain limited prognostic tools to assess the trajectory of infection and 13 

the eventual need for hospitalization or mechanical ventilation. As an additional consideration, the CDC 14 

confirms that COVID-19 can be contracted via airborne transmission along with contact and droplet 15 

transmission — features that underscore the need to improve capabilities in risk stratification of 16 

exposures via contact tracing and to ensure sufficient quarantining for recovering individuals.   17 

 18 

To address some of these needs, a wide range of digital health tools from mobile applications to collect 19 

self-reported patient symptoms to consumer wearable devices and clinical grade medical sensors are 20 

under development and in initial stages of deployment7. Early results show some promise. Researchers 21 

at FitBit (San Francisco, CA) report the ability to identify infection with COVID-19 via 4 previous days of 22 

data collected from their wrist-worn devices to yield overnight heart rate, respiratory rate, and heart rate 23 

variability in a cohort of 1,181 COVID-19 patients8. Others claim similar detection capabilities with 24 

alternative wrist-based devices9. Several ongoing large-scale trials aim to evaluate these wearables for 25 

early detection of COVID-19 infection, from smart rings (Oura Ring), skin-interfaced patches by 26 

VitalConnect (https://www.medicalcountermeasures.gov/newsroom/2020/vitalconnect/), Philips 27 

(https://www.usa.philips.com/a-w/about/news/archive/standard/news/press/2020/20200526-philips-28 
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launches-next-generation-wearable-biosensor-for-early-patient-deterioration-detection-including-clinical-1 

surveillance-for-covid-19.html), Sonica 2 

(https://www.medicalcountermeasures.gov/newsroom/2020/sonica/), to other smart watches (e.g. 3 

Empatica) with support from various federal agencies 4 

(https://www.medicalcountermeasures.gov/newsroom/2020/empatica/). While consumer-grade wearables 5 

mount on the finger or wrist to monitor some subset of conventional vital signs10–13, such as heart rate, the 6 

mounting location, constrained to loose interfaces at the wrist or finger, fundamentally limits the range of 7 

detectable physiological activities, particularly respiratory signals14,15. The inability to capture complex 8 

health information reduces the potential of these technologies for precise and reliable analysis of 9 

disease16. Development of robust metrics for early detection and disease tracking requires multimodal 10 

operation to join across different digital biomarkers and to incorporate unconventional metrics closely 11 

relevant to the disease of interest. Daunting challenges remain in addressing these wide-ranging 12 

requirements simultaneously without sacrificing the simplicity and ease-of-use of the sensing system, as 13 

necessary for practical deployment at scale in remote, continuous monitoring settings.17 14 

 15 

As COVID-19 is predominately a respiratory disease, cough and other sounds from the thoracic cavity, 16 

trachea and esophagus are examples of potentially useful but underexplored biometrics to identify, 17 

monitor, and track recovery for this disease. Previous lab-scale studies demonstrate cough-based 18 

diagnoses of diverse respiratory diseases through measurements of coughing frequency18, intensity19, 19 

persistency20, and unique coughing audio features21. Recent work applies voice profiling and computer 20 

audition to track cough, speech, respiratory, and other sounds for risk assessment and diagnosis of 21 

COVID-19 based on the distribution of symptoms (https://cvd.lti.cmu.edu, https://buildforcovid19.io/detect-22 

now/, https://www.covid-19-sounds.org/en/credits.html). Monitoring cough and other vocal events 23 

(speaking, laughing, etc.) not only provides a signature of disease but also has potential in generating 24 

metrics of infectiousness, as these mechanisms yield aerosols/droplets that contribute to virus 25 

transmission22–24. Oral fluid particles with diameters of >5-10 µm are referred to as respiratory droplets; 26 

diameters <5 µm in diameter are referred to as droplet nuclei, or aerosols (https://www.who.int/news-27 

room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions). 28 
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Previous studies show that the total volume of aerosols correlate with the loudness and duration of vocal 1 

events, such that measurements of the timing and intensity of sounds may serve as reliable metrics to 2 

quantify one aspect associated with risks of spreading the disease25.  3 

 4 

Point-of-care or semi-continuous methods for quantifying coughing or other vocal activities rely on 5 

techniques and devices such as electromyography, respiratory inductive plethysmography, 6 

accelerometers, microphones, or a combination of several sensors with other exploratory ones (e.g., the 7 

nasal thermistor or the electrocardiography)26–31. Microphone-based approaches, especially those that 8 

use built-in microphones in smartphones, prevail due to their widespread availability and their alignment 9 

with large crowd-sourced datasets (e.g., COUGHVID, HealthMode, DetectNow, VoiceMed). Data analysis 10 

approaches use digital signal processing of the resulting audio signals (e.g., Fourier32,33, Wavelet34, Mel 11 

frequency cepstral coefficients (MFCCs)32,35,36, RASTA-PLP spectrum or cepstrum37), often followed by 12 

machine learning algorithms (e.g., Convolutional Neural Network32,36, Recursive Neural Network32, Time-13 

Delay Neural Network38, k-Nearest Neighbors39,40, Hidden Markov Model32,41, Random Forest42, Support 14 

Vector Machine32,35) for further classification. A key challenge is that background sounds and/or 15 

environmental noises frustrate robust and accurate measurements in home settings, when implemented 16 

without rigorous guidelines or protocols.  Also, and perhaps more importantly, audio recordings raise 17 

many serious privacy and prohibitive legal issues, thereby limiting the scale of application. In addition, 18 

measurements of loudness are highly unreliable because they depend strongly on the separation 19 

between the device and the subject, which is typically not well controlled.  20 

 21 

The results presented here bypass these disadvantages, to allow continuous, accurate, and standardized 22 

assessments of respiratory biomarkers correlative to health status and droplet/aerosol production in 23 

naturalistic environments, with additional information on a broad range of traditional vital signs.  24 

Specifically, this paper presents a wireless, multimodal monitoring system that combines unusual 25 

hardware and software capabilities for continuously monitoring a breadth of conventional and 26 

unconventional physiological parameters of direct relevance to COVID-19, with additional potential for 27 

use across a wide variety of other diseases and conditions. The hardware component corresponds to a 28 



 7 

soft, skin-integrated wireless device that mounts on the suprasternal notch for continuous recording of 1 

subtle motions associated with underlying body processes, each of which has unique mechanical or 2 

vibratory signatures. This mechano-acoustic (MA) device interfaces with a data analytics platform that 3 

combines digital signal filtering with convolutional neural networks to extract key features and insights 4 

from the recordings. Examples range from standard vital signs such as heart rate, respiration rate, body 5 

orientation and physical activities, to underexplored yet essential measurements of respiratory events 6 

such as coughing, speaking, laughing, throat clearing, singing, and sneezing that have been linked to 7 

patient health and/or COVID-19 transmission. The device captures these latter types of events without 8 

the use of a microphone, thereby bypassing privacy/security concerns as well as confounding effects of 9 

ambient noise. The results allow not only for detection of early signs of symptoms but also symptomatic 10 

progression of infected individuals through various stages of the disease, including responses to 11 

emerging therapeutics. Systematic studies using particle tracking velocimetry indicate that coughing, 12 

speaking, and laughing events measured with these devices also correlate to the total number of droplet 13 

production. This link offers an opportunity to continuously quantify the potential infectiousness of 14 

individuals, as critical information for healthcare workers in caring for particularly infectious COVID-19 15 

patients and for better risk stratification in the context of contact tracing and individual quarantines. Pilot 16 

studies on COVID-19 patients at a large academic medical center (Northwestern Memorial Hospital) and 17 

a large rehabilitation hospital (Shirley Ryan Ability Lab) include 3,111 hours of data spanning a total of 18 

363 days from 37 patients (20 females, 17 males), in an overall implementation that supports almost 19 

completely automated operation, with minimal user burden. The longest monitoring period corresponds to 20 

more than one month of recordings that capture both the inpatient, clinical, and post-discharging, home 21 

settings. This type of long-term monitoring reveal trends in various parameters, including coughing 22 

frequency, following the test-positive date for 8 patients (4 females, 4 males) over more than seven days. 23 

Evaluations across 27 patients (15 females, 12 males) with ages between 21 and 75 reveal diverse 24 

coughing patterns across individuals and consistent trends during the recovery process. A comparison of 25 

coughing frequency and coughing intensity among different demographic groups follows from a clustering 26 

of large number of events. 27 

 28 
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Results: 1 

Sensor designs, system configurations, and wireless, cloud-enabled mode of operation. Figure 1a 2 

presents a schematic illustration of the system configurations. The circuit architecture represents an 3 

advanced version of the soft, skin-interfaced MA device reported previously43.  Briefly, an open-4 

architecture, flexible printed circuit board (fPCB, 25-um-thick middle polyimide with double-sided 12-um-5 

thick rolled, annealed copper, AP7164R, DuPont) with serpentine conductive traces supports collections 6 

of chip-scale components including a high-bandwidth, inertial measurement unit (IMU) with a tri-axial 7 

accelerometer (LSMDSL, STMicroelectronics) as the key sensing element, a Bluetooth Low Energy (BLE) 8 

system-on-a-chip for control and wireless connectivity, on-board memory module for data storage and a 9 

wireless unit for recharging a compact battery. A thin, soft elastomer membrane (Ecoflex, 00-30, smooth-10 

on, 300-um) completely encapsulates the device as a compliant, non-irritating interface to the 11 

suprasternal notch, supported by a thin, double-sided biomedical adhesive. The design of the system for 12 

the studies reported here includes an automated user interface that almost entirely eliminates manual 13 

operations, where the wireless charging platform itself serves as a hub to switch modes from recording to 14 

data transfer. Specifically, the device remains in data acquisition mode when not on the charger. During 15 

charging, the device automatically stops recording and starts transmitting data to a BLE-enabled device 16 

such as a phone or a tablet with internet connectivity to a HIPPA-compliant cloud server. Algorithms 17 

operating on the server deliver results to a graphical dashboard for feedback to health workers and/or 18 

patients.   19 

 20 

When interfaced to the suprasternal notch, the device captures subtle vibrations of the skin as signatures 21 

of a wide range of physiological processes, continuously and robustly43. Figure 1b shows an example of 22 

three-axis acceleration data recorded from an inpatient (female, age 53) wearing the device for 48 hours. 23 

The sampling rate for motions perpendicular to the surface of the skin (z-axis) is 1666 Hz; the rates for 24 

the x-axis (perpendicular to the axis of the neck) and y-axis (along the neck) are 416 Hz. Apart from the 25 

clear difference in acceleration amplitudes during daytime and nighttime, the features in the data reveal 26 

different processes and body mechanics during natural activities. Figure 1c shows time series 27 

representations of sample events in two-minute windows. Features associated with coughing and 28 
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speaking include high-frequency components with significant amplitudes (~ 100 g) along the z- and y-axis 1 

but small amplitudes (~ 10-1 g) along the x-axis.  Physical activity induces comparatively large 2 

accelerations (~ 100 g) along all axes. During the periods without such activities, subtle vital signals from 3 

respiratory and cardiac cycles are readily apparent, even in the raw data. Recordings during sleep can 4 

also yield body orientations and snoring events, including those that are both strongly and scarcely 5 

audible. 6 

 7 

Algorithm development. The focus here is on extraction of different vocal and respiratory events from 8 

these raw data.  Methods for determining other important parameters such as overall activity levels, heart 9 

rate, and respiration rate, can be found elsewhere43. In the context of monitoring COVID-19 symptoms, a 10 

particular interest is in identifying and tracking coughing events, in the presence of other MA signals. 11 

Figure 2 presents a scheme for data pre-processing that exploits time-frequency features to differentiate 12 

coughing from other common daily activities. Algorithm development uses recordings captured from ten 13 

healthy normal subjects in controlled experiments with a protocol (see Methods for details) that generate 14 

a large number of events of interest in various body postures. Figure 2a shows typical z-axis data from a 15 

representative experimental session. Each testing sequence begins and ends with three taps of the 16 

fingers on the device as time stamp markers. In between are consecutive 10 forced coughs, 10 laughing, 17 

10 throat clearing events, 30-s of walking, 10 cycles of breathing, and more than 20-s of speaking. Figure 18 

2b shows time series and spectrogram representations of such events, the latter of which uses Short 19 

Time Fourier Transform and a Hanning window with a width Δt = 0.4 s moving in time steps of !t = 0.01 s. 20 

The algorithm considers each windowed data independently in the process of cough determination. The 21 

coughing signals feature a broad-bandwidth impulse-like response, followed usually by a high-frequency 22 

chirp (> 200 Hz). Speaking signals also have high frequency components, but usually with distinct 23 

harmonic features. A previously established speaking detection algorithm based on such harmonics can 24 

screen the data for prominent speaking periods (Fig. 2c). After excluding speaking events identified in this 25 

manner, a minimum amplitude threshold Pthrs = -10,000 detects peaks of the logarithm of spectral power 26 

integrated across the high-frequency band (>10 Hz) (PMA) and labels them as cough-like events, with a 27 

minimum time interval between peak events of 0.4 s (Fig. 2d). Here, cough-like events include laughing, 28 
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throat clearing, and also some speaking periods that exhibit unclear harmonics. Figure 2e shows the data 1 

processing flow, which begins with raw z-axis data and returns the time stamps for speaking and cough-2 

like events, as well as their associated integrated logarithm power. Such an analysis applied to the testing 3 

data detects 26.4-s speaking with clear harmonics features, and identifies 10 coughing, 20 laughing, 12 4 

throat clearing, 36 speaking, and 6 tapping instances as cough-like (Fig. 2a). 5 

 6 

Distinguishing actual coughs from the pool of cough-like events calls for further classification by machine 7 

learning. A Convolutional Neural Network (CNN) uses as inputs Morlet Wavelet Transforms of 0.4-s raw 8 

z-axis data (shaped by the Hanning window) of these events (Fig. 3a). The Wavelet Transform offers 9 

advantages compared to the Short Time Fourier Transform for its favorable resolution in characterizing 10 

non-stationary signals, which improves the accuracy of classification.  Fig. 3b shows scalograms of 11 

cough-like events, including tapping (one type of motion artifact), coughing, laughing, throat clearing, and 12 

speaking events. These scalograms, with shapes of 60 x 666 x 1, serve as inputs to the CNN model. As 13 

shown in Fig. 3c, the CNN starts with a 3-channel convolutional layer with a kernel size of 3 x 3, followed 14 

by a standard 50-layer Residual Neural Network (ResNet), a state-of-the-art CNN architecture for image 15 

classification44. The output of the ResNet flattens to a layer of 86,106 neurons, followed by 2 fully 16 

connected layers with Rectified Linear Unit (ReLU) activation and 2 dropout layers (p=0.5) alternately. 17 

The final fully connected layer of the CNN model has 5 neurons with Softmax activation, which 18 

corresponds to probabilities associated with the 5 types of events of interest: coughing, speaking, throat 19 

clearing, laughing, and motion artifact, where most of the motion artifacts are those events arising from 20 

physical contact on or around the device. 21 

 22 

Data collected from 10 healthy volunteers yield well-labeled time windows consisting of 1379 coughing, 23 

1441 speaking, 1313 laughing, 1423 throat-clearing, and 2890 motion-artifact events. Because sample 24 

events generated in controlled experiments can differ from those that occur naturally in uncontrolled 25 

settings, the training of the CNN model uses not only scalograms of labeled events from 10 healthy 26 

volunteers (Subjects # 1-10) but also 10 COVID-19 patients during natural daily behaviors (Subjects # 11-27 

20). Determinations of ground truth from the patient data involve listening to soundtracks created from the 28 



 11 

accelerometer data and then manually labeling the data (See Methods for code availability). Most of the 1 

events associated with coughing, speaking, and motion artifacts can be determined unambiguously. 2 

Difficulties arise in distinguishing between laughing, throat clearing, and certain periods of speaking, 3 

thereby leading to some level of uncertainty. Such manual analysis of data collected from 10 COVID-19 4 

patients generates a total of 1405 coughing, 1449 speaking, 193 laughing, 210 throat-clearing, and 2905 5 

motion-artifact events. Table S1 includes detailed demographic and data-collection information for all the 6 

training subjects. 7 

 8 

The generalization performance of the CNN model represents a key metric for large-scale deployment 9 

and automated use. A common testing method relies on a leave-one-out strategy, where one leaves a 10 

subject out of the training set (19 subjects for training) and then tests the trained model on this subject. 11 

Iterations apply this approach to each of the 20 subjects. Each training set consists of a random collection 12 

of 80% of the labeled events from the 19 subjects, thereby leaving the remaining 20% for validation. The 13 

training uses an Adam optimization algorithm. Fig. 3d shows the averaged confusion matrix of 20 leave-14 

one-out testing cycles. The model achieves accuracies of 0.90±0.08 for coughing, 0.88±0.1 for speaking, 15 

0.79±0.14 for throat clearing, 0.81±0.14 for laughing, and 0.98±0.02 for motion artifact.  The 16 

classifications for throat clearing and laughing have comparatively lower average accuracies and higher 17 

standard deviations, simply because features of short-term segments of throat clearing and laughing 18 

signals can resemble those of speaking signals, as evidenced by the confusion matrix (Fig. 3d). Fig. 3e 19 

shows the overall 5-way classification accuracies on each subject using a model trained on the other 19 20 

subjects. The minimum overall accuracy is 0.85 for all subjects. The Receiver Operation Characteristic 21 

(ROC) curve characterizes the trade-off between sensitivity and specificity in binary classification – 22 

varying the threshold of the cut-off probability at the final output layer generates ROC curves of each of 23 

the five types of events (coughing vs. non-coughing, speaking vs. non-speaking, etc.). Figure 3f. presents 24 

the macro-averaged ROC curves for each subject. The high Area Under the Curve (AUC) > 0.97 for all 25 

subjects indicates that the model achieves a good balance between sensitivity and specificity (See Tab. 26 

S2 for detailed information). 27 

 28 
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Mechano-acoustic sensing of droplet production. These algorithms allow robust identification of 1 

coughing events, for tracking of frequency, intensity and, in the future, detailed time dynamics (i.e., 2 

effective sounds), in the context of early symptom detection as well as assessments of the progression of 3 

the disease and the response to various novel therapeutics.  Another value of quantitative cough 4 

monitoring, as well as other forms of vocalization such as speaking, singing, shouting, etc., is in the 5 

context of disease spread.  Previous studies show that different types and volumes of vocal or 6 

respiratory-related events yield significantly different levels of aerosol production25, with direct relevance 7 

to evaluating the risks of viral transmission. The devices and algorithms reported here provide unique 8 

capabilities.  Figure 4a shows results that calibrate the high-frequency power PMA associated with the z-9 

axis acceleration component of the MA signals to measurements with a decibel meter PdB in a quiet 10 

(background noise < 40 dB) environment for cases of coughing, speaking (repeating words ‘terminator’), 11 

and laughing from a healthy normal subject (male, Asian, age 30). The results show a linear correlation 12 

PMA = p1 PdB + p2 for all three classes in the audible range of 55-85 dB, with p1 = 200±20 dB-1, p2 = -13 

12000±1700 dB-1 for coughing, p1 = 105±10 dB-1, p2 = -7000±700 dB-1 for speaking, and p1 = 114±30 dB-
14 

1, p2 = -5800±1200 dB-1 for laughing (Fig. S1). 15 

 16 

Figure 4b-c shows the experimental setup of quantitative imaging studies (see Methods for details) that 17 

examine correlations between MA data and droplet production, with a focus on relationships between the 18 

total number of droplets and the intensities of coughing, speaking and laughing. The measurements 19 

include droplet dynamics captured via Particle Tracking Velocimetry (PTV, see Methods for details), 20 

power levels from the MA data (PMA), and audio levels from a decibel meter (PdB), all synced in time. 21 

Figure 4d-f shows a sequence of results from the MA sensor and the PTV analysis for coughing, 22 

speaking, and laughing, respectively, where markers indicate events correctly identified and classified by 23 

the automated algorithm. Figure 4g-i are images of coughing, talking, and laughing at the peak of 24 

corresponding marked boxes in Figure 4d-f. The PTV method tracks of individual particles in the 25 

Lagrangian frame of reference45. Figure 4j-l shows the detected particles with sizes indicated by the 26 

diameters of the grey circular symbols. As expected, the findings indicate that a larger number of droplets 27 

(determined across the investigation area of ~34 × ~17 cm2, and with sizes r > 50 µm in the detectable 28 



 13 

range) results from coughing (200-800 droplets) than speaking or laughing (10-200 droplets) at 1 

comparable decibel levels and time durations. More than 60% of droplets are smaller than 150 µm in 2 

radius for all measured respiratory activities (Fig. S2). Interpolated horizontal velocity contours from 3 

droplet trajectories indicate a large swirling motion for coughing, with positive velocity near the mouth and 4 

negative velocity in the bottom of the investigated area (Fig. 4j). Droplets show ballistic behavior for 5 

speaking and dispersive for laughing (Fig. 4k and l). Particularly, this ballistic behavior of droplets is a 6 

result of enhanced jet-like transport of the expelled airflow induced by the plosive sound46. Drastically 7 

different inertial particle dynamics occur depending on the size of droplets even within the same cycle. 8 

Specifically, small droplets linger in the air and respond to ambient flows. Large droplets travel at high 9 

velocities and are minimally influenced by flows, within a range investigated. Statistical analyses of the 10 

total number of droplets (Nd) of all measured respiratory activities at various audio levels appear in Fig. 11 

4m,n, and o. The number of droplets exhibits some correlation to the audio dB level and the power 12 

intensity of the MA data, for all activities. Figure S3 and Supplementary Video 1 include additional results 13 

from the imaging analysis of droplet dynamics. 14 

 15 

Long-term multimodal monitoring from a cohort of COVID-19 patients. Scaled deployment of the MA 16 

device and the ML algorithm on the clinical floor on COVID-19 patients, without difficulty or user or 17 

physician burden, illustrates the practical utility and readiness of these technologies in continuous, long-18 

term (> 7 days) monitoring of a host of parameters relevant to patient status, not only coughing dynamics 19 

but also other forms of vocalization, along with heart rate, respiration rate, body orientation and overall 20 

activity. These pilot studies correspond to a total of 3,111 hours of data from 37 patients (20 females, 17 21 

males; see SI for detailed demographic information) with 27,651 automatically detected coughs. Figure 22 

5a shows data and analysis results for a representative one-hour session with a female patient. The CNN 23 

model, trained using a process that is blind to any of the patients described in this section, returns 24 

predicted classes for each cough-like event detected by the pre-processing step. Investigating the MA 25 

signal through the manual labeling process based on audio files provides reference labels for 26 

comparison. Statistical analysis,  on a total of 10,258 randomly sampled events from 10 patients (6 27 

females, 4 males; patient ID’s listed in Tab. S1) with manual labels shows macro-averaged sensitivity (i.e. 28 
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recall) of >=0.87 specificity of >=0.96, and >=0.85 precision for coughing (N = 2785) and artifacts 1 

detection (N = 2768) (Fig. 5b, Tab. S2). The sensitivity and precision for speaking (N = 2758), throat 2 

clearing (N = 1212), and laughing (N = 735) are as low as 0.58, likely due in part to the ambiguities in 3 

ground-truth labeling mentioned previously. Table S2 includes additional details on statistical analyses 4 

with subject-specific information. Figure 5c presents results of coughing counts per five minutes in bars 5 

and the associated coughing effort (i.e., PMA) in color. In general, the coughing frequency and intensity 6 

peak in the morning, and distribute evenly throughout the day. Figure 5d presents a similar analysis of 7 

speaking, with uniformly distributed speaking time and loudness (i.e., PMA) during daytime. Previously 8 

reported algorithms applied to these same MA data streams yield other important parameters43.  For 9 

example, Figure 5e-g summarizes heart rate, respiration rate and physical activities, where the color-10 

coded intensity values correspond to peak amplitudes of cardiac signals in the frequency band 20-55 Hz 11 

and root mean square values for low-passed respiration cycles in the band 0.1-1 Hz. Figure 6a-e present 12 

this collective information (coughing counts, speaking time, heart rate, respiration rate, and physical 13 

activity, and their associated intensity or amplitude) for the same patient over one month. Grey shaded 14 

areas indicate periods when the patient is not wearing the device. As discussed previously, the data 15 

collection is autonomous and largely burden free. The patient simply mounts the device on the skin using 16 

a disposable adhesive and removes it for charging/data downloading. The same analysis has been 17 

applied to a total of 27 patients (15 females, 12 males) whose data are not used in building the CNN 18 

model. Figure S4-S20 shows the results for the 17 patients (9 females, 8 males; patient ID’s listed in Tab. 19 

S1) with a minimum of seven days of enrollment. 20 

 21 

Figure 6f presents a time series plot for 8 patients (4 females, 4 males; patient ID’s listed in Tab. S1) with  22 

the date of a positive PCR test for COVID-19 reported, where the event of interest is coughing count 23 

organized by days after the test. The results suggest a correlation between coughing frequency with the 24 

gradual process of recovery, as might be expected. The significant variation in decay rates, however, 25 

suggests individual-specific recovery and aerosolization potential. Figure 6g summarizes the age 26 

distribution for the total of 27 testing patients. Figure 6h compares the histogram of coughing frequency of 27 

these individuals, to reveal the diverse regularity of coughing across time. Figure 6i shows the coughing 28 
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frequency versus the average coughing intensity for all hourly measurements, clustered into four 1 

demographic groups (males with age < 55, males with age ≥ 55, females with age < 55, females with age 2 

≥ 55). The available results suggest that females tend to cough more than males. Table S1 includes 3 

detailed demographic and data-collection information for all the testing patients. Further studies on an 4 

expanded patient population with detailed demographic information are, however, necessary. 5 

 6 

Discussion: 7 

This paper introduces an automated, low-burden hardware-software solution for sensing of broad, diverse 8 

health information of direct relevance to patient status, with a specific focus on underexplored respiratory 9 

biomarkers such as cough and their changes with COVID-19 disease state. Scaled studies indicate 10 

applicability to COVID-19 patients in both clinical and home settings.  The approach relies on a soft, 11 

wireless sensing device placed on the suprasternal notch, to capture data that can be processed through 12 

a combination of digital filtering and machine learning techniques to separate and quantify different body 13 

processes. For behaviors that include high frequency information, such as speaking and coughing, a 14 

preprocessing method based on Fourier and Wavelet spectral analysis separates these events from 15 

others in continuous time series data streams. A trained CNN model yields a five-way classification 16 

probability matrix for coughing, speaking, laughing, throat clearing, and motion artifact. In addition to 17 

patient status, these data show promise in tracking droplet/aerosol production and, therefore, disease 18 

transmission related to cough and other expiratory events. An application of the automated algorithm to 19 

the in-field data from 10 patients, checked manually against converted audio files, reveals sensitivity of 20 

0.87, specificity of 0.96, and precision of 0.85 for coughing identification. 21 

 22 

These results set the foundations for capabilities in monitoring patient status through a range of both 23 

conventional and unconventional metrics, with cough as an example of a potentially important digital 24 

biomarker that can yield insights to complement those from analysis of traditional vital signals. 25 

Approaches similar to those reported here can be considered in strategies that extract additional 26 

information from specific forms of speech such as plosive consonants and vowels, that tend to carry 27 

aerosols and droplets over large distances, advanced assessments of coughing and respiratory sounds, 28 
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correlations between body positions and these activities, as well as coupled responses and timing 1 

intervals between different events.  Integrating optical modules and clinical-grade temperature sensors 2 

into this same device platform will enable measurements of blood oxygenation and core body 3 

temperature, without affecting the ability to simultaneously capture MA signals.  Algorithms of the type 4 

presented here are readily adaptable to such data streams, with immediate relevance to early detection, 5 

patient care and disease management for COVID-19.  Thus, a single device and analytics approach can 6 

capture multimodal information with many possibilities in data fusion for precision healthcare, including 7 

but not constrained to COVID-1917,47,48. Scaled, remote deployment of this platform will yield large 8 

amounts of accessible biometric data, as the basis for predictive disease models, cost effective care of 9 

patients, and containment of disease transmission.  10 

 11 

Methods 12 

Device design and components. FPCB schematic diagram and board layout were designed using 13 

AUTODESK EAGLE (version 9.6.0) for a stretchable and bendable mechano-acoustic device. 14 

Serpentine-shaped outlines connect three separated islands (main body, sensor, charging coil). A 15 

summary of the bill of materials (BOM) for the device includes 0201 and 0402 inch footprints passive 16 

components (resistors, capacitors, and inductors), 4 turns of wireless charging coil pattern (resonance 17 

frequency: 13.56 MHz), Full-bridge rectifier, power management IC (Bq25120a, Texas Instruments), 3.0V 18 

step-down power converter (TPS62740, Texas Instruments), 3.7V lithium polymer battery (75 mAh), 19 

voltage and current protection IC for Li-Polymer battery (BQ2970, Texas Instruments), BLE SoC 20 

(nRF52840, Nordic Semiconductor), NAND flash memory (MT29F4G, Micron), and inertial measurement 21 

unit (LSM6DSL, STMicroelectronics).  22 

 23 

Device fabrication and encapsulation. Panels of FPCB were manufactured and surface-mount device 24 

(SMD) processes were performed by an ISO 9001-compliant manufacturer. Customized firmware was 25 

downloaded by Segger Embedded Studio, followed by an FPCB folding and battery soldering process. 26 

Each aluminum mold for top and bottom layers was prepared with a freeform prototyping machine 27 

(Roland MDX 540), and the devices were encapsulated using pre-cured top and bottom Layers (Silbione-28 
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4420, each 300um thick) after filling silicone elastomer (Eco-Flex 0030, 1:1 ratio) in the cavity in which the 1 

device was positioned. After fixing and pressing top/bottom molds using clamps, the mold was placed into 2 

an oven that holds a temperature of 95 °C for 20 minutes to cure the silicone elastomer. The mold was 3 

then taken out of the oven and placed under the room temperature area for 20 minutes to cool to room 4 

temperature. Next, the clamps were removed, and the encapsulated device was placed on a cutting 5 

surface and excess enclosure material was removed using a pre-fabricated hand-held die cutter. A CO2 6 

laser formed the shape of the double-sided adhesives and yielded a smooth and clean contour cut. 7 

 8 

Data collection. All the participants provided written/verbal consent prior to their participation in this 9 

research study (See Tab. S1 for demographic information of all individuals studied). Study procedures 10 

were approved by the Northwestern University Institutional Review Board (NU-IRB), Chicago, IL, USA 11 

(STU00202449 and STU00212522) and was registered on ClinicalTrials.gov (NCT02865070, 12 

NCT04393558). All study related procedures were carried in accordance with the standards listed in the 13 

Declaration of Helsinki,1964. During the study, participants wore an MA device at SN (Fig. 1a). In case of 14 

patients, a clinician/research staff assisted in placing the sensor.  15 

Healthy controls were asked to perform 18 repetitions of the following sequence of activities with 16 

some variability in the intensity of each of the activities over a 2 to 4-hour period: 3 taps on the sensor, 10 17 

coughs, 10 laughs, 10 throat clearings, 30-s of walking, 10 cycles of breathing (inhale and exhale), more 18 

than 20-s of speaking, and 3 taps on the sensor. Of these repetitions, sedentary activities in 5 sets were 19 

performed while sitting, 5 during standing and 8 while lying down (2 in supine, 2 in prone, 2 in left 20 

recumbent and 2 in right recumbent) positions. In the case of patients, a reduced set of activities were 21 

used at the beginning of each test, which included 3 taps on the sensor, 5 coughs, 5 cycles of deep 22 

breathing, and 3 taps on the sensor. 23 

 24 

Sterilization process. After each use, MA sensor was thoroughly disinfected/ cleaned with isopropyl 25 

alcohol (70% or above) or Oxivir® TB wipes (0.5% hydrogen peroxide) and left to dry at room 26 

temperature and the same process is repeated twice.  27 

 28 
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Convolutional neural network. The CNN starts with a convolution with a kernel size of 3x3 and 3 1 

different kernels, followed by a standard 50-layer residual neural network as descried in detail in ref. 44. At 2 

the output of the residual neural network, a flattening layer of 86,106 neurons follows. Finally, 3 fully 3 

interconnected layers with 512, 128, and 5 neurons, respectively, and 2 dropout layers with p=0.5 follow 4 

alternately. The CNN uses an Adam optimizer for training. The training process follows a leave-one-out 5 

strategy, where one leaves a subject out of the training set (19 remaining subjects for training) and then 6 

tests the trained model on this subject. Each training set applies a 5-fold cross-validation procedure. This 7 

approach iterates through each of the 20 subjects. Table S2 includes detailed information on the cross-8 

validation results for each subject. 9 

 10 

Data analytics. All analysis used Python 3.0 with SciPy, PyWavelets, and TensorFlow packages. 11 

 12 

Code availability. The codes used for audio soundtrack conversion and manual labeling process are 13 

available on GitHub at https://github.com/nixiaoyue/MA-cough. The analysis codes used in this study are 14 

available from the authors upon request. 15 

 16 

Droplet dynamics via Particle Tracking Velocimetry (PTV). Droplet dynamics of coughing, speaking 17 

and laughing were quantified by PTV. Coughing, speaking (the word “terminator” was used) and laughing 18 

were repeated for 14, 26 and 15 times at various dB levels, respectively. More data sample for speaking 19 

was collected to cover a wider range of dB up to 100 dB. Each respiratory activity was performed in the 20 

customized box made of acrylic glass with the inner dimension of 45 × 30 × 30 cm3 (L×W×H).  The 21 

investigation area for tracking droplets was ~34 × ~17 cm2 illuminated by 16 arrays for 600 lumen led light 22 

bars. PTV experiments were recorded by a 2048 × 1088 Emergent HT-2000M with 50mm F1.4 manual 23 

focus Kowa lens at the frame rate of 338 fps. To achieve continuous and simultaneous measurements 24 

with ADAM sensor and audio meter (Decibel x calibrated by SD-4023 sound level meter and R8090 25 

Sound Level Calibrator), approximately 10,000 frames were recorded for each respiratory activity. 26 

Preprocessing, calibration, tracking, and postprocessing are performed by the PTV code developed by 27 

the RETEG group at UIUC45. Image sequences were preprocessed by subtracting the background noise 28 
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and enhancing the contract. Droplets are detected in a sub-pixel level with the area estimation. The 1 

scattering cross section of a detected droplet, refractive index of droplet as well as the surrounding 2 

medium, air, and wavelength of the light source were used to calculate the actual radius of detected 3 

droplets based on the Mie Scattering theory49,50. The minimum radius of droplets measured in this work is 4 

~60 µm. Detected droplets were tracked using the Hungarian algorithm and linked by performing a five-5 

frame gap closing to produce longer trajectories. Velocity and Lagrangian acceleration were filtered and 6 

computed using fourth-order B splines. vector contour fields were obtained by interpolating scattered 7 

Langraigan flow particles at each frame based on the natural neighbor interpolation method51. 8 

 9 
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Figure 1. The health monitoring system incorporating a mechano-acoustic (MA) sensor, Bluetooth and cloud-

based data transmission, automated data-processing platform and a user-interface with a minimum request

for manual operation. (a) Schematics of the operational flow of the system that consists of a device, cloud, and data

processing platforms. (b) Sample three-axis acceleration raw data acquired continuously over 48 hours on a COVID-19

patient. Dashed lines indicate occurrences of various representative body processes of interest, shown in (c) zoomed-

in two-minute windows.



0 25 50 75 100 125 150 176 200 225

3 taps 10 coughing 10 laughing 10 throat clearing     30-s walking 10 cycles of breathing >20-s speaking 3 taps
A

c
c
e
le

ra
ti

o
n

 (
g

)

Time (s)

A
c
c
e
le

ra
ti

o
n

 (
g

)

Time (s)

F
re

q
u

e
n

c
y
 (

H
z
)

Tapping Coughing Laughing Throat Clearing Speaking

Spectrogram

Short Time 
Fourier 

Transform

Δt = 0.4
!t = 0.01

Broad-band 
Feature

PMA =
∑P(f>10 Hz) 

> Pthrs

Raw 
Data

Z ACC

Harmonics

f2 = 2f1

Speak/‘Cough’

Power

e

b

a

c

F
re

q
u

e
n

c
y
 (

H
z
)

f 2
(H

z
)

2f1 f2

Time (s)

‘Cough’ PMA Pthrs

10-2

10-4

10-6

Time (s) Time (s)Time (s) Time (s)

-104

0
d

P
M

A
(-

)

Figure 2. The signal preprocessing steps that identify broadband events of interest from the quiet and

speaking time from mechano-acoustic (MA) measurements. (a) The raw z-axis data generated from controlled

experiments on healthy normal subjects, with all the events of interest repeated in sequence following a designed

protocol (See Methods for details). (b) Example 400-ms clips of the raw z-axis data and their corresponding

spectrogram features. (c) Speaking signals distinct with a clear presence of harmonics (P(f1) and P(f2) of fundamental

frequencies f1 in the spectrogram analysis P(f), where 2f1 ≈ f2; See Ref. 43 for details). Detected speaking periods are

shaded in blue in the spectrogram. (d) After excluding speaking time, the detection of the high-frequency (f > 10 Hz)

MA power peaks with a minimum time interval of 0.4 s and a threshold of -10000 yields time stamps for cough-like

events that feature the impulse-like broad-band acoustics. (e) A flow diagram summarizing the preprocessing steps that

take in the raw z-axis data and outputs the time stamps for cough-like and speaking events, along with their MA power,

PMA.
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Figure 3. The machine learning algorithm for the classification of cough-like events extracted by the

preprocessing algorithm. (a) Steps of feature scalogram generation from raw data. (b) Representative scalograms of

events of interest. (c) The architecture of a convolutional neural network that takes in a feature scalogram and outputs

its probabilities of classes. (d) The averaged confusion matrix from the iterated 20 leave-one-out testings. (e) The

overall testing accuracy on each left-out subject using a model trained on the other 19 subjects. (f) The macro-averaged

Receiver Operating Characteristic (ROC) curves of each left-out subject using a model trained on the other 19 subjects

and the corresponding Area under the Curve (AUC).
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Fig. S4. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRALRN5F.
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Fig. S5. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2014F.
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Fig. S6. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRALH11F.
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Fig. S7. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2024M.
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Fig. S8. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL-M-H2.
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Fig. S9. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2012BM.
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Fig. S10. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2021F.
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Fig. S11. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2032F.
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Fig. S12. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL7-M-MGR.
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Fig. S13. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL1921F.
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Fig. S14. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL2031M.
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Fig. S15. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # NM12F.
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Fig. S16. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # NM17m.
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Fig. S17. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL-F-H5.
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Fig. S18. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRALPT1F.
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Fig. S19. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRAL1923M.
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Fig. S20. Long-term monitoring of respiratory biomarkers and vital signs. Results for (a) coughing, (b)

speaking, (c) heart rate, (d) respiration rate, and (e) physical activity of COVID-19 patient # SRALH8M.
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Tab. S1. Demographic information for all the participants in the study.

Usage # ID Gender Age Status Start Date
Days of 

Enrollment

Hours of 

recording
PCR+ Date

Testing 1 SRAL-F-H5 F 25 Patient 20-04-20 8 143 NR

Testing 2 SRALPT1F F 30 Patient 20-05-08 19 29 NR

Testing 3 NM12F F 45 Patient 20-04-21 15 114 20-04-18

Testing 4 SRALH11F F 52 Patient 20-05-04 17 182 20-04-09

Testing 5 SRALDOC3F F 52 Patient 20-04-23 5 16 NR

Testing 6 NM15F F 53 Patient 20-04-24 31 135 20-04-03

Testing 7 SRAL2032F F 59 Patient 20-05-13 7 77 NR

Testing 8 SRAL2030F F 65 Patient 20-05-12 3 35 NR

Testing 9 SRAL2014F F 65 Patient 20-05-12 15 188 20-05-03

Testing 10 SRAL2023F F 66 Patient 20-05-20 3 42 NR

Testing 11 SRAL2022F F 69 Patient 20-05-13 6 56 NR

Testing 12 SRAL2021F F 72 Patient 20-05-18 9 107 NR

Testing 13 SRALRN3F F NR Patient 20-05-08 6 92 NR

Testing 14 SRAL1921F F NR Patient 20-06-19 7 58 NR

Testing 15 SRALRN5F F NR Patient 20-06-06 20 142 NR

Testing 16 SRAL2033M M 32 Patient 20-05-22 6 59 NR

Testing 17 SRAL-M-H2 M 34 Patient 20-04-17 7 113 20-04-11

Testing 18 SRAL7-M-MGR M 41 Patient 20-04-14 8 88 NR

Testing 19 SRALH8M M 45 Patient 20-04-24 8 74 NR

Testing 20 SRAL2015M M 52 Patient 20-05-12 4 44 NR

Testing 21 SRAL2024BM M 55 Patient 20-05-27 6 51 NR

Testing 22 SRAL2012BM M 55 Patient 20-06-19 9 77 NR

Testing 23 NM17M M 56 Patient 20-05-07 9 114 20-05-05

Testing 24 SRAL2024M M 60 Patient 20-05-12 8 83 20-03-28

Testing 25 SRAL2031M M 61 Patient 20-05-12 10 60 20-04-21

Testing 26 SRAL1922M M NR Patient 20-06-19 1 6 NR

Testing 27 SRAL1923M M NR Patient 20-06-19 25 31 NR

Training 1 NU-M-1 M 37 Healthy 20-05-09 1 5 NA

Training 2 NU-M-2 M 53 Healthy 20-05-02 1 5 NA

Training 3 NU-M-3 M 29 Healthy 20-05-09 1 6 NA

Training 4 NU-F-1 F 26 Healthy 20-05-13 1 8 NA

Training 5 NU-M-4 M 30 Healthy 20-05-11 1 24 NA

Training 6 NU-F-2 F 29 Healthy 20-05-13 1 23 NA

Training 7 NU-F-3 F 29 Healthy 20-05-15 1 22 NA

Training 8 NU-M-5 M 40 Healthy 20-05-15 1 18 NA

Training 9 NU-F-4 F 27 Healthy 20-05-16 2 19 NA

Training 10 NU-M-6 M 25 Healthy 20-06-10 1 2 NA

Training 11 SRAL-F-H1 F 31 Patient 20-04-17 10 115 NR

Training 12 SRAL-F-H4 F 21 Patient 20-04-21 9 142 NR

Training 13 SRAL-F-H6 F 48 Patient 20-04-21 9 113 NR

Training 14 SRAL-M-H3 M 59 Patient 20-04-17 13 171 NR

Training 15 SRAL2020BF F 64 Patient 20-05-29 13 38 NR

Training 16 SRAL2025M M 75 Patient 20-05-19 8 101 NR

Training 17 SRAL2026F F 68 Patient 20-05-21 4 58 NR

Training 18 SRAL2032BM M 52 Patient 20-05-29 7 60 NR

Training 19 SRAL2019M M 60 Patient 20-06-05 10 38 NR

Training 20 SRAL2006M M 59 Patient 20-06-19 8 59 NR

Note:

NR = Not Reported

NA=Not Applicable



Tab. S2. Detailed statistical information of the performance of the CNN model on subjects.

Usage # ID

Cough Speak Throat clearing Laugh Motion artifact

Labeled 

# of 

events

sens. spec. prec.
Labeled 

# of 

events

sens. spec. prec.
Labeled 

# of 

events

sens. spec. prec.
Labeled 

# of 

events

sens. spec. prec.
Labeled 

# of 

events

sens. spec. prec.

Testing 1 SRAL-F-H5

Testing 2 SRALPT1F

Testing 3 NM12F

Testing 4 SRALH11F 185 0.98 0.86 0.71 182 0.64 1.00 1.00 62 0.92 0.97 0.74 95 0.54 0.97 0.73 183 0.97 0.98 0.94

Testing 5 SRALDOC3F

Testing 6 NM15F 292 0.97 0.98 0.95 291 0.96 1.00 1.00 51 0.98 1.00 1.00 51 0.80 0.99 0.84 291 1.00 0.99 0.97

Testing 7 SRAL2032F 384 0.76 0.96 0.88 381 0.47 0.98 0.90 119 0.89 0.89 0.43 145 0.84 0.91 0.50 382 0.88 0.95 0.86

Testing 8 SRAL2030F

Testing 9 SRAL2014F 406 0.78 0.98 0.95 404 0.74 0.98 0.96 62 0.94 0.94 0.44 13 0.92 0.94 0.14 404 0.91 0.94 0.87

Testing 10 SRAL2023F

Testing 11 SRAL2022F

Testing 12 SRAL2021F 410 0.69 0.98 0.93 407 0.78 0.99 0.96 184 0.97 0.90 0.59 11 0.73 1.00 0.57 408 1.00 0.94 0.86

Testing 13 SRALRN3F

Testing 14 SRAL1921F 232 1.00 0.95 0.87 229 0.93 1.00 1.00 99 1.00 1.00 1.00 117 0.69 0.98 0.86 232 1.00 0.99 0.98

Testing 15 SRALRN5F

Testing 16 SRAL2033M

Testing 17 SRAL-M-H2 301 0.99 1.00 0.99 298 0.97 1.00 1.00 101 0.98 1.00 0.99 86 0.99 0.99 0.86 300 0.99 1.00 1.00

Testing 18
SRAL7-M-

MGR
180 0.71 0.89 0.62 177 0.47 0.89 0.52 179 0.55 0.92 0.64 178 0.51 0.92 0.62 177 0.75 0.87 0.59

Testing 19 SRALH8M

Testing 20 SRAL2015M

Testing 21 SRAL2024BM

Testing 22 SRAL2012BM 287 0.94 0.97 0.92 284 0.64 0.98 0.93 249 0.90 0.94 0.82 12 0.92 0.96 0.19 285 0.93 0.96 0.90

Testing 23 NM17M

Testing 24 SRAL2024M 108 0.86 0.88 0.69 105 0.50 0.99 0.91 106 0.77 0.91 0.73 27 0.93 0.94 0.51 106 0.88 0.99 0.95

Testing 25 SRAL2031M

Testing 26 SRAL1922M

Testing 27 SRAL1923M

Training 1 NU-M-1 126 1.00 0.99 0.97 221 0.98 0.99 0.97 124 0.88 0.99 0.96 146 0.99 0.99 0.95 157 0.99 1.00 1.00

Training 2 NU-M-2 184 0.96 0.98 0.90 123 0.97 0.96 0.77 179 0.74 0.99 0.96 206 0.88 0.98 0.91 304 1.00 0.99 0.98

Training 3 NU-M-3 143 1.00 0.99 0.92 291 0.89 0.96 0.90 133 0.92 0.98 0.87 177 0.82 0.99 0.92 277 0.99 1.00 0.99

Training 4 NU-F-1 104 0.95 1.00 1.00 117 0.99 0.89 0.65 96 0.51 0.99 0.89 77 0.78 1.00 1.00 309 0.99 0.99 0.99

Training 5 NU-M-4 120 0.78 0.99 0.96 89 0.63 1.00 0.97 215 0.94 0.98 0.95 28 0.89 0.96 0.47 321 1.00 0.93 0.91

Training 6 NU-F-2 128 0.98 0.99 0.95 0 nan 0.99 0.29 155 0.98 0.99 0.97 103 0.87 1.00 1.00 315 1.00 0.99 0.99

Training 7 NU-F-3 98 0.87 1.00 0.99 179 0.92 0.97 0.89 0 nan 0.98 0.00 214 0.87 0.97 0.92 289 1.00 1.00 1.00

Training 8 NU-M-5 146 0.97 0.97 0.91 28 0.71 0.96 0.45 169 0.76 0.98 0.93 32 0.91 0.98 0.73 301 0.99 0.99 0.99

Training 9 NU-F-4 217 0.98 0.98 0.93 236 0.88 0.96 0.86 211 0.96 0.98 0.90 224 0.78 0.99 0.94 293 1.00 0.99 0.98

Training 10 NU-M-6 113 0.92 0.94 0.70 157 1.00 0.96 0.85 141 0.64 1.00 0.99 106 0.77 0.99 0.92 324 1.00 0.99 0.99

Training 11 SRAL-F-H1 166 0.85 0.99 0.97 169 0.88 0.98 0.94 39 0.67 0.97 0.58 29 0.76 0.97 0.58 250 0.99 0.95 0.93

Training 12 SRAL-F-H4 114 0.86 0.92 0.70 42 0.81 0.98 0.69 0 nan 0.98 0.00 87 0.36 1.00 1.00 416 0.97 0.90 0.94

Training 13 SRAL-F-H6 114 0.88 0.98 0.89 166 0.84 1.00 1.00 0 nan 0.99 0.00 0 nan 0.98 0.00 443 0.97 0.93 0.96

Training 14 SRAL-M-H3 47 0.91 0.99 0.91 200 0.92 0.98 0.92 55 0.69 0.99 0.79 47 0.81 0.99 0.81 495 0.99 0.96 0.97

Training 15 SRAL2020BF 165 0.90 1.00 0.99 102 0.95 0.99 0.95 0 nan 0.99 0.00 0 nan 0.99 0.00 179 1.00 0.97 0.96

Training 16 SRAL2025M 163 0.91 0.99 0.97 121 0.88 0.99 0.94 116 0.80 0.99 0.97 0 nan 0.97 0.00 190 0.97 0.94 0.89

Training 17 SRAL2026F 43 0.70 1.00 1.00 0 nan 0.99 0.00 0 nan 0.97 0.00 0 nan 0.97 0.00 30 1.00 0.81 0.79

Training 18 SRAL2032BM 24 0.79 0.98 0.59 199 0.84 0.96 0.93 0 nan 0.94 0.00 30 0.80 0.96 0.56 310 0.86 0.98 0.98

Training 19 SRAL2019M 314 0.90 0.96 0.92 377 0.80 0.98 0.96 0 nan 0.98 0.00 0 nan 0.94 0.00 282 0.90 0.98 0.94

Training 20 SRAL2006M 255 0.85 0.95 0.92 73 0.85 0.98 0.83 0 nan 0.99 0.00 0 nan 0.99 0.00 310 0.94 0.92 0.91



Figures

Figure 1

The health monitoring system incorporating a mechano-acoustic (MA) sensor, Bluetooth and cloudbased
data transmission, automated data-processing platform and a user-interface with a minimum request for
manual operation. (a) Schematics of the operational �ow of the system that consists of a device, cloud,



and data processing platforms. (b) Sample three-axis acceleration raw data acquired continuously over
48 hours on a COVID-19 patient. Dashed lines indicate occurrences of various representative body
processes of interest, shown in (c) zoomedin two-minute windows.

Figure 2

The signal preprocessing steps that identify broadband events of interest from the quiet and speaking
time from mechano-acoustic (MA) measurements. (a) The raw z-axis data generated from controlled
experiments on healthy normal subjects, with all the events of interest repeated in sequence following a
designed protocol (See Methods for details). (b) Example 400-ms clips of the raw z-axis data and their
corresponding spectrogram features. (c) Speaking signals distinct with a clear presence of harmonics
(P(f1) and P(f2) of fundamental frequencies f1 in the spectrogram analysis P(f), where 2f1 ≈ f2; See Ref.
43 for details). Detected speaking periods are shaded in blue in the spectrogram. (d) After excluding
speaking time, the detection of the high-frequency (f > 10 Hz) MA power peaks with a minimum time



interval of 0.4 s and a threshold of -10000 yields time stamps for cough-like events that feature the
impulse-like broad-band acoustics. (e) A �ow diagram summarizing the preprocessing steps that take in
the raw z-axis data and outputs the time stamps for cough-like and speaking events, along with their MA
power, PMA.

Figure 3

The machine learning algorithm for the classi�cation of cough-like events extracted by the preprocessing
algorithm. (a) Steps of feature scalogram generation from raw data. (b) Representative scalograms of



events of interest. (c) The architecture of a convolutional neural network that takes in a feature
scalogram and outputs its probabilities of classes. (d) The averaged confusion matrix from the iterated
20 leave-one-out testings. (e) The overall testing accuracy on each left-out subject using a model trained
on the other 19 subjects. (f) The macro-averaged Receiver Operating Characteristic (ROC) curves of each
left-out subject using a model trained on the other 19 subjects and the corresponding Area under the
Curve (AUC).

Figure 4



Mechano-acoustic sensing to quantify the transmission of droplets. (a) MA power vs. decibel meter
measurement for coughing, speaking, and laughing. (b) Experimental setup for optical imaging of
droplets. (c) Sample image of coughing. (d,e,f) Time series of MA z-axis data in sync with the analysis of
MA power and the imaging detection of the number of the particles. (g,h,i) Instantaneous images of
coughing, talking, and laughing at the peak of corresponding marked boxes in d,e,f. (j,k,l) Detected
particles with sizes indicated by the diameters of the grey circular symbols, overlapped with velocity
contour �elds at the corresponding instances in g,h,i; the color denotes streamwise velocity in horizontal
(x-axis) direction. (m,n,o) Box and whisker plots showing the number of particles for all measured cycles
of coughing, speaking, and laughing, respectively. See Methods section for full description.



Figure 5

Deployment of MA device to the in-�eld COVID-19 patients. (a) Example one-hour raw z-axis acceleration
data measured from a female patient. The automated algorithm detects cough-like events and outputs
�ve-way classi�cation for the events to coughing (0), speaking (1), throat clearing (2), laughing (3), and
motion artifacts (4). (b) The macro-averaged testing performance (sensitivity/recall, speci�city, and
precision) of each type of events on the 10 patients with manual labels, which include 10,258 randomly
sampled events in total. (c,d) Example results of the detected coughing and talking frequency and
intensity (color-coded) in �ve-minute windows from continuous 48-hour monitoring of the same patient
(raw acceleration data are shown in Fig. 1b-c). (e,f,g) The vital information, i.e., heart rate (HR), respiration
rate (RR), and physical activity (PA), extracted from the same measurement, with their amplitude
information color-coded.



Figure 6

Long-term monitoring of coughing and other biometrics of COVID-19 patients. Long-term
mechanoacoustic sensing of (a) cough frequency per hour, (b) talk time per hour, (c) heart rate, (d)
respiration rate, and (e) physical activity for the same patient shown in Fig. 5a, c-g, with the intensity or
amplitude information of the associated events color-coded in each time bin. (f) The time series plot of
coughing counts organized in days post the test-positive date from eights COVID-19 patients. (g) The age



distribution of the 27 patients whose data are not used to build the machine learning model. (h) The
histogram of coughing frequency of the 27 patients. (i) The cough intensity versus cough frequency
analyzed for each hour of data, clustered by four demographic groups.
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