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Abstract
Background

Due to their role as obligate parasites of marine microorganisms, viruses are primary mediators of marine
biogeochemical cycles. Recent studies have provided irrevocable evidence showing that viruses augment
the metabolisms of bacteria and archaea through expression of auxiliary metabolic genes (AMGs).
Several studies have shown that AMGs affect the biogeochemical recycling of sulphur and nitrogen but
comparatively less is known regarding their in�uence on phosphorus recycling.

Results

Here, we provide the �rst insights regarding the potential effects of phosphorus limitation and AMGs on
putative prokaryotic hosts in the euphotic zone of the South Atlantic Ocean (SAO). We identi�ed 7,176
viral contigs that were clustered into 5,999 viral operational taxonomic units (vOTUs, >5kb). These SAO
viral communities appear to be unique, as over 89% had no taxonomic assignment, possibly due to the
genetic endemism in this ocean. Three phosphatases, phoN, gmhB and rnhA-cobC, were identi�ed as P-
cycle AMGs in both prokaryotic double-stranded DNA viruses and eukaryotic Nucleocytoplasmic Large
DNA viruses. These genes are associated with the acquisition of inorganic phosphate from phosphate
esters, the largest reservoir of P-containing compounds in the marine environment. AMGs were identi�ed
in both uncultured and unclassi�ed prokaryotic double-stranded DNA viruses predicted to infect
Bacteriodetes, Proteobacteria, Chloro�exota and Poseidonales lineages.

Conclusion

Together, these results suggest that viruses modulate P-cycling in euphotic zones of the ocean and that
the acquisition of these phosphatase genes may be cues of P-ester stress.

Background
Viruses are the most numerically abundant entities on Earth and substantially regulate the structure and
function of microbial communities [1–3]. As obligate parasites of marine microorganisms, viruses play
essential roles in marine environments [1, 4–6]. Previous studies have shown that viruses in�uence
nutrient cycling, functional diversity of microbes and particle sinking rates across a diverse range of
marine ecosystems [7–10]. The complexity of microbial interactions such as widespread horizontal gene
transfer complicates our efforts to understand the precise impacts of viruses on ecosystem services [4,
11, 12].

There has been some evidence showing the genetic potential of viruses to augment microbial
metabolism through auxiliary metabolic genes (AMGs) [13–17]. AMGs encoded by marine
bacteriophages are metabolically diverse and include various processes such as photosynthesis and the
sequestration of nitrogen, sulphur, and carbon [18–21]. Metabolic genes that are equally suggested to
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augment host cellular processes including central nitrogen metabolism, iron and phosphorous uptake
have also been reported for eukaryotic Nucleocytoplasmic Large DNA viruses (NCLDVs) [22, 23]. The
discovery of diverse AMGs and elucidating their metabolic control on microbiomes has become the
subject of extensive research over the past few years [24–28]. In oligotrophic environments, viruses may
maximize host �tness through the expression of AMGs, which have been shown to increase metabolic
�exibility [29–31]. For instance, cyanophages in oligotrophic systems with particularly low phosphorus
levels have been shown to encode alkaline phosphatase (PhoA) and high-a�nity phosphate-binding
(pstS) genes. These �ndings suggest that cyanophages play important regulatory roles linked to host
responses to phosphate stress [32–34]. Moreover, genes for inorganic phosphate transporters (Pho4)
have also reported to be encoded by NCLDVs that infect phytoplankton, further suggesting the overall
importance and contributions of viral families towards host responses to nutrient uptake under limiting
conditions [35]. Dissolved inorganic phosphate (DIP) is one of the key macronutrients, which limits
microbial growth and primary production [36, 37]. In oligotrophic oceanic regions, P is assimilated as
fractions of the dissolved organic phosphorus (DOP) that constitute P-esters, P-anhydrides, and
phosphonates [38, 39]. This inventory of DOP exceeds the pool of inorganic phosphate which is a key
chemical component of DNA, RNA and phospholipids [40, 41]. As a result microbial communities and
viruses contribute substantially to P-acquisition and turnover [41, 42]. Oligotrophic plankton communities
from the North Atlantic have been reported to replace membrane phospholipids with those lacking
phosphate in response to P-starvation [43, 44]. In another study, conducted in the Mediterranean Sea, C-P-
lyase complex (phnGHIJKLNMOP), high-a�nity inorganic phosphate (pstSCAB) and organophosphate
transport operons (phnCDE-phoU) were prevalent amongst Gammaproteobacteria, Alphaproteobacteria
and Actinobacteria lineages [32]. Understanding of host-cell reprogramming through AMGs has been
focused on coastal and marine environments in the Paci�c [45], Indian [46] and North Atlantic Ocean [33,
36]. However, we lack a mechanistic understanding of virus-host dynamics in other marine environments.

The South Atlantic Ocean (SAO) extends from the equator to 40° south and is delimited by the
subtropical convergence [47]. The SAO is limited in phosphorus, with concentrations ranging from 70 -
150nM although, these levels are comparatively higher than those in the North Atlantic Ocean (NAO) [48].
This is likely due to extensive nitrogen �xation in the NAO, which results in phosphorous depletion,
subsequently affecting microbial communities in the NAO [49–51]. However, we lack a clear
understanding regarding the importance of viruses in biogeochemical cycling and in particular P
acquisition. Previous studies suggest that the SAO is dominated by Alphaproteobacteria,
Gammaproteobacteria, Thaumarcheota and Actinobacteria microbial lineages [52, 53]. Viruses linked to
these microbial communities were mostly from members of the Caudovirales order. These viruses were
shown to harbour AMGs involved in amino acid and photosynthetic metabolism [52]. An understanding
of AMGs involved in P acquisition may help in identifying the effects of viruses on marine ecosystems.

We primarily characterized the host-virus linkages in euphotic zones of the SAO and used shotgun
metagenomic analysis to predict host-virus interactions in the SAO and reveal their role in P-cycling
through AMGs. In addition to providing a compendium of metagenome assembled genomes (MAGs)
from these environments, we demonstrate that the SAO metagenomes harboured 27 P-related AMGs.
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Several of these AMGs were directly linked to assimilation of organic phosphorus. These genes included
phosphatases, gmhB and rhnA-cobC, which have not previously been described as AMGs. Our results
indicate the potential of viruses to augment P-acquisition from phosphate-esters and phosphonates in
the SAO and in other marine environments.

Results And Discussion

A compendium of phylogenetically diverse bacterial and
archaeal communities
To estimate the diversity of the epipelagic microbial communities, we generated 620 metagenome
assembled genomes (MAGs). These were dereplicated to 104 high and medium quality MAGs (>50%
completeness and <10% contamination) following the MIMAG reporting standards [54]. In this study, we
were able to retrieve a disproportionate number of high (32) and medium (72) draft quality MAGs
compared to a recent study conducted in the SAO [52] (Supplementary Table 2). These MAGs represent
the largest compendium of SAO genomes and comprised of taxonomically diverse archaeal (2) and
bacterial (8) phyla (Fig. 1b and 1c). MAGs from our study ranged from 0.6Mbp to 6.92Mbp and encoded
between 854 to 6,648 proteins consistent with genome completeness estimates. Within bacterial MAGs,
members of Bacteriodia (17), Gammaproteobacteria (26) and Alphaproteobacteria (14) classes were
highly represented in each sampling station. For archaea, members of Thaumarchaeota (11) and
Thermoplasmatota (5) phyla were only recovered from a few sampling sites (sampling stations 1, 2 and
3).

The �ve Thermoplasmatota archaeal MAGs obtained were a�liated with marine group IIb (MG-IIb)
classi�ed as Poseidoniales ord. nov. (Supplementary Table 2) [55]. An important aim of our study was to
elucidate the spatial distributions of this group in the SAO. For instance, recent studies have shown that
MG-IIb distributions increased with inorganic nutrient availability [56, 57]. Marine euphotic zones are
characterised by sunlight, photosynthetic driven metabolism, relatively low nutrient availability and high
temperatures [58–61]. Similar to previous studies, the inferred metabolic capacity showed that functions
characteristic of chemoheterotrophs including TCA cycle, glycolysis, amino acid synthesis and aerobic
respiratory chain were common among bacterial and archaeal MAGs [52, 55, 62] (Supplementary Table
3). The compendium of South Atlantic Ocean metagenomes suggests substantial metabolic versatility in
bacteria and archaea from this environment. In this study, MAGs were binned to predict viral-host
assignments and assess the potential of viral mediated augmentation of phosphorus cycling amongst
different microbial lineages.

SAO harbours novel viral communities
To explore viral communities associated with the SAO euphotic zones, microbial communities were
processed using VirSorter2. The viral population obtained in this study were expected to be derived from
either proviruses, viruses in infection and replication stages in microbial cells or giant viruses because
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microbial cell fractions larger than 0.2 µm were used in this study. The results suggest that the 24
metagenomes harboured 7,363 viral contigs. These contigs were assessed for quality using CheckV and
the resultant contigs, with qualities ranked as complete (0.2%), high quality (27,8%), medium quality
(19,8%) and low quality (43,4%) (Supplementary Table 4 and Supplementary Figure 1) were further used
for downstream analyses. Of these, 7,176 contigs (approximately 3% reduction) with sizes >5kb were
clustered at >95% ANI over 80% of the shortest sequence. These resulted in 5,999 viral operational
taxonomic units (vOTUs) of which 1,663 were >10kb. A large proportion of the total vOTUs comprised
3,581 putative NCLDVs as well as 2,348 dsDNA viruses (Supplementary Figure 2). Only 423 of 3,581
NCLDVs had >= 1 hallmark genes, and of these only 2 had one polB and MCP proteins, respectively.
Based on the underrepresentation of these marker genes within the putative NCLDV contigs we did not
conduct taxonomic classi�cations. Comparisons of prokaryotic-speci�c dsDNA vOTUs against known
prokaryotic and archaeal viruses from NCBI RefSeq (version 85) using vconTACT2 indicated that only
8.5% of these were classi�ed within the Caudovirales order (Figure 2, Supplementary Figure 2). These
comprised Myoviridae (383), Siphoviridae (100), Podoviridae (78) as well as two previously unidenti�ed
genome-based viral families in the SAO, namely Autographiviridae (n=36), Demerecviridae (n=16)
(Supplementary Figure 2) [63, 64]. Assessments of viral-host interactions suggest that a large proportion
of uncharacterised viruses are putative host of reconstructed MAGs (Supplementary Table 5), suggesting
that these lineages may be sources of organic matter which may shunt nutrients to the aphotic zone. The
remaining 28.9% (excluding putative NCLDV contigs) of prokaryotic dsDNA vOTUs, that could not be
taxonomically assigned, suggests that these could represent a wide range of uncharacterised viral
communities in the SAO (Supplementary Figure 3). Consistent with previous studies, our results suggest
that the SAO viral communities possess protein coding genes which have no homologous hits against
the NCBI nr database. However, a much lower proportion of these genes (only 2-3%) were viral [52].

Euphotic zone viruses encode AMGs that potentially
reprogram phosphorus cycling
To further understand how viruses in�uence nutrient cycling and biogeochemical processes in the SAO,
we explored vOTUs for the presence of auxiliary metabolic genes (AMGs). Our analysis revealed 1,279
AMGs involved in a diverse range of metabolic processes among 804 vOTUs of which 356 and 448 were
identi�ed in both putative NCLDVs as well as dsDNA viruses. Overall, AMGs involved in carbohydrate,
amino acids and cofactors/vitamins metabolic pathways were the most overrepresented (Supplementary
Figure 4). This suggests that the composition and abundance of AMGs may be in�uenced by host
diversity and intrinsic environmental conditions [65]. Therefore, the diversity and abundance of AMGs
involved in nutrient cycling re�ects speci�c genes that potentially contribute to host adaptation and
nutrient acquisition. Among these, were several AMGs, identi�ed in seven uncharacterized vOTUs, which
were linked to P assimilation and acquisition. These included acid phosphatases (phoN) and other
previously undescribed phosphatases such as D-glycero-D-manno-heptose 1,7-bisphosphate
phosphatase (gmhB) and ribonuclease H/adenosylcobalamin/alpha-ribazole phosphatase (rhnA-cobC)
(Figure 3, Supplementary Table 6). The presence of phosphorus cycling AMGs in the oligotrophic SAO
indicate that viruses harbour niche-speci�c AMGs for particular environments in which they coexist with
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their hosts [18, 20, 26, 66, 67]. As these were of major interest, we further explored the genetic content and
structure of these AMGs following established methods [26, 67]. The screening involved: (i) using Vibrant
v1.2.0 to search for AMGs as previously described [11], (ii) structural modelling using SWISS-MODEL and
Phyre2 for quaternary and tertiary structures respectively and (iii) assessment of promoters using
BPROM. All three sequences of P-AMGs genes were annotated as those linked to phosphate acquisition,
based on protein structure models (Figure 4, Supplementary Table 6).

Acid phosphatase The phoN acid phosphatase genes encode for enzymes that catalyse the hydrolysis of
phosphomonoesters (P-esters) to inorganic phosphate at optimal pH under phosphorus stress [68]. P-
esters form part of the most widespread pool of dissolved organic phosphorus (DOP) in phosphorous-
limited marine environments [34, 69]. The presence of phoN, as an AMG, suggests the potential of viruses
in the SAO to enhance and facilitate the assimilation of organic phosphorous in bacterial
(Gammaproteobacteria, Dehalococcoidia and Bacteroidia) and archaeal (Poseidoniia) lineages following
viral-host association analysis using VirHostmatcher (Supplementary Table 6). As the phoN gene was
identi�ed in viral contigs, we conducted phylogenomic analyses to assess its evolution and check for
possible horizontal gene transfer events. The analysis resulted in incongruent ML gene trees, indicating
that these phoN AMGs were likely acquired from bacterial and archaeal microorganisms (Figure 5). This
result suggests that these lineages may be highly abundant in the SAO [52, 53] or that they likely respond
rapidly to P-stress.

D-glycero-D-manno-heptose 1,7-bisphosphate The gmhB gene encodes a phosphatase, which hydrolyses
D-glycero-D-manno-heptose 1,7-bisphosphate, producing phosphate as a by-product [70]. This gene is a
member of the haloalkanoic acid dehalogenase (HAD) enzyme super-family and has not been previously
detected in viral genomes. The putative giant viral contig (S11_k141_598071), which harboured this new
AMG, had 45 other genes (Figure 4). Of these genes, three had functional assignments to a�liated
sequences previously recovered from unclassi�ed Phycodnaviridae which are known to infect algae in
the Pyramimonas order [71]. gmhB catalyses two pathways that result in the production of precursors for
the S-layer glycoprotein and Lipid A biosynthesis [70, 72]. Previous studies have shown that microbial
communities in low phosphorus environments use alternative P-recycling mechanisms [43, 73]. These
mechanisms may include the replacement of membrane phospholipids with those that do not contain
phosphorus [43, 74, 75]. Our results suggest the potential augmentation of the P-cycle by giant viruses in
the SAO utilising gmhB to replace membrane phospholipids with lipopolysaccharides during P limitation.
In addition, our analysis suggests that carbohydrate phosphates such D-glycero-D-manno-heptose 1,7-
bisphosphate may be abundant organic phosphate compounds in marine environments playing essential
roles as sources of phosphorus during P starvation.

Ribonuclease H/adenosylcobalamin/alpha-ribazole The rhnA-cobC encodes an enzyme which catalyses
the hydrolysis of adenosylcobalamin-5`-phosphate to phosphate and adenosylcobalamin, the active form
of vitamin B [76]. Many marine bacteria lack the ability to synthesise adenosylcobalamin, and as a result
are dependent on archaea and phytoplankton for this function [77]. In this study, the rnhA-cobC gene was
associated with putative giant viral contigs. All MAGs in this study did not have the rnhA-cobC gene
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(Figure 6). This may be due to the assembly approach used or other sequencing related issues as rnhA-
cobC genes are ubiquitous in prokaryotic genomes [78]. In addition, the ML tree suggests that the gene
was likely acquired from bacteria further highlighting mosaicism of giant viruses (Figure 6). To the best
of our knowledge, this is the �rst description of the rnhA-cobC as an AMG. Functional characterisation of
the rnhA-cobC has mostly been linked to its cleavage of RNA/DNA hybrids formed following replication
and repair [79]. Our results suggest that adenosylcobalamin-5`-phosphate could be a potential alternative
source of phosphorus when its hydrolysis liberates phosphate, thus facilitating microbial use of
phosphate. Alternatively, rnhA-cobC could be used to cleave host RNA/DNA, molecules which are rich in
phosphate, during infection and lysis. Other compounds such as methylphosphonic acid, various
phosphonates and monophosphate esters have been shown to be alternative sources of phosphorus [75,
80, 81]. Similar to phosphate esters, adenosylcobalamin-5`-phosphate has a C-O-P bond which suggests
its potential use as a source of P in euphotic zones. Viruses may be shifting their ecological strategies to
acquire non-canonical P-genes, thus enabling the assimilation of alternative sources of P by their
prokaryotic hosts.

Conclusion
The South Atlantic Ocean is characterized by distinct genetic endemism and generally low levels of
nitrogen and phosphorus [53, 82]. The paucity of SAO metagenomics studies has resulted in a clear
knowledge de�cit regarding the roles played by viruses in shaping microbial diversity, ecology and
evolution. This study revealed a large proportion of uncharacterised viruses, which putatively infect
diverse consortia of archaea and bacteria. Virus-encoded AMGs, comprised of genes related to
carbohydrate, amino acids and cofactors/vitamins metabolic pathways. Signifying that viruses have the
potential to augment host metabolism during infection. Our analysis also revealed several AMGs,
potentially related to P acquisition and assimilation by bacteria. These AMGs include phoN, ghmB and
rnhA-cobC, which are outside the canonical repertoire of phosphorus genes. These results suggest that
viruses potentially augment the acquisition of alternative sources of P in the form of monoesters and
organic phosphorus compounds such as adenosylcobalamin. In addition, these P-AMG signatures
suggest that their speci�c pathways in Bacteroidetes, Proteobacteria, Chloro�exota and Poseidonales are
those that potentially respond rapidly to P-starvation. As regions of high productivity, nutrient depletion
and high prokaryotic diversity, euphotic zones represent model ecosystems for studying the contributions
of viruses to the physiology of their hosts under nutrient starvation. Since only a small proportion of viral
contigs could be classi�ed in this study, there remains large gaps in the understanding of the
microbiology of SAO. Together, the data from our study provide fundamental insights regarding potential
viral-host dynamics in euphotic zones of the SAO.

Materials And Methods

Cruise details and sampling
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Sampling was carried out during the 63rd Gough Cruise (10th September – 16th October 2018) aboard
the RV SA Agulhas II. Water samples were retrieved from eight oceanographic stations in the South
Atlantic Ocean. These sites spanned from 37° and 47° South East (Supplementary Table 1). We collected
45 litres of seawater from epipelagic waters at each station (5 m). These samples were stored in acid-
washed 5 litre high-density polyethylene bottles at 4°C. From this water, 15 litres were �ltered through 0.2
µm Polyethersulfone (PES) �lter membranes (Merck, RSA) respectively, resulting in three replicates per
station (n=24). These membrane �lters were stored at -80 °C until downstream molecular analysis was
carried out.

DNA extraction, library Preparation and sequencing
We performed DNA extraction and library preparation as previously described [83, 84] at JAMSTEC
laboratories. Brie�y, membrane �lter pieces were incubated in 400 µl of DNA extraction buffer (400 mM
Tris-HCl pH8, 60 mM EDTA pH8, 150 mM NaCl and 1 % w/v SDS) prepared at Nippon Gene (Toyama,
Japan) for 10 min at 60°C. 120 µl of 3 M potassium acetate buffer (Nippon Gene) was used to precipitate
organic matter followed by incubation on ice for �ve min and centrifugation at 33,516 × g at 4°C for one
min. DNA retrieved from the supernatant was subsequently puri�ed through a two-step process by
initially adding 800 µl of solution C4 and 500 µl of solution C5 from the DNAeasy Power soil kit (Qiagen,
Hilden, Germany). Nucleic acid concentrations were determined using the Qubit 4 Fluorimeter
(Thermo�sher, Massachusetts, USA) following manufacturers speci�cations. High-quality DNA was used
to construct libraries using the KAPA Hyper Prep Kit (KAPA biosystems, Massachusetts, USA) as detailed
in the manufacturer’s protocol. Samples were sequenced using an Illumina HiSeq2000 instrument at
Macrogen next-generation sequencing service (http: www.macrogen.comenmainindex.php).

Bioinformatics analysis

Metagenome preparation and assembly
Trimmomatic v0.36 was used to remove adaptors and overrepresented sequences from raw reads [85].
From these sequences, low quality reads were removed using Prinseq lite v0.20.4 (-lc_method dust) [86].
The resultant reads were de novo assembled into contiguous segments using MEGAHIT v1.2.3 (default
parameters) [87]. All contigs below 500bp were removed from each sample and the remaining sequences
were used to predict open reading frames (ORFs) using Prodigal v2.6.3 (-p meta) [88]. To determine the
percentage of assembled reads, the resultant quality-�ltered sequences were mapped back to the contigs
using BBMap Aligner (BBMap) (minid=0.90 maxindel=3) [89]. The alignments were ‘sorted’ and ‘indexed’
using SAMtools v1.9 as previously described [90].

MAGs construction, classi�cation and annotation
Metagenome-assembled genomes (MAGs) were constructed using MetaBat v2.12.2 which computes
tetra-nucleotide frequencies and contig abundances to produce high quality bins [91]. Contigs were
binned using the following parameters: --minContig 2500 --minCVSum 2. Assembled MAGs were de-
replicated using DRep v2.6.2 [92]. The completeness and contamination levels of the resultant archaeal

http://www.macrogen.comenmainindex.php/
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and bacterial MAGs were evaluated using CheckM v1.0.18 [93]. In accordance with genome reporting
standards, all MAGs reported in this study were characterized as high or medium draft genomes and had
completeness > 50% with contamination levels < 10% [54]. The taxonomy of all MAGs were inferred using
the genome taxonomy database toolkit (GTDB-Tk) v1.0.2 GTDB release 89 [94]. Functional annotation
was determined using the KofamScan tool, which is based on KEGG Orthology and hidden markov
models [95]. KEGG-Decoder was used to analyse the results as described previously [95, 96]. rRNAs and
tRNAs were determined using barrnap v0.7 and the tRNAScan-SE v2.0 tool, respectively [97, 98]. The
coverage of each MAG was determined using CoverM (genome –p bwa-mem –m relative abundance)
[99]. We determined phylogenies for archaeal and bacterial MAGs independently using GToTree (-G 0.4)
[100]. All phylogenomic trees were visualised and annotated using iTOL [101].

Viral identi�cation and taxonomic assignments
Viral signatures in assembled contigs (> 5 kb) were identi�ed using VirSorter v2.1 as previously described
[102] Brie�y, contigs were analysed using VirSorter v2.1 (--include-groups all –min-length 5000 –min-
score 0.5) and the quality of the resultant contigs was checked using CheckV [103]. The output results
�nal-viral-score.tsv and contamination.tsv from VirSorter and CheckV were used to screen viral contigs
for downstream analysis respectively. Quality checked contigs were screened based on the following
criteria: VirSorter_max_score (>=0.95), viral gene (>0) and viral gene =0 (and host gene =0 or score >=0.95
or hallmark >2) as previously described [104]. The resultant outputs were further manually checked for
proportions of contigs putatively assigned as double-stranded DNA viruses (dsDNA), nucleocytoplasmic
large DNA viruses (NCLDV) and single stranded DNA (ssDNA). Viral populations were determined by
clustering viral contigs > 5kb at 95% average nucleotide identity over 80% of the shortest sequence using
CD-HIT-EST from the CD-HIT package [105]. vconTACT2 was used to classify viral contigs [106]. Brie�y,
viral open reading frames were �rstly predicted using Prodigal v2.6.3 as described previously [88, 107].
Predicted open reading frames were then queried against the NCBI Bacterial and Archaeal Viral RefSeq
V85 with ICTV and NCBI taxonomy [108] used in vconTACT2 (http://www.cyverse.org). The results of viral
classi�cation were then visualised on Cytoscape v3.8.1 and colour coded based on respective order
taxonomic rank [109, 110].

AMG identi�cation, annotation and validation
Auxiliary metabolic genes were determined using VIBRANT v1.2.0 (in “virome” mode), which was
accessed via the CyVerse platform [111]. Contigs containing phosphorus acquisition and assimilation
genes were queried and subjected to a series of validation steps to ensure that they could be attributed to
viral sequences and to con�rm the functional annotations [112]. Genetic architecture plots to visualise
the organisation of genes on contigs were generated using the R package gggenes
(https://wilkox.org/gggenes/). Conserved domains and active sites of phosphorus AMGs were identi�ed
using the NCBI conserved domain search (e-value 0.001)
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Protein domains and structural homology of all
AMGs were identi�ed using Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2) [113]. Predicted secondary
structures, with a 100% con�dence score and alignment coverage above 70%, were further analysed with
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the SWISS-MODEL to predict quaternary structure (GMQE > 0.5) [114]. Promoter regions in the protein
domains were predicted using BPROM [115].

Viral relative abundance, distribution and host-viral matches
To determine the relative abundances of viral populations containing P-cycle AMGs, all contigs were
concatenated and then used as a database to recruit the quality trimmed reads using BBMap [89]. The
relative abundance of each population per sample was estimated from the resulting bam �les and
converted into table using a custom wrapper script from BamM
(https://github.com/ecogenomics/BamM). Coverage values as relative abundance proxies were
calculated using the “tpmean” algorithm, normalized for the size of each metagenome in bases, and the
length of each contig as previously described [26, 116]. The resultant data were used to assess the
distribution of viral populations harbouring P-cycle AMGs among sampling stations and visualised using
ggplot2 in R v4.0.3 [117, 118]. To infer putative links between viruses and hosts, VirHostMatcher was
used to compute oligonucleotide frequency between viral contigs and MAGs [119]. As the goal of the
study was to primarily study the interactions and in�uence of prokaryotic viruses towards bacterial hosts,
all putative giant viral contigs were removed prior the analysis. Putative virus-host interactions were
�ltered using a d2* dissimilarity cut-off < 0.3 and visualised using Cytoscape v3.8.1.

Phylogenetic tree reconstruction
Functional analyses of rnhA-cobC (ribonuclease H/adenosylcobalamin/alpha-ribazole phosphatase) and
phoN (acid phosphatase (class A)) genes were performed to investigate the evolutionary origin of these
AMGs. Protein sequences were queried against the NCBI nr database (blastp 1000 bit score cut-off, and e-
value 0.001) [120]. Closely related sequences were retrieved from the NCBI to estimate the non-viral
context of sequences in the phylogenetic trees. The closest relatives were selected and reduced to
representative sequences using CD-HIT (-c 0.9 -n 5). Protein sequences were aligned using MAFFT (--auto)
and trimmed using trimAL (default parameters) [121, 122]. Functional gene trees reconstruction were
performed using PhyML with the Chi2-based branch support and visualised using iTOL [101, 123].
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Figure 1

(a) Map showing sampling stations in the South Atlantic (courtesy of Lauren Pijper, University of Pretoria,
Department of Geography, Geoinformatics and Meteorology). Sampling stations are denoted as white
bullets and the outcrop shows the entire sampling site relative to South Africa and the South Atlantic
Ocean. (b) Phylogenetic placement of 14 reconstructed metagenome-assembled Archaeal genomes. A
maximum-likelihood phylogenomic tree was built based on concatenated amino acid sequences of 76
conserved single-copy genes using FastTree, two MAGs (S18.bin.27 and S20.bin.19) were removed from
the tree because of insu�cient single copy genes. (c) Phylogenetic placement of 88 reconstructed
metagenome-assembled genomes. A maximum-likelihood phylogenomic tree was built based on
concatenated amino acid sequences of 74 conserved single-copy genes using Fast Tree, 13 MAGs
(S10.bin.8, S10.bin.9, S13.bin.1, S16.bin.2, S16.bin.25, S18.bin.14, S18.bin.16, S22.bin.40, S23.bin.29,
S23.bin.36, S24.bin.26, S24.bin.3, S24.bin.39 and S8.bin.7) were removed from the tree because of
insu�cient single copy genes. The scale represents one amino acid substitution per sequence position.

Figure 2
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Taxonomic assignment of viral populations protein network clustering with reference phages. In the
protein network, each shape represents a single viral population or reference phage, and shapes are
connected by lines respective to shared protein content. Viral population taxonomy was coloured
according to family level. The full untrimmed network is supplied as Supplementary Figure 3.

Figure 3

Viral population relative abundance of phosphorus AMGs containing contigs along the SAO. Relative
abundance of AMG encoding viral contigs (coverage values normalized by metagenome size and contig
length) detected in metagenomes from different SAO sampling stations.
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Figure 4

Genomic context and protein structure of P-cycle AMGs. a Genome architecture of P-cycle AMGs on viral
contigs phoN (acidic phosphatase), gmhB (D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase)
and rhnA-cobC (ribonuclease H/adenosylcobalamin/alpha-ribazole phosphatase). Detailed annotations
can be found in Supplementary Table 7. b tertiary structures of AMGs based on modelling using Phyre2
and Quaternary structures of AMGs based on modelling using SWISS_MODEL (colour annotations
online).
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Figure 5

A maximum likelihood tree from an amino acid alignment of the bacterial like viral phoN found in SAO
and reference microbial sequences. The viral AMGs found in this study are circled in maroon. Internal
nodes and SH-like supports are represented by proportional circles (all nodes with support <0.70 were
collapsed)
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Figure 6

A maximum likelihood tree from an amino acid alignment of the bacterial like viral rnhA-cobC found in
SAO and reference microbial sequences. The viral AMGs found in this study are circled in marron. Internal
nodes and SH-like supports are represented by proportional circles (all nodes with support <0.70 were
collapsed).
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