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Abstract
Background

Bladder cancer (BC) is among the most frequent cancers globally. Although substantial efforts have been
put to understand its pathogenesis, its underlying molecular mechanisms have not been fully elucidated.

Methods

The Robust Rank Aggregation (RRA) approach was adopted to integrate four eligible bladder urothelial
carcinoma (BLCA) microarray datasets from the GEO. Differentially expressed genes (DEGs) sets were
identified between tumor samples and equivalent healthy samples. We constructed gene co-expression
networks using WGCNA to explore the alleged relationship between BC clinical characteristics and gene
sets, as well as to identify hub genes. We also incorporated the WGCNA and RRA to screen DEGs.

Results

CDH11, COL6A3, EDNRA and SERPINF1 were selected from the key module and validated. Based on the
results, significant downregulation of the hub genes occurred during the early stages of BC. Moreover,
Receiver operating characteristics (ROC) curves and Kaplan-Meier (KM) plots showed that the genes
exhibited favorable diagnostic and prognostic value for BC. Based on GSEA for single hub gene, all the
genes were closely linked to BC cell proliferation.

Conclusions

These results offer unique insight into the pathogenesis of BC and recognize CDH11, COL6A3, EDNRA
and SERPINF1 as potential biomarkers with diagnostic and prognostic roles in BC.

Introduction

Bladder cancer (BC), a prevalent urological malignancy, is a global public health concern, and the 9th
commonly diagnosed cancer in men, especially in high-income countries (1). Following a report by
Boccardo et al., nearly a quarter BC cases are at first diagnosed as muscle-invasive bladder cancer
(MIBC). Moreover, less than 16% of patients, characterized by non-muscle-invasive BC present with
invasive recurrent cancer during treatment, in most cases, within one year (2). As the tumor progresses,
BC survival rate declines remarkably. The BC symptoms are usually atypical, without any uniqueness, this
poses difficulty in earlier diagnosis (1). Based on the current understanding, BC diagnosis and
surveillance primarily incorporates cystoscopy and urine cytology (3), however, these approaches are
unsatisfactory (4). Besides, an ideal BC detection technique must be more convenient and rapid. Hence,
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researchers should urgently uncover more accurate indices for clinical staging, treatment and prognosis
of BC.

In this work, we explored 4 independent microarray datasets abstracted from Gene Expression Omnibus
web resource (GEO, https://www.ncbi.nlm.nih.gov/geo/) with Robust Rank Aggregation (RRA) to reveal
robust differentially expressed genes (DEGs) between BC tissues and matched control. Thereafter, we
subjected the DEGs to weighted gene co-expression network analysis (WGCNA) to determine key modules
related to clinical parameters. Using the gene ontology (GO) functional annotation and Kyoto
encyclopedia of genes and genomes (KEGG) pathway analysis, we assessed the potential functions of
the genes within the key module. In exploring the biosignatures and targets for BC therapy, we did a range
of analyses via mining of sequencing data with high-throughput, retrieved from publicly available
databases. Consequently, the present study reported CDH11, COL6A3, EDNRA and SERPINF1 as potential
biomarkers and therapeutic target of BC, and are all linked to the prognosis of individuals with bladder
cancer.

Materials And Methods

Microarray data

From the GEO web resource (https://www.ncbi.nlm.nih.gov/geo/), we retrieved the GSE13507, GSE7476,
GSE65635, as well as GSE37815 gene expression pattern matrix files. The workflow of validation,
identification, as well as functional analysis of DEGs are shown in Figure S1. The GSE7476 platform is
GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array), comprising 9 bladder cancer tissues and 3
healthy bladder tissues. The GSE13507 platform is GPL6102 (lllumina human-6 v2.0 expression
beadchip), and this dataset had 188 and 68 bladder cancer tissues, as well as healthy bladder tissues,
respectively. The GSE37815 platform is GPL6102 (lllumina human-6 v2.0 expression beadchip), which
harbor 6 and 18 healthy bladder tissues and bladder cancer tissues, respectively. The GSE65635 platform
is GPL14951 (lllumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip), containing 3 healthy
bladder tissues and 9 bladder cancer tissues (Table S £)(5-8). In addition, we downloaded the BLCA RNA-
sequencing and clinical data from the TCGA web resource (https://cancergenome.nih.gov/) for analysis.
The pathological types of bladder cancer include: Transitional cell papillomas and carcinomas (409
cases), adenomas and adenocarcinomas (1 case), epithelial neoplasms, nos (1case) and squamous cell
neoplasms (1case).

Data processing

Employing the GEO website, sequential matrix files of cohorts were retrieved. The R package “limma” (9)
was used for data normalization and identify the DEGs. Then, we employed the RRA to integrate the
findings of the 4 cohorts to identify DEGs with the highest significance (10). Genes with a corrected p-
value < 0.05 and |log fold change (FC)| > 1 were considered as significant DEGs in the RRA analysis.

Gene Ontology and KEGG pathway analysis
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With the Database for Annotation, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/), important for functional analysis of genes, we performed KEGG pathway
enrichment and Gene Ontology (GO) functional analyses, p<0.05 for statistical significance.

WGCNA analysis of the filtered genes

Herein, 343 DEGs were retrieved following RRA analysis. This aided in obtaining WGCNA with expression
data from TCGA. Using the R package “WGCNA", we uncovered the associated hub genes and clinical
traits-related modules (11). Using the topological overlap measure (TOM) matrix, transformed through an
adjacency matrix, we estimated its network connectivity (12). Thereafter, we established a hierarchical
clustering dendrogram of the TOM matrix employing the average distance with a value of 20 as the
minimum size threshold. This was to group genes with similar expression patterns into distinct gene
modules, after which we determined the correlation of different module eigengenes (MEs) with the
clinical features. We evaluated the gene significant (GS) quantifying correlations between individual
genes and the module membership (MM) as well as the clinically interesting trait which depicts the
association of the module eigengenes with gene expression profiles. Following previous reports, if the GS
and MM were highly associated, the highly critical elements in the modules were also strongly linked to
the trait (13). We used the highly correlated module to explore potential function via GO and KEGG
analyses and for hub gene screening. Notably, we defined hub genes with: Significance (GS)>0.2, and
modules membership (MM)>0.8.

Validation and survival analysis of hub genes

We employed “ggstatsplot” (R packages, https://cran.r-projrct.org/web/packages/ggstatsplot) to verify
the levels of expression of hub genes between BC and neighboring healthy tissue sample. Also, we
evaluated how they are correlated with clinical traits in The Cancer Genome Atlas bladder urothelial
carcinoma (TCGA-BLCA) dataset. Accordingly, we employed the independent samples T-test or one-way
analysis of variance (ANOVA). To evaluate the diagnosis values of hub genes, we generated receiver
operating characteristic (ROC) curves and used “survminer” (R package, https://CRAN.R-
project.org/package=survminer) and “survicval” (R package, https://CRAN.R-
project.org/package=survival) to calculate for hub genes. For tumor samples within the TCGA-BLCA
dataset, we classified them into two groups relying on the best-separation cut-off value for each hub
gene. After that, we plotted the Kaplan-Meier (K-M) survival curves.

Oncomine database

Herein, we retrieved transcriptional expression profiles of CDH11, COL6A3, EDNRA and SERPINF1 in BC
patients using the Oncomine web resource (https://www.oncomine.org) (14). To compare the differences
in transcriptional expression, we employed Students’ t-test with fold change and cut-off of pvalue as
follows: Data type: mRNA, p-value=0.01, gene rank=10%, Fold Change=1.5.

Tumor Immune Estimation Resource (TIMER)
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TIMER (https://cistrome.shinyapps.io/timer/) offers a web interface, which is user friendly, important for
dynamic analysis of the associations of immune infiltrates with gene expression (15). Using the Gene
module, we validated the association between immune infiltration and genes. We then generated
scatterplots, depicting statistical significance and Spearman’s correlation.

Data processing of gene set enrichment analysis (GSEA)

Using the R package “clusterprofiler’(16), we conducted a GSEA analysis of hub genes using TCGA-BLCA
RNA-dataset. For each hub gene, we determined the median expression by classifying 414 BLCA samples
into high and low expression groups. We considered p<0.01 to be statistically significant. For the
reference gene set, we used “h.all.v7.1.symbols.gmt”’, abstracted from the Molecular Signature Database
(MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp).

Statistical analysis

The results were given as means + SD of independent experiments. p-Values were calculated using SPSS
v. 24.0 software with unpaired, two-tailed Student’s #test or where indicated with one-way analysis of
variance followed by Turkey's test. p-Values of less than 0.05 were considered to indicate statistical
significance. *p < 0.05, **p < 0.01, and ***p < 0.001.

Results

Identifying robust DEGs via the RRA method

Using the selection criteria, 4 independently eligible BLCA datasets were enrolled for subsequent RRA
analysis. A series of clinical traits, including GEO accession ID, Platform ID, as well as the number of
genes for each platform are displayed in Table S [(5-8). Based on RRA analysis data, we identified 111
up-regulated and 232 down-regulated remarkable DEGs (Supplementary file 1). Besides, the top 50 up-
regulated, as well as down-regulated DEGs are depicted in the heatmap (Figure 1).

Functional enrichment analysis of DEGs

The biologically functioning DEGs were revealed via the GO and KEGG functional enrichment analysis
using DAVID. We considered the results significant only if p<0.05, we have highlighted the three
categories of the GO results in Figure 2A and Figure 2B. Results on the upregulated and downregulated
DEGs in top 15 findings derived from the GO enrichment analysis are depicted in Table S K and Table S K.
Of note, the upregulated genes were highly enriched in protein binding (ontology: MF), nuclear division
during mitosis (ontology: BP), and cytoplasm (ontology: CC). Besides, the downregulated genes were
highly abundant in, extracellular exosome (ontology: CC), and binding of calcium ions (ontology: MF) and
cell adhesion (ontology: BP). As to KEGG pathway analysis, ECM-receptor interaction, Focal adhesion,
P13K-Akt signaling cascade, Proteoglycans in cancer, as well as Vascular smooth muscle contraction,
were mostly associated with these genes (Figure 2C).
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WCGNA analysis and modules significance calculation

To reveal the key modules highly related to the clinical characteristics of BC, we analyzed the WGCNA on
the TCGA-BLCA cohort by integrating the DEGs retrieved from the RRA analysis (Figure 3). Clinical
information of BC sample from TCGA, including stage, age, grade, and TNM classification were retrieved
(Figure 3A). We set the soft-thresholding power at 6 (scale free R?=0.9) and cut height as 0.25.
Consequently, 4 modules were identified (Figure 3B-3D). Based on the heatmap showing module-trait
correlations, the blue module shows the highest correlation with clinical symptoms (Figure 3E),
particularly the stage (correlation coefficient=0.24, p=1E-06,). The blue module had 67 genes (see
Supplementary file 2). We set the module membership (MM)>0.8 and gene significance (GS)>0.2 then
identified 19 hub genes from the blue module: EDNRA, SERPINF1, COLEC12, FBLNS5, DDR2, SFRP2,
OLFML3, AEBP1, DCN, CDH11, TIMP2, LUM, DPT, COL6A3, COL16A1, EMILINN1, SPON1, OLFML1 and
CRISPLD2. Through GO and KEGG analyses, we uncovered the prospective biological roles of the genes
in the blue module. The highest remarkable GO terms for biological process, molecular function, and
cellular component, as well as KEGG pathways, are depicted in Figure 4A-4D. Following this evaluation,
genes within the blue modules were primarily linked to signal transduction, cell adhesion, and
extracellular matrix organization.

Survival analysis and significant gene identification

We assessed whether the 19 hub genes in BC were clinically relevant. To achieve this, correlation
assessment of the hub genes with prognosis outcome of BC patients in TCGA-BLCA data sets was
performed. By optimizing the cut-off values for hub gene analysis, CDH11, COL6A3, EDNRA and
SERPINF1 were highly expressed and were associated with poor prognosis (Figure 5A and Figure S2).
Furthermore, receiver operating characteristics (ROC) curves demonstrated that they had high diagnostic
potential as BC biosignatures (Figure S3, CDH11 AUC: 0.699, COL6A3 AUC: 0.697, EDNRA AUC: 0.833,
SERPINF1 AUC: 0.804), suggesting the potential use of the genes as indicators in monitoring prognosis.

Differential expression of CDH11, COL6A3, EDNRA and SERPINF1

We compared the mRNA expression of CDH11, COL6A3, EDNRA and SERPINF1 between bladder tumor
and neighboring healthy tissues, respectively. This was based on data for RNA-sequence obtained from
the Oncomine and TCGA databases. Notably, the transcriptional levels of CDH11, COL6A3, EDNRA and
SERPINF1 expressions were lowly expressed in BC tissues in comparison to healthy tissues (Figure 5B).
Besides, there was a significant correlation of CDH11 mRNA expression and BC samples with a mild
clinical stage (Figure 5C), whereas the lowest CDH11 mRNA expression was reported stage  +X. Similarly,
we evaluated the association of CDH11 mRNA expression with different pathological grade, whereby it
was revealed that mRNA expression of CDH11 is significantly correlated with lower pathological grades
(Figure 5D). Additionally, mRNA levels of COL6A3, EDNRA and SERPINF1 were lower in BC tissues (Figure
5B). COL6A3, EDNRA and SERPINF1T mRNA expression in BLCA sample were significantly correlated with
mild clinical staging, whereas the lowest COL6A3, EDNRA and SERPINF1T mRNA expression were detected
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in stage Il +[ (Figure 5C). Moreover, mRNA expression levels of COL6A3, EDNRA and SERPINF1 were
related to lower clinicopathological grading (Figure 5D). Collectively, we demonstrated that the
expressions of CDH11, COL6A3, EDNRA and SERPINF1 were lower in BC tissues compared to healthy
tissues. Thus, the hub gene CDH11, COL6A3, EDNRA and SERPINF1 could play a pivotal role in bladder
cancer progression. Overall, low expression of CDH11, COL6A3, EDNRA and SERPINF1T mRNA is
significantly associated with mild clinical-pathological parameters in BC patients and is significantly
lowered in the early disease stages. This may be vital in the early BC diagnosis.

Association of hub genes’ expression with tumor-infiltrating immune cells

Referring to the critical roles of invading immune cells within the tumor microenvironment, we
comprehensively analyzed immune signatures plus immune infiltrates. From the TIMER web resource, the
association between CDH11, COL6A3, EDNRA and SERPINF1 immune signatures and tumor purity or
numerous vital immune cells was revealed. CDH11, COL6A3, EDNRA and SERPINF1 were all negatively
correlated with tumor purity. The correlations (Cor>0.5 and p<0.05) were considered to be the strongest
correlated. Although it was observed no or weak correlations of these genes with infiltration of CD8* T
cells, dendritic cells, CD4™ T cells, B cells, and neutrophils, CDH11, COL6A3 and SERPINF1 were
significantly associated with macrophages. (Figure 6)

GSEA analysis

To assess the potential roles of CDH11, COL6A3, EDNRA and SERPINF1 in BC, GSEA was conducted for
hallmark analysis of the genes on the TCGA-BLCA RNA-seq data. Genes in low expression CDH11,
COL6A3, EDNRA and SERPINF1 groups were enriched in “MYC-TARGETS-V2” “MYC-TARGETS-V1", and
“OXIDATIVE-PHOSPHORYLATION" pathways (Figure 7). Meanwhile, the “DNA-REPAIR” gene set was
abundant in low-expression groups of CDH11, COL6A3 and EDNRA, and “PEROXISOME" was enriched in
the COL6A3 and EDNRA low-expression groups.

Discussion

Bladder cancer, being the most prevalent malignant tumors of the genitourinary system has in recent
years, shown an increasing incidence. More importantly, identifying the prognostic, as well as predictive
biosignatures for BC is vital because BC is a diverse disease with an unpredictable clinical endpoints
(17). A wealth of studies have shown that progression of BC is attributed by the accumulation of cellular
and molecular aberrations, such as transcriptomic, miRNA, epigenetic, metabolomic and proteomic
abnormalities (18-20). Following the multiple “omics” research that purposed to reveal diagnostic
biomarkers for early BC detection, both the heterogeneity and the potential commonalities at the
molecular level were highlighted in different BC stages. Of note, there is evidence on BC molecular
heterogeneity, associated with several changes at genetic and protein levels. Therefore, a bunch of
comprehensively-selected candidates could be representative of these tumors. Several assessments
employing microarray and RNA-seq data have been performed to uncover novel therapeutic targets and
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biomarkers for BC; however, inconsistencies exist on the DEGs detected in various studies (21). Of
interest, we present the first report to the use of RRA-WGCNA to explore novel hub genes related to BLCA.

In the present work, unlike a single genetic or cohort study, we incorporated 4 qualified BLCA datasets
from GEO into the RRA technique, after which several robust DEGs were identified. In total, 343 DEGs were
revealed, including 111 up-regulated and 232 down-regulated genes. Then, we conducted GO based on
DAVID, which demonstrated that the DEGs were mainly abundant in cell division, mitotic nuclear division,
cell proliferation, protein kinase binding and protein serine/threonine kinase activity. Based on these
observations, we confirmed their role in BC development (22-24). Additionally, enrichment of the DEGs in
some KEGG pathways, for instance, ECM-receptor interaction and Focal adhesion implicate that they are
essential in the pathogenesis of BC. Following GO and KEGG analysis findings, we proposed that the
DEGs have a close association with the development of BC.

Moreover, upon constructing the co-expression network, as well as identifying the hub genes via WGCNA,
we revealed that genes within the co-expression module which are highly associated with clinical features
of BLCA samples in TGCA (blue module) were enriched in: Signal transduction, cell adhesion, P13K-Akt
signaling pathway as well as ECM-receptor interaction by GO and KEGG analyses. After filtering for GS
and MM value, 19 hub genes (EDNRA, SERPINF1, COLEC12, FBLNS, DDR2, SFRP2, OLFML3, AEBP1, DCN,
CDH11, TIMP2, LUM, DPT, COL6A3, COL16A1, EMILINN1T, SPON1, OLFML1 and CRISPLD2) were
eventually obtained. Notably, most of them could exert essential functions in BC pathogenesis (25).
Moreover, after performing survival analysis, CDH11, COL6A3, EDNRA and SERPINF1 were revealed as
the only 4 outstanding genes.

CDH11 (cadherin-11), which is a cadherin superfamily member, a group of intercellular adhesion
molecules dependent on calcium, which are critical for adhesion, proliferation and invasion of cells (26,
27). The expression of CDH11 has been correlated to numerous pathologic processes, including fibrosis
and inflammation, which is essential as it progresses from chronic inflammation to cancer (28, 29).
Besides, CDH11 has been implicated in breast, prostate, colorectal cancer metastases (30-32). However,
based on recent studies, CDH11 functions as a gene that suppresses tumors, upon CDH11 inactivation,
which is linked to the malignant characteristics of different human tumors (33-36). However, the
association of CDH11 with bladder cancer is yet to be fully elucidated.

COL6AS3 (Collagen [l alpha 3), a protein of the extracellular matrix, is present in a majority of connective
tissues, such as skin, muscle, vessels, and tendons (37). Based on recent understanding, numerous
studies have outlined the critical function of COL6A3 in the prognosis and diagnosis of prostate, lung,
and colorectal cancers (38—40). Besides the above findings, the use of COL6A3 to diagnose and
prognose BC is still elusive.

EDNRA is a G-protein coupled endothelins receptor which is expressed on vascular smooth-muscles cells
as well as on neuronal cells, kidney, and heart (41). Notably, the potential functional effects of EDNRA in
metastasis and cancer progression remains unclear.
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SERPINFT1, also known as pigment epithelium-derived factor (PEDF), is secreted as a protein with multiple
functions. It impedes metastasis and angiogenesis, promotes tumor cell differentiation and apoptosis,
and activates cellular immunity in fighting breast cancer, cervical cancer, and melanoma (42-44). Of
note, SERPINF1 promotes vascular microenvironment maturation and regression of immature blood
vessels (45). Some reports show that SERPINF1 potentially impede the migration and proliferation
simultaneously, which is induced via the vascular endothelial growth factor (VEGF) (46). Consequently, it
inhibits angiogenesis through the interaction with specific cell surface receptors (46), though its actual
role in BC progression is unclear.

Herein, we demonstrated that CDH11, COL6A3, EDNRA and SERPINF1 are significantly down-regulated in
the early stages of bladder cancer, thus may be utilized as indicators for early bladder cancer diagnosis.
Moreover, ROC curves demonstrated that all the 4 genes, when adopted as biomarkers could distinguish
tumors from healthy bladder tissue in a more sensitive and accurate manner. It is worth noting that all
these genes are prospective candidates as prognosis predictors as well as therapeutic targets.

For the hub genes, we further explored their biological functions by inferring to the TIMER dataset and
GSEA. It was noted that the expression of CDH11, COL6A3, EDNRA and SERPINF1 were negatively
associated with tumor purity. However, we did not find any or weak relationships for hub genes and
invading immune cells except for macrophages in BC tissues. Based on TIMER results, we suggested that
CDH11, COL6A3 and SERPINF1 may exhibit their macrophage-associated functions. Recent studies also
revealed that macrophages enhance the tumorigenesis and increase aggressive clinical manifestations
of BC (47, 48). GSEA showed that significant pathways for COH11, COL6A3, EDNRA and SERPINF1
include “MYC-TARGETS-V1”, “MYC-TARGETS-V2" and “OXIDATIVE-PHOSPHORYLATION". Of note, all the
gene sets with the highest enrichment scores had a close association with tumor proliferation (49-51).

Conclusion

In a nutshell, the present study integrated RRA, WGCNA with other bioinformatics tools to identify and
characterize numerous robust DEGs and significant gene modules in BC. Of note, 4 hub genes (CDH11,
COL6A3, EDNRA and SERPINF1) were strongly down-regulated in BC tissues, which may be vital in
uncovering the underlying mechanisms related to BC progression and provide more insights into its
molecular pathogenesis in addition to defects in the signaling pathways of hub genes associated with
the BC.
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enrichment analysis. (A) Upregulated DGEs for GO-enriched functions. (B) Downregulated DGEs for GO-
enriched functions. (C) KEGG pathway enrichment analysis.
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DEGs clustered based on a dissimilarity measure (1-TOM). (E) Heatmap of the correlation of module
eigengenes with clinical features of BLCA. Each cell show the correlation coefficient and P value. (F)
Scatter plot of module eigengenes are denoted in the blue module.
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The functional annotation of the WGCNA module highly correlated with clinical traits. (A) Biological
process GO terms for genes in the blue module. (B) Cellular component GO terms for genes in the blue
module. (C) Molecular function GO term for genes in the blue module. (D) KEGG analysis for genes in the
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Figure 5

Survival plot and transcriptional expression of hub genes in bladder tumor samples and neighboring
healthy tissues. (A)Association between CDH11, COL6A3, EDNRA and SERPINF1 expression and disease-
free survival time in the TCGA-PRAD cohort. The red line shows samples with highly expressed genes
(above best-separation value), and the blue line indicates the samples with lowly expressed genes (below
best-separation value). (B) CDH11, COL6A3, EDNRA and SERPINF1 gene expression differences between
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BC and neighboring healthy tissues from the Oncomine dataset. (C) Transcriptional level of CDH11,
COL6A3, EDNRA and SERPINF1 expression in BC samples with different stages from the TCGA-BLCA
cohort. (D) Transcriptional level of CDH11, COL6A3, EDNRA and SERPINF1 expression in BC samples

with different grades from the TCGA-BLCA dataset. *p<0.05, **p<0.01, and ***p<0.001.
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