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Abstract
Background: Melanoma stem cells (MSCs)-based vaccine strategies have been a potent
immunotherapeutic approach for melanoma treatment, which aimed at inducing specific anti-tumor
immunity and targeting cancer stem-like cells. To boost anti-melanoma activity induced by B16F10
CD44+CD133+ MSCs (B16F10 MSCs) vaccine, we generated a novel vaccine expressing IL-33. Tumor
growth and pulmonary metastasis were assessed to estimate the effectiveness of the vaccine.

Methods: The antitumor effect of the vaccine was observed in this study. The mechanism of inducing
anti-tumor immunity was detected by flow cytometric assays, cytotoxicity assays, and ELISA, including
expression of CD8+T cells surface and intracellular molecules, the cytotoxic activity of splenocytes in the
immunized mice and secretion of serum cytokines.

Results: We found that MSCs vaccine expressing IL-33 significantly inhibited melanoma growth and
reduced the lung melanoma nodules. Mechanistic investigations established that the vaccine-primed
CD8+T cells could selectively target MSCs and confer anti-tumor immunity, which included promoting the
proliferation of CD8+T cells, inhibiting the differentiated depletion of CD8+T cells in vivo, inducing the
formation of memory CD8+T cells, and activating specific cytotoxic T lymphocyte (CTL) immune
response.

Conclusions: MSCs vaccine expressing IL-33 is able to initiate anti-tumor specific immune response by
activating CD8+T cells.

1. Background
Melanoma is one of the most sensitive tumors to immune modulation [1, 2]. In the past decade,
immunotherapy has greatly changed the treatment prospects of melanoma [1, 3]. In particular, immune
checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell
death protein-1 (PD-1) have achieved apparent clinical effect [1, 4, 5]. As an important branch in the field of
immunotherapy, vaccines have been rarely studied in melanoma. Gp100 peptide vaccines could produce
high levels of circulating T cells in vitro, recognize and kill melanoma cells, but the clinical efficacy was
still not ideal [6]. Therefore, effective tumor vaccines can be an important supplement in the aspect of
melanoma immunotherapy.

As melanoma stem cells (MSCs) were discovered, the possible mechanism of the malignant
transformation of normal melanocytes and melanoma cells acquiring tumorigenicity was better
understood. [7–9]. According to MSCs theory, targeted MSCs therapy could inhibit the growth of
melanoma and reduce the risk of tumor recurrence and metastasis [10–12]. Therefore, tumor vaccine
targeting MSCs will improve the efficacy of current immunotherapy. At present, the research of MSCs
vaccine in melanoma was mostly to induce protective anti-tumor immunity by sensitizing dendritic cells
(DCs) with MSCs [12–14]. In addition, immune adjuvant could enhance the anti-tumor immune response of
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MSCs vaccine [15, 16]. Immune adjuvant IL-21 gene-modified MSCs enhanced complement-dependent
cytotoxic activity and natural killer cell (NK) cytotoxic activity in mice [17]. As a pleiotropic immune
effector, IL-33 played an important role in activating anti-tumor immunity, including stimulating DCs
maturation, enhancing the killing effect of CD8+T cells and NK cells [18, 19], gaining the immune response
of antigen-specific effector T cells and memory T cells in vivo [15, 20, 21], and inhibiting tumor growth and
lung metastasis in mice [22, 23]. IL-33 can act as an effective immune adjuvant. In this study, the IL-33
modified MSCs vaccine was assessed in its inhibitory effect on melanoma growth and metastasis and
tested its anti-tumor immune mechanism through activating CD8+T cells in direct and indirect ways.

2. Methods

2.1. Cell lines
B16F10 murine melanoma cells line was syngeneic with C57BL/6 mice. These cells were ordered from
the iCell Bioscience of China in Shanghai and were cultured at 37°C in 5% CO2 atmosphere in complete
media consisting of RPMI 1640 and 10% fetal bovine serum.

2.2. Mice
C57BL/6 mice of 5-6 weeks of age were ordered from the Liaoning Changsheng animal experimental
center of China. All mice were housed under the pathogen-free condition. All the experiments were
performed in compliance with the guidelines of the Animal Research Ethics Board of Jilin University.

2.3. Isolation of B16F10-CD133+CD44+ cells and
preparation of MSCs vaccine
The CD44+CD133+ double-positive cells were isolated from B16F10 cells line with immunomagnetic bead
technology (eBioscience Company, USA) using the CD44 and CD133 monoclonal antibodies (eBioscience
Company, USA) following the manufacturer’s instructions. The isolated CD44+CD133+ double-positive
cells were labeled 'B16F10-CD44+CD133+’ cells. And then, B16F10-CD44+CD133+ cells were infected by
IL-33 overexpression gene and enhanced green fluorescent protein (EGFP) overexpression control
adenovirus. Followed by mitomycin C (MMC) 50 µg/ml was used to inactivate the cells. Finally, we could
get B16F10-CD44+CD133+ cells which inhibited cell proliferation but still secreted IL-33. According to this
method, we can prepare melanoma stem cell vaccine (vaccine group) and inactivate other control cells in
the same way.

2.4. Immunization protocol
100 mice (female, weight: 18-20g and age between 6 and 7 weeks) were randomly divided into five
groups of equal size (twenty per group): the B16F10-IL-33-CD44+CD133+ (vaccine group), the B16F10-
EGFP-CD44+CD133+ group, B16F10- CD44+CD133+ group, the B16F10 wild type cells group, and PBS
group. The mice received subcutaneous vaccination in the right groin with 5×105 different cell vaccines
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inactivated with MMC (50 µg/ml) for 4 h, a total of three times immunizations with an interval of 7 days
between the immunizations. Fifteen vaccinated mice were challenged subcutaneously with 1×105

B16F10 cells 7 days after final vaccination, and five vaccinated mice were challenged intravenously with
1×105 B16F10 cells. Tumor generation in each mouse was monitored every two days by taking 2-
dimensional measurements of individual tumors. The pulmonary metastatic nodules were observed
weekly after 3 weeks for the last immunization.

2.5. Indirect co-culture of DCs and tumor vaccine
The bone marrow cells were extracted from femur and tibia of mice, and these cells were induced to
immature DCs by granulocyte-macrophage colony-stimulating factor (GM-CSF) (20 ng/ml) and IL-4 (10
ng/ml). Then, the induced DCs were seeded in 6-well plates with a cell density of 5×105/ml. Meanwhile,
the inactivated tumor vaccine of different groups (including equal volume PBS) was seed in suspension
cell culture chamber (Millicell, Germany); each well was added with 2 ml 10% FBS 1640; the cell density
was 5×105/ml, and suspended in 6-well plate for indirect co-culture with DCs. After 4 days of indirect co-
culture, DCs were collected. The expression of mature markers in DCs was determined by flow cytometry
with monoclonal antibodies (eBioscience Company, USA) CD11c, CD80, CD86 and major
histocompatibility complex (MHC) II (see below).

2.6. Direct co-culture of DCs and mouse spleen
lymphocytes
The spleen lymphocytes were isolated from healthy mice using mouse lymphocyte separation medium
(DAKEWEI, China) following the manufacturer’s instructions, and these cells were labeled with CFSE
(Biolegend, USA). DCs, co-cultured with the inactivated tumor vaccine of different groups (including equal
volume PBS) for 4 days, were collected, and then the DCs and CFSE-labeled mouse spleen lymphocytes
were co-cultured directly. Briefly, the DCs 1×105 were mixed with CFSE-labeled splenic lymphocytes in a
ratio of 1:10 and co-cultured in 6-well plate for 6 days. After that, the proliferation of CD8+T cells was
detected by flow cytometry (see below) with anti-CD8 monoclonal antibody (eBioscience Company, USA).
Meanwhile, cell culture supernatant from different groups was collected for ELISA to detect the levels of
IFN-γ and TNF-α.

2.7. Flow cytometry analysis
The mouse spleen lymphocytes were isolated from different groups using mouse lymphocyte separation
medium following the manufacturer’s instructions after 3 weeks for the last immunization.
Immunofluorescence surface staining was performed as previously described [24]. The FITC-labeled mAbs
against CD3, CD8, CD44, CD133 and PE-labeled CTLA-4 were purchased from Biolegend, APC-labeled
CD69, PD-1, Tim-3, CD62L, and CD127 Ab was purchased from BD Biosciences.

Intracellular staining was performed as previously described [24]. PE-conjugated or Pacific Blue-
conjugated mAbs against IFN-γ and granzyme B (GzmB) were purchased from Biolegend. After staining,
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cell samples were analyzed using a Beckman CytoFLEX Flow cytometry (Germany).

2.8. Cytotoxicity assay
The mouse spleen lymphocytes were isolated from different groups after 3 weeks for the last
immunization. After counting, 1×107 splenic lymphocytes were taken from each group as effector cells,
B16F10, were labeled with Calcein-AM (Biolegend, USA), were used as target cell. Effector cells were co-
cultured with target cells at different ratios (200:1, 100:1, and 50:1) for 8 h. To examine the specific
cytotoxicity of the splenic lymphocytes, the spleen lymphocytes of mice in vaccine group were used as
effector cells, B16F10, B16F10-CD44−CD133− and B16F10-CD44+CD133+ were taken as target cells.
Then, the cytotoxicity effect of splenic lymphocytes on B16F10 was determined by Calcein AM release
assay.

2.9. Preparation of single cell from mouse tumor mass
In the tumor bearing mice model, tumor cells were collected from different groups after 3 weeks for the
last immunization. Briefly, the melanoma tissues were taken out from the tumor bearing mice under
aseptic conditions and washed with sterile PBS. Then, tumor tissue was cut into a paste by scissors and
digested into single cells with 0.25% trypsin for 60 min. The single cell suspension was obtained after
filtration with filter. Finally, the expression of CD44 and CD133 in these was determined by flow cytometry
with monoclonal antibodies (eBioscience Company, USA).

2.10. ELISA for cytokines
The IFN-γ and TNF-α concentrations in culture supernatants from direct co-culture of DCs and mouse
spleen lymphocytes were detected by ELISA assay using ELISA kit (mlbio, China) following the
manufacturer’s instructions. In addition, the serum of mice in different groups was collected after 3 weeks
for the last immunization. The IFN-α, IL-2, TNF-α and IFN-γ in the serum of mice were detected by ELISA
assay.

2.11. Statistical analysis

Numerical data in this study were reported using means ± standard deviation (SD). Data analyses were
performed using paired t tests with the GraphPad Prism 8 software. Statistical differences were assessed
at P < 0.05, P < 0.01, and P < 0.001.

3. Results

3.1. Inhibitory effect of MSCs vaccine on melanoma growth
and lung metastasis
Tumor size was measured at 2, 3 and 4 weeks after tumor bearing. The tumor size in vaccine group was
significantly smaller than that in negative control B16F10 group and blank control PBS group (P < 0.05);
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while compared with B16F10-CD44+CD133+ and B16F10-EGFP CD44+CD133+ groups, the result showed
no significant difference (P > 0.05). In addition, the tumor size in B16F10-CD44+CD133+ and B16F10-
EGFP CD44+CD133+ groups was also smaller than that in PBS group (Fig. 1a).

The lung metastases were observed at 3, 4 and 5 weeks after the tail vein inoculation. The number of
lung metastatic nodules in the vaccine group was significantly less than that in other control groups (P <
0.05) (Fig. 1b). These results indicated that MSCs vaccine could inhibit melanoma growth and lung
metastasis.

3.2. MSCs vaccine enhances the cytotoxicity of splenic
lymphocytes in mice
The mouse spleen lymphocytes, acted as effector cells, were isolated from different groups after 3 weeks
for the last immunization. B16F10 cells cultured in vitro were used as target cells. The cytotoxicity of
splenic lymphocytes in different groups was determined by Calcein AM release assay. The cytotoxicity of
splenic lymphocytes in vaccine group was stronger than that in other control groups (Fig. 2a).

The spleen lymphocytes of mice in vaccine group were served as effector cells, and B16F10, B16F10-
CD44-CD133- and B16F10-CD44+CD133+ cells were used as target cells. The cytotoxicity of spleen
lymphocytes on B16F10-CD44+CD133+ cells in vaccine group was significantly stronger than that on
B16F10 and B16F10-CD44-CD133- cells (Fig. 2b). The results showed that the vaccine could enhance the
ability of splenic lymphocytes of mice to kill tumor cells, and could kill specifically B16F10-CD44+CD133+

cells. That is that it had targeted killing effect on melanoma stem cells.

3.3. MSCs vaccine reduces the expression of CD44 and
CD133 in tumor cells of tumor-bearing mice
The tumor cells in the tumor-bearing mice were collected from different groups after 3 weeks for the last
immunization. The expression of CD44 and CD133 detected by flow cytometry in vaccine group was
lower than that in B16F10 and PBS group. These results indicate that the vaccine can kill specifically
CD44+CD133+ melanoma cells, and then inhibit the progression of melanoma (Fig. 3).

3.4. Maturation of DCs, proliferation and activationof CD8+T
cells stimulated by MSCs vaccine
DCs are the most effective antigen presenting cells (APC) and play an important role in immune
responses. Mature DCs are characterized by cell-specific surface markers, CD80, CD86 and MHC II. Mice
bone marrow-derived DCs were stimulated by different experimental groups of inactivated tumor cells
(including equal volume PBS). The expression of CD80, CD86 and MHC II was detected by flow
cytometry. The level of CD80 in the vaccine group was significantly higher than that in other control
groups; the levels of CD86 and MHC II in the vaccine group were higher than that in B16F10 and PBS
group (Fig. 4a).
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As DCs matured, CD8+T cells were stimulated to proliferate. After the inactivated tumor cells (including
equal volume PBS) of different experimental groups were indirectly co-cultured with DCs, the stimulated
DCs were directly co-cultured with CFSE-labeled mouse spleen lymphocytes through mixed lymphocyte
reaction for 6 days. Non co-cultured CFSE-labeled splenic lymphocytes (Tc group) were used as blank
control for flow cytometry. The expression of CFSE was measured by CD8 gating to detect the
proliferation of CD8+T cells. The proliferation of CD8+T cells in vaccine group was significantly higher
than that in other control groups (Fig. 4b).

DCs could activate CD8+T cells to secreted IFN-γ and TNF-α, which could inhibit proliferation of cancer
cells. The levels of IFN-γ and TNF-α was determined by ELISA. The level of IFN-γ secreted by CD8+T cells
in vaccine group was significantly higher than that in B16F10, PBS and Tc group; the level of IFN-γ
secreted by CD8+T cells in negative control group was higher than that in Tc group. In addition, the level
of TNF-α secreted by CD8+T cells in vaccine group was significantly higher than that in other control
groups; the level of TNF-α secreted by negative control and PBS group was significantly higher than that
in Tc group (Fig. 4c). These results demonstrated that MSCs vaccine could promote DCs maturation,
which stimulate the proliferation and activation of CD8+T cells in MSCs vaccine indirectly co-cultured
with DCs.

3.5. Effect of MSCs vaccine on the proportion and activity of CD8+T cells in spleen of mice
To further evaluate the effect of MSCs vaccine to CD8+T cells in vivo, the spleen lymphocytes were
isolated from different groups mice after 3 weeks for the last immunization. The expression of CD3, CD8
and CD69 in splenocytes of different groups was detected by flow cytometry. The proportion of double
positive expression of CD3 and CD8 in vaccine group was significantly higher than that in B16F10 and
PBS groups (Fig. 5a); the expression of CD69, the surface activation marker of CD8+T cells, was higher
than that in other control groups. In addition, the expression of CD69 in CD8+T cells of B16F10-
CD44+CD133+ and B16F10-EGFP CD44+CD133+ groups was higher than that of PBS group (Fig. 5b). The
above results indicated that the percentage of CD8+T cells increased and the activation of CD8+T cells
enhanced in mice splenocytes by MSCs vaccine.

3.6. Effect of immune checkpoint expression and formation of CD8+ central memory T cells in the spleen
by MSCs vaccine
The expressions of PD-1, CTLA-4 and Tim-3 on CD8+T cells in spleen of mice in different groups were
detected by flow cytometry. The expression of PD-1 and CTLA-4 on CD8+T cells in vaccine group was
significantly lower than that in other control groups; the expression of Tim-3 was significantly lower than
that in B16F10 and PBS groups (Fig. 6a). The results showed that the vaccine could inhibit the
expression of immune checkpoint on CD8+T cells, especially on PD-1 and CTLA-4.

Then, we assessed the markers of central memory CD8+T cells, CD44, CD62L and CD127, by flow
cytometry. The expression of them in vaccine group was significantly higher than that in B16F10 and
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PBS group (Fig. 6b). The results indicated that MSCs vaccine trigger central memory CD8+T cells against
melanoma.

3.7. Increase of anti-tumor cytokines by MSCs vaccine in
spleen CD8+T cells and mice serum
The expression of IFN-γ and GzmB in CD8+T cells was determined by intracellular flow cytometry. The
expression of IFN-γ on CD8+T cells in vaccine group was significantly higher than that in other control
groups, while the expression of GzmB was significantly higher than that in B16F10 and PBS group
(Fig. 7a).

The serum of mice in different groups was collected after 3 weeks for the last immunization. The levels
of IL-2, IFN-α, TNF-α, and IFN-γ in serum of mice were detected by ELISA. The levels of IL-2, IFN-α and IFN-
γ in vaccine group were higher than those in B16F10 and PBS group; the level of TNF-α in vaccine group
was higher than those in other control groups (Fig. 7b). The results showed that the vaccine induced the
expression of IFN-γ and GzmB in spleen CD8+T cells and promotde the secretion of IL-2, IFN-α, TNF-α, and
IFN-γ in mice serum.

4. Discussion
Cancer stem cells (CSCs) have been proved to exist in many solid tumors, and expressed specific markers
[25–27]. In melanoma, CD44 and CD133 can be served as potential markers of MSCs [28, 29]. In preclinical
studies, CSCs-based immunotherapy has been tried in mice and humans, and achieved good results.
DCs-CSCs vaccine can induce humoral and cellular immune responses against CSCs, thus producing
efficient anti-tumor immunity [8, 30, 31]. Here, the B16F10-D44+CD133+ cells were separated by
immunomagnetic beads, and IL-33 overexpression gene was used to modify the sorted melanoma stem
cells to prepare anti-tumor vaccine (MSCs vaccine). Prophylactic immunization of mice showed that the
MSCs vaccine could activate the anti-tumor immune response and significantly inhibit tumor progression
and lung metastasis.

In previous studies, the vaccine, DCs loaded with lysate of MSCs (ALDEFLUOR+ D5 cells), could
significantly inhibit melanoma growth and lung metastasis in immunized mice. The mechanism is that
the vaccine activated antibodies and T cells to selectively target MSCs and induce protective anti-tumor
immunity [8, 14]. IL-33 modified MSCs (B16F10-CD44+CD133+) vaccine in this study could also play an
anti-tumor role by selectively targeting B16F10-CD44+CD133+ cells. Importantly, the anti-tumor immune
mechanism of the MSCs vaccine is through activating CD8+T cells in direct and indirect ways. In the
process of tumor immune response, the transformation of DCs from immature to mature is very
important to initiate antigen-specific T cells [32]. As the most sensitive activator to stimulate T cells, DCs
need a very small amount of antigen to stimulate T cell proliferation [32, 33]. Moreover, as an immune
effector, IL-33 can also stimulate DCs maturation and induce DCs recruitment [34, 35]. Here, the MSCs



Page 9/20

vaccine activated CD8+T cells by stimulating DCs maturation in vitro, including induced the proliferation
of CD8+T cells and initiated the secretion of cytokines by CD8+ T cells. In addition, we found that the
MSCs vaccine could increase the ratio and activity of CD8+ T cells in spleen, enhance the cytotoxicity of
spleen lymphocytes and promote the secretion of serum cytokines through in vivo experiments, which is
consistent with the previous research results of anti-tumor vaccine [7, 8, 14, 36].

Anti-tumor vaccine aims to expand high affinity CD8+T cells, make them differentiate into CTLs that can
kill specifically cancer cells, and produce long-lived memory CD8+ T cells [37]. CTLs response is the most
effective reaction to induce potential protective immunity against almost all tumors [38, 39]. The MSCs
vaccine in our study increased the expression of IFN-γ and GzmB on CD8+ T cells, and induced the
activation of specific CTLs. In addition, the formation of malignant tumor presents a chronic process,
which creates conditions for the formation of memory CD8+ T cells [40], the vaccination is able to induce
the formation of long-term memory CD8+ T cells, which can prevent tumor recurrence [37]. In this study,
the MSCs vaccine can promote the formation of central memory CD8+ T cells in spleen. These cells have
an ability to proliferation and self-renewal ability [41], when encountering antigen again, they have a high
proliferation potential and can differentiate into effector T cells [42, 43].

The anti-tumor immune mechanism of the MSCs vaccine in this study is not entirely caused by the
sensitization of DCs. Although IL-33 has no direct effect on naive T cells, it can directly activate DCs to
express costimulatory molecules in vivo [35], and inhibit CD8+ T cell differentiation depletion by down-
regulating the expression of PD-1 and 2B4 [15]. Furthermore, IL-33 induces memory phenotype of tumor
antigen-specific CD8+ T cells in vitro [34]. Here, we found that the negative control group of MSCs vaccine
also has a certain role in inducing anti-tumor immunity, including stimulating the maturation of DCs,
inducing the memory phenotype of CD8+ T cells and the expression of anti-tumor effector molecules, etc..
However, the MSCs vaccine carrying IL-33 has a more significant effect on activating anti-tumor
immunity, which also fully indicates that IL-33 plays an important role in the anti-tumor immunity of
melanoma stem cell vaccine.

5. Conclusion
Taken together, this study confirms that the MSCs vaccine expressing IL-33 significantly inhibited the
melanoma growth and reduced the lung melanoma nodules. The anti-tumor immune mechanism is
through activating CD8+T cells in direct and indirect ways. Importantly, our findings lay a theoretical and
experimental foundation for the application of melanoma stem cell vaccine in the immunotherapy of
melanoma, and provide ideas for the exploration of new therapeutic schemes for melanoma.

Abbreviations
MSCs: Melanoma stem cells; CTL: cytotoxic T lymphocyte; ICIs: immune checkpoint inhibitors; CTLA-4:
cytotoxic T-lymphocyte antigen-4; PD-1: programmed cell death protein-1; DCs: dendritic cells; NK: natural



Page 10/20

killer cell; EGFP: enhanced green fluorescent protein; MMC: mitomycin C; GM-CSF: granulocyte-
macrophage colony-stimulating factor; MHC: major histocompatibility complex; GzmB: granzyme B; APC:
antigen presenting cells; CSCs: Cancer stem cells

Declarations
Acknowledgements

Not applicable

Author’s contributions

QY and NX: conception and design, collection and/or assembly of data, data analysis and interpretation,
and manuscript writing. HJ and WL: conception and design, supervision of the study, and final approval
of manuscript. NZ, YC: collection and/or assembly of data, data analysis and manuscript writing. MD,
MX, WX: collection and/or assembly of data. All authors read and approved the final manuscript.

Funding 

This research was supported by the Project Agreement for Science & Technology Development, Jilin
Province (no. 20200404135YY). 

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on
reasonable request.

Ethics approval and consent to participate

The use of human tissue was approved by the ethics committee of the First Hospital of Jilin University,
China (EK Nr. 985/2016, 25 January 2018), and the donor gave written consent.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

a Jilin Medical University, Jilin 132013, People’s Republic of China. bCancer Center at the First Hospital of
Jilin University, 1 Xinmin Street, Changchun 130021, People’s Republic of China. c Changchun Veterinary



Page 11/20

Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, People’s Republic of
China. 

References
1. Onitilo AA, Wittig JA. Principles of Immunotherapy in Melanoma[J]. Surg Clin North Am, 2020,

100(1):161–173.

2. Leonardi GC, Candido S, Falzone L, et al. Cutaneous melanoma and the immunotherapy revolution
(Review)[J]. Int J Oncol, 2020, 57(3):609–618.

3. Livingstone A, Agarwal A, Stockler MR, et al. Preferences for Immunotherapy in Melanoma: A
Systematic Review[J]. Ann Surg Oncol, 2020, 27(2):571–584.

4. Albittar AA, Alhalabi O, Glitza Oliva IC. Immunotherapy for Melanoma[J]. Adv Exp Med Biol, 2020,
1244:51–68.

5. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of
Action, Efficacy, and Limitations[J]. Front Oncol, 2018, 8:86.

6. Yazdani M, Gholizadeh Z, Nikpoor AR, et al. Vaccination with dendritic cells pulsed ex vivo with
gp100 peptide-decorated liposomes enhances the efficacy of anti PD-1 therapy in a mouse model of
melanoma[J]. Vaccine, 2020, 38(35):5665–5677.

7. Zhao F, Zhang R, Wang J, et al. Effective tumor immunity to melanoma mediated by B16F10 cancer
stem cell vaccine[J]. Int Immunopharmacol, 2017, 52:238–244.

8. Ning N, Pan Q, Zheng F, et al. Cancer stem cell vaccination confers significant antitumor immunity[J].
Cancer Res, 2012, 72(7):1853–1864.

9. Yaiza JM, Gloria RA, Maria Belen GO, et al. Melanoma cancer stem-like cells: Optimization method
for culture, enrichment and maintenance[J]. Tissue Cell, 2019, 60:48–59.

10. Wang W, Bai L, Xu D, et al. Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells[J].
Curr Cancer Drug Targets, 2020.

11. Badrinath N, Yoo SY. Recent Advances in Cancer Stem Cell-Targeted Immunotherapy[J]. Cancers
(Basel), 2019, 11(3).

12. Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and
immunotherapy[J]. Seminars in Cancer Biology, 2018, 52:94–106.

13. Zhou L, Lu L, Wicha MS, et al. Promise of cancer stem cell vaccine[J]. Hum Vaccin Immunother,
2015, 11(12):2796–2799.

14. Dashti A, Ebrahimi M, Hadjati J, et al. Dendritic cell based immunotherapy using tumor stem cells
mediates potent antitumor immune responses[J]. Cancer Lett, 2016, 374(1):175–185.

15. Liu N, Jiang Y, Chen J, et al. IL-33 drives the antitumor effects of dendritic cells via the induction of
Tc9 cells[J]. Cell Mol Immunol, 2019, 16(7):644–651.

16. Jevtovic A, Pantic J, Jovanovic I, et al. Interleukin-33 pretreatment promotes metastatic growth of
murine melanoma by reducing the cytotoxic capacity of CD8(+) T cells and enhancing regulatory T



Page 12/20

cells[J]. Cancer Immunol Immunother, 2020, 69(8):1461–1475.

17. Wang X, Zhao F, Shi F, et al. Reinforcing B16F10/GPI-IL-21 vaccine efficacy against melanoma by
injecting mice with shZEB1 plasmid or miR200c agomir[J]. Biomedicine & Pharmacotherapy, 2016,
80:136–144.

18. Xu L, Zheng Y, Wang J, et al. IL33 activates CD8+T and NK cells through MyD88 pathway to
suppress the lung cancer cell growth in mice[J]. Biotechnol Lett, 2020, 42(7):1113–1121.

19. Jin Z, Lei L, Lin D, et al. IL-33 Released in the Liver Inhibits Tumor Growth via Promotion of CD4(+)
and CD8(+) T Cell Responses in Hepatocellular Carcinoma[J]. J Immunol, 2018, 201(12):3770–3779.

20. Qi L, Zhang Q, Miao Y, et al. Interleukin-33 activates and recruits natural killer cells to inhibit
pulmonary metastatic cancer development[J]. Int J Cancer, 2020, 146(5):1421–1434.

21. Dominguez D, Ye C, Geng Z, et al. Exogenous IL-33 Restores Dendritic Cell Activation and Maturation
in Established Cancer[J]. J Immunol, 2017, 198(3):1365–1375.

22. Afferni C, Buccione C, Andreone S, et al. The Pleiotropic Immunomodulatory Functions of IL-33 and
Its Implications in Tumor Immunity[J]. Front Immunol, 2018, 9:2601.

23. Gao X, Wang X, Yang Q, et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the
tumor microenvironment through CD8+ T and NK cells[J]. J Immunol, 2015, 194(1):438–445.

24. Zhao Y, Chu X, Chen J, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity
through the induction of Th9 cells[J]. Nat Commun, 2016, 7:12368.

25. Tirino V, Desiderio V, Paino F, et al. Human primary bone sarcomas contain CD133+ cancer stem cells
displaying high tumorigenicity in vivo[J]. FASEB J, 2011, 25(6):2022–2030.

26. Yu C, Yao Z, Jiang Y, et al. Prostate cancer stem cell biology[J]. Minerva Urol Nefrol, 2012, 64(1):19–
33.

27. Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation of colon cancer cells with
stem cell-like properties[J]. Int J Cancer, 2009, 124(6):1312–1321.

28. Kloskowski T, Jarzabkowska J, Jundzill A, et al. CD133 Antigen as a Potential Marker of Melanoma
Stem Cells: In Vitro and In Vivo Studies[J]. Stem cells international, 2020, 2020:8810476.

29. Zimmerer RM, Matthiesen P, Kreher F, et al. Putative CD133+ melanoma cancer stem cells induce
initial angiogenesis in vivo[J]. Microvasc Res, 2016, 104:46–54.

30. Xu Q, Liu G, Yuan X, et al. Antigen-specific T-cell response from dendritic cell vaccination using
cancer stem-like cell-associated antigens[J]. Stem Cells, 2009, 27(8):1734–1740.

31. Teitz-Tennenbaum S, Wicha MS, Chang AE, et al. Targeting cancer stem cells via dendritic-cell
vaccination[J]. Oncoimmunology, 2012, 1(8):1401–1403.

32. Santos PM, Butterfield LH. Dendritic Cell-Based Cancer Vaccines[J]. J Immunol, 2018, 200(2):443–
449.

33. Bhardwaj N, Young JW, Nisanian AJ, et al. Small amounts of superantigen, when presented on
dendritic cells, are sufficient to initiate T cell responses[J]. J Exp Med, 1993, 178(2):633–642.



Page 13/20

34. Dominguez D, Zhang Y, Zhang B. IL-33 in Tumor Immunity: Nothing to Sneeze At[J]. Crit Rev
Immunol, 2018, 38(6):453–470.

35. Besnard AG, Togbe D, Guillou N, et al. IL-33-activated dendritic cells are critical for allergic airway
inflammation[J]. Eur J Immunol, 2011, 41(6):1675–1686.

36. He X, Wang J, Zhao F, et al. Antitumor efficacy of viable tumor vaccine modified by heterogenetic
ESAT-6 antigen and cytokine IL-21 in melanomatous mouse[J]. Immunol Res, 2012, 52(3):240–249.

37. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines[J]. Immunity, 2013,
39(1):38–48.

38. Celluzzi CM, Mayordomo JI, Storkus WJ, et al. Peptide-pulsed dendritic cells induce antigen-specific
CTL-mediated protective tumor immunity[J]. J Exp Med, 1996, 183(1):283–287.

39. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity
against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells[J].
Nat Med, 2000, 6(9):1011–1017.

40. Shrikant PA, Rao R, Li Q, et al. Regulating functional cell fates in CD8 T cells[J]. Immunol Res, 2010,
46(1-3):12–22.

41. Reiser J, Banerjee A. Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor
Immune Response[J]. J Immunol Res, 2016, 2016:8941260.

42. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol,
2015, 15(8):486–499.

43. Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and
immunotherapy[J]. Immunol Rev, 2006, 211:214–224.

Figures



Page 14/20

Figure 1

(A) Tumor size is measured at 2 weeks, 3 weeks and 4 weeks after tumor inoculation, including the
maximum and minimum diameter of tumor. The tumor size of mice in vaccine group is significantly
smaller than that in PBS and B16F10 group. (B) At 3, 4, and 5 weeks after the tumor cells are injected into
the tail vein of mice, the lung tissues are taken out and the number of metastatic nodules is counted. The
number of pulmonary metastatic nodules in the vaccine group is significantly less than that in other
control groups (n= 3; *P< 0.05).

Figure 2
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(A) The cytotoxicity ability of spleen lymphocytes in the vaccine group was stronger than that in other
control groups. (B) The cytotoxicity effect of spleen lymphocytes in the vaccine group on B16F10-CD44+
CD133+ was stronger than that on B16F10 and B16F10-CD44- CD133- cells, (n= 3；*P< 0.05).

Figure 3

The expression of CD44 and CD133 in tumor cells of different groups was determined by flow cytometry.
The expression of CD44 and CD133 in tumor cells of vaccine group was lower than that of B16F10 and
PBS group, (n= 3；*P< 0.05，**P< 0.01).
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Figure 4

(A) The expression of CD80, CD86 and MHC II is detected by flow cytometry. The expression of CD80 in
DCs stimulated by vaccine group is significantly higher than that in other control groups. The expression
of CD86 and MHC II is higher than that in B16F10 and PBS groups, while the expression of CD80 is higher
than that in PBS group. (B) The proliferation of CD8+T cells is measured by flow cytometry, and CD8,
served as the door, is used to measure the expression of lymphocyte labeled CFSE. The proliferation
degree of CD8+T cells in vaccine group is significantly higher than that in other control groups. (C) The
secretion of IFN-γ and TNF-α is determined by ELISA. The level of IFN-γ secreted by CD8+T cells in
vaccine group is significantly higher than that in B16F10 group, PBS group and Tc group. In addition, the
level of TNF-α secreted by CD8+T cells in vaccine group is significantly higher than that in other control
groups, (n= 3；*P< 0.05，**P< 0.01，***P< 0.001).
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Figure 5

The expression of CD3, CD8 and CD69 in splenic lymphocytes of mice in different groups is determined
by flow cytometry. The double positive expression of CD3 and CD8 in splenic lymphocytes of mice in
vaccine group is significantly higher than that in B16F10 and PBS groups, and the expression of CD69 in
CD8+T cells is higher than that in other control groups, (n= 3；*P< 0.05, **P< 0.01).
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Figure 6

(A)The expression of PD-1, CTLA-4 and Tim-3 on CD8+ T cells in different groups was determined by flow
cytometry. The expression of PD-1 and CTLA-4 on CD8+ T cells in vaccine group was significantly lower
than that in other control groups, and the expression of Tim-3 was significantly lower than that in B16F10
and PBS groups. (B) The expression of CD44, CD62L and CD127 on CD8+T cells in different groups was
determined by flow cytometry. The expression of CD44, CD62L and CD127 on CD8+ T cells in vaccine
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group was significantly higher than those in B16F10 and PBS groups, (n= 3；*P< 0.05，**P< 0.01, ***P<
0.001).

Figure 7

The expression of IFN-γ and GzmB in CD8+T cells was determined by flow cytometry. The expression of
IFN-γ on CD8+T cells in vaccine group was significantly higher than that in other control groups, while the
expression of GzmB was significantly higher than that in B16F10 and PBS groups. (B) The serum levels
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of IL-2, IFN-α, TNF-α, IFN-γ and IL-33 were detected in different groups by ELISA. The secretion levels of IL-
2, IFN-α and IFN-γ in vaccine group were higher than those in B16F10 group and PBS group, while the
levels of TNF-α and IL-33 in vaccine group are higher than those in other control groups, (n= 3; *P< 0.05,
**P< 0.01, ***P< 0.001).


