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Abstract
WRKY type transcription factors (TFs) play crucial roles in the growth and development of plants. However, a
comprehensive analysis of the WRKY family members in a valuable Chinese herbal orchid, Bletilla striata, or in other
orchids, is limited. In this study, WRKY gene family was screened out from the transcriptome data of Bletilla striata by
bioinformatics method. The 29 WRKY TFs that were identified from the B. striata genome and named BsWRKY1 to
BsWRKY29 were divided into three clades: group Ⅰ (involving 8 WRKY sequences), group Ⅱ (18) and group Ⅲ (3), in
which group Ⅱ was further divided into 5 subgroups: Ⅱ-a (involving 1 WRKY sequences), Ⅱ-b (5), and Ⅱ-c (3), Ⅱ-d (7), Ⅱ-e
(3). EST-SSR marker mining test showed that 10 markers could be stably amplified with obvious polymorphisms
among 4 landraces. Our data suggest that BsWRKY genes may work together to regulate plant growth and
development. In different subcellular locations, BsWRKY genes not only played its own functions, but also coordinated
the regulation of the whole life activities. Taken together, these results provided a theoretical basis for further studies
on the gene functions and regulatory mechanisms of what in B. striata.

Introduction
Transcription factors (TFs) are proteins that can bind to the specific sequence of gene, making gene express at a
specific intensity at a specific period and tissue. WRKY transcription factors are important regulatory factors for plant
growth and development in higher plants. They are involved in biological stress responses and abiotic stress
responses such as drought, salt injury, pests and diseases, nutrient deficiency, high temperature and cold injury. Chen
et al found that WRKY regulates fruit growth and development in jujube (Chen et al., 2019). WRKY combines with
NPR1 to regulate gene expression and then activate plant defense response (Wang et al., 2006). Cheng et al
demonstrated that WRKY13, WRKY45-2 and WRKY42 form regulatory cascades that are involved in rice blast
resistance (Cheng et al., 2015). Xu et al used gene microarray technology to find that SbWRKY14, SbWRKY32 and
SbWRKY39 were all involved in drought stress response of sorghum (Xu, 2021). ClWRKY47 of lemon and CsWRKY47
of sweet orange can be induced by high salinity, drought and low temperature stress (Shen, 2021). The ZmWRKY102
transcription factor in maize can improve the drought resistance of plants (Li, 2015). The WRKY transcription factor of
Cinnamomum kanehirae is involved in response to plant drought and low temperature stress (Zhao, 2020). WRKY
transcription factor family is also involved in plant nutrient stress and plant hormone signal transduction (Jing, 2021;
Bu, 2020). The conserved WRKYGQK domain, which consists of about 60 amino acids in the DNA binding domain, is
the most conserved structural feature of the WRKY transcription factor family. The downstream of this family has a
cis-acting element W-box [(T/C) TGAC (C/T)] structure, which regulates the transcription of target genes and responds
to adversity stress by combining with specific W-box (Wang, 2020). The C-terminal is an absolutely conserved domain
composed of WRKYGQK, while the N-terminal contains a conserved domain composed of zinc finger protein. It is
classified three types according to the number and structure of domains. The group Ⅰ typically contains two WRKY
domains including a C2H2 (CX4-5CX22-23HXH) motif, while group Ⅱ and group Ⅲ are characterized by a single WRKY
domain. Group Ⅱ also contains a C2H2 zinc-finger motif which can be further divided into five subgroups (Ⅱ-a、Ⅱ-b、Ⅱ-c、Ⅱ-
d、Ⅱ-e) based on the phylogeny of the WRKY domains, whereas group Ⅲ contains a zinc-finger motif ending with C2HC
(CX7CX23HCX), which is only found in higher plants (Chen et al., 2020).

Bletilla striata (Thunb.) Reich, f. is a perennial herb of the orchid family, which contains chemicals of phenolic acids,
dihydrophenanthrene, bibenzyl and other components with medications of anti-tumor, hemostasis, antibacterial, anti-
inflammatory, promoting wound healing and plasma substitutes (Tang, 2014). It is also used in food, cosmetics and
other industries (Qian et al., 2015; Zhou et al., 2020). Abundant secondary metabolites are the material basis of the
pharmacological action of the B. striata. Therefore, from the perspective of gene family, it is of great significance to
analyze the synthesis pathway of secondary metabolites of B. striata and explore functional genes, which helps to
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understand the regulatory mechanism of effective components synthesis, and finally enhance the producing of
secondary metabolites by plants. WRKY TFs have been studied in many plants such as peach (Yanbing et al., 2020),
apple (Gu, 2015), pepper (Diao, 2015), melon (Ma, 2017), castor bean (Zou, 2013), Hordeum vulgare (Jiang et al.,
2021), Prunella vulgaris (Zhu et al., 2020), etc., but little is known about WRKY gene in B. striata. Based on
transcriptome data of B. striata, screening and identification WRKY TFs, and then analyze their genetic information,
conservative domain, evolutionary relationships and functions, etc.. In addition, SSR molecular markers were mined to
classify the function of WRKY TFs in B. striata, so as to provide a reference for further exploration of its function in the
regulation of secondary metabolite synthesis.

1. Materials And Methods

1.1 Materials
The B. striata capsules were collected from the B. striata Germplasm Garden of Zunyi Medical University, Xinpu
District, Zunyi City of Guizhou Province, China (27°42'N, 107°01'E), and the seeds were induced for suspension culture
for a total of 45 days (Pan et al., 2020). The samples were randomly sampled every 3 days since from the callus was
induced (3 replicates were taken at each time point), and the total RNA of each sample was extracted by liquid nitrogen
grind. The RNA of each sample was mixed as one with equal amount to perform the subsequent transcriptome
sequencing by using Iso-seq of PacBio platform (Li et al., 2020). The WRKY gene sequence of B. striata was screened
out from the sequencing results for the following analysis.

1.2 Methods

1.2.1 WRKY gene family identification
The total RNA of the mixed samples was retro-transcribed into cDNA for RNA-seq sequencing. The sequencing was
performed on platform of PacBio with the parameters of Iso-Seq. And the resulting data were de novo assembled by
using Trinity software to finally obtain the transcriptome data. The online software Pfam and NCBI blast were
employed to do the annotation. The sequences annotated as WRKY genes were screened to identify the conserved
domains. All obtained protein sequences were examined for the presence of WRKY (PF03106) domains by using the
Hidden Markov Model of Pfam, SMART and InterPro tools. After eliminating incomplete sequences, candidate
sequences were obtained for the following analysis.

1.2.2 Physical and chemical properties exploring
The ORF Finder of NCBI was used to find out the open reading frame (ORF) of all BsWRKY candidate. Online server
ExPASy was used to characterize the physical and chemical properties of WRKY transcription factors, such as the
protein molecule weight, amino acid size, isoelectric point, instability index, GRVAY index and so on. Protein secondary
structure was predicted using the online server SOPMA.

1.2.3 Analysis of subcellular localization and conserved domains
The conserved domains of the detected WRKY members were analyzed by using the CD-search function of NCBI. A
conservative motif analysis was conducted through the MEME, in which the number of recognized motifs was set to
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10. The WoLFPSORT was used to predict the subcellular localization of the WRKY proteins.

1.2.4 Signal peptide, transmembrane structure prediction and
promoter analysis
Signal P 4.0 Server was used to analyze the signal peptide and TMHMM-2.0 was used to predict the transmembrane
domain. The cis-acting elements of the upstream sequence (2000 bp) of the WRKY genes’ promoter were analyzed by
using the online Plant CARE, and the results were visualized by using TBTools.

1.2.5 Evolutionary analysis
The Arabidopsis thaliana WRKY sequences were obtained from the transcription factor database of Plant TFDB,
Dendrobium catenatum WRKY sequences were obtained from NCBI and the MEGA-X software was applied to construct
a phylogenetic tree with the WRKY gene family members via the Neigh-Joining method (NJ), and the Bootstrap value
was set to 1000.

1.2.6 Functional analysis of the BsWRKYs genes
The Gene Ontology (GO) was performed to do GO functional classification. The mission of the GO Consortium is to
develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism
level, across the multiplicity of species in the tree of life. The biological pathways of the WRKY of B. striata were
mapped to the reference pathways in KEGG. Based on the molecular functions and biological pathways of diseases in
the KEGG database, the analysis results were used to mine biologically significant information. KEGG is an
encyclopedia of genes and genomes used to assign functional meaning to gene/protein elements at the molecular
and higher levels. The differentially expressed cytoplasmic and nuclear proteins were matched with the KEGG pathway
database to generate the predicted pathway (Ramdas et al., 2019). 

1.2.7 SSR detection and verification
The NWISRL was used to detect the candidate SSR sites of BsWRKYs. Then, primers of each site were designed by
using DNAMAN 6.0 program. The SSR candidates were verified on four landraces of B. striata, which were collected
from Zheng’an, Chongqing, Xiuwen and Anhui, by coupling conducts of PCR and PAGE. PCR reaction system was
volume 10 μL in total, containing 1.5 μL DNA template with concentration of 50 ng/μL, 6 μL 2×PCR MIX, 0.75 μL primer
each with concentration of 10 μmol/L, and 1 μL ddH2O. Amplification conditions were set as: pre-denaturation at 95 ℃
for 5 min; denaturation at 95 ℃ for 30 s, annealing at 52 ℃ for 30 s, extension at 72 ℃ for 60 s, 30 cycles; extension
at 72 ℃ for 5 min. A 10% polyacrylamide gel was used to separate the amplified products. The electrophoresis
instrument was a PowerPac stabilized steady flow electrophoresis instrument. The electrophoresis buffer was 1×TBE,
the constant voltage was 150 V, and the time was 150 minutes. After silver nitrate staining, the bands were observed
and photographed.

2. Results

2.1 Physical and chemical properties of WRKY protein
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A total of 135 sequences annotated as WRKY gene were preliminarily obtained from the transcriptome data of B.
striata. After deletions of the sequences without typical WRKY domain and incomplete sequences, 29 WRKY
sequences were finally reserved and renamed as BsWRKY 1-29. Physical and chemical properties analysis showed
that the protein size of the BsWRKY members was between 159-703 aa, and the molecular weight was between
17546.1-76820.1 Da (Table 1). The theoretical isoelectric point of proteins ranged from 4.48 to 9.94, 11 of them were
basic proteins with isoelectric point greater than 7.5, 13 of them were acidic proteins with isoelectric point less than
6.5, and 5 of them were neutral between 6.5 and 7.5. These results indicated that most proteins of BsWRKYs were
acidic. The instability coefficients of the 29 WRKY proteins were all greater than 40, while fat index were less than 100,
and GRVAY values were negative, indicating that the WRKY transcription factor family of B. striata was an unstable
hydrophilic protein. The predicted secondary structure of the protein showed that α-helix, β-folding and elongation
accounted for 21.07%, 4.07% and 11.84%, respectively, and random coil accounted for 63.02% (Table 1). Among the 29
proteins, the β-turn was normally more than the α-helix except in BsWRKY20.

Table 1 

Physical and chemical properties of WRKY protein of Bletilla striata
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Gene name AA MW/Da PI Instability index GRAVY Alpha helix Extended

strand

Beta

turn

BsWRKY1 307 34243 5.4 43.37 -0.651 24.76% 10.10% 3.58%

BsWRKY2 481 52166.7 7.01 46.65 -0.672 10.19% 14.35% 3.74%

BsWRKY3 406 44754.8 5.5 47.5 -0.695 25.62% 6.40% 4.43%

BsWRKY4 702 76105.4 5.67 48 -0.627 11.97% 11.11% 3.42%

BsWRKY5 500 54510.7 8.97 48.21 -0.752 12.00% 12.80% 3.60%

BsWRKY6 469 50789.1 6.98 50.9 -0.729 10.45% 14.07% 3.41%

BsWRKY7 185 21037.2 6.26 51.01 -0.97 24.86% 18.92% 10.27%

BsWRKY8 194 51538.4 9.59 52.71 -0.865 11.34% 13.92% 6.19%

BsWRKY9 335 35817.5 9.69 53.06 -0.484 21.49% 9.85% 6.87%

BsWRKY10 431 47054.3 6.57 54.84 -0.703 14.39% 12.30% 2.55%

BsWRKY11 341 36780.7 9.67 55.85 -0.484 18.18% 10.26% 6.45%

BsWRKY12 329 37045.9 8.57 56.08 -0.632 32.22% 10.33% 1.52%

BsWRKY13 347 38224.3 9.94 56.17 -0.688 25.07% 9.22% 5.48%

BsWRKY14 270 29189.3 5.64 56.66 -0.0743 17.04% 11.11% 3.70%

BsWRKY15 217 24804.6 5.91 57.12 -0.86 11.06% 15.21% 3.69%

BsWRKY16 233 25270 4.93 57.21 -0.642 27.90% 10.30% 3.43%

BsWRKY17 412 45995.3 8.62 57.49 -0.617 31.31% 8.98% 1.94%

BsWRKY18 595 64961.1 6.55 57.8 -0.65 28.57% 10.92% 1.51%

BsWRKY19 402 43491.8 8.58 59.9 -0.829 9.95% 11.44% 3.23%

BsWRKY20 159 17546.1 4.48 60.03 -0.82 40.25% 11.32% 8.81%

BsWRKY21 427 47131.5 5.25 60.59 -0.63 23.89% 6.56% 3.51%

BsWRKY22 174 19581.5 4.55 60.82 -0.506 21.84% 18.39% 5.17%

BsWRKY23 595 64961.1 6.55 62.18 -0.65 28.57% 10.92% 1.51%

BsWRKY24 335 35367.1 7.61 62.24 -0.354 25.37% 13.73% 3.88%

BsWRKY25 530 56563.4 6.36 62.43 -0.622 20.94% 10.94% 2.45%

BsWRKY26 703 76820.1 5.61 62.54 -0.648 13.23% 10.53% 3.27%

BsWRKY27 363 41768.4 8.52 63.93 -0.781 31.68% 13.50% 2.75%

BsWRKY28 526 57802.3 6.2 66.1 -0.657 13.50% 12.93% 3.42%

BsWRKY29 343 38673.7 9.76 66.63 -1.146 23.32% 12.83% 4.37%
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2.2 Subcellular localization, signal peptide and transmembrane
structure
The subcellular localization prediction showed that 24 WRKY proteins were all located in nucleus, except that
BSWRKY16 was located in chloroplast, BSWRKY14 and BSWRKY29 were located in mitochondria, BSWRKY17 was
located in vacuole, and BSWRKY28 was located in endoplasmic reticulum. Subcellular location determines its specific
biological effects. WRKYs can form a net that contributes to various cytoplasmic and nuclear processes including
signaling events from organelles or the cytoplasm to the nucleus (Bakshi and Oelmüller, 2014). Studies had shown
that WRKY TFs on the ABAR-ABA complex in the downstream chloroplast envelope, regulates seed germination and
other processes, and is one of the key nodes of abscisic acid signaling pathways (Rushton et al., 2012). These results
indicated that WRKY genes might be involved in the regulation of plant growth and development and is an important
node in metabolic regulation.

2.3 Promoter cis- regulatory elements of BsWRKY genes
The upstream of these BsWRKY genes were detected for finding cis-regulatory elements, like promoter and other cis-
acting elements related to hormone regulation and stress-response (Fig. 1). The result showed that the cis-regulatory
elements of the promoters of BsWRKY genes were related to growth and development (meristem expression, specific
to the endosperm, seed-specific regulation and regulates circadian rhythm), plant hormones (auxin, abscisic acid,
methyl jasmonate (MeJA), gibberellin, and salicylic aci), and stress (drought, low temperature, oxygen specificity
induced response element and anaerobic induced indispensable cis function adjustment). It also showed that all the
29 BsWRKY genes had light response elements (LRE), and 14 of them had the drought-inducibility response elements.
However, the elements of cell cycle regulatory elements, elements involved in defense and stress response, flavonoid
synthesis and seed germination were only existed in BsWRKY28, BsWRKY7, BsWRKY16 and BsWRKY24, respectively.
This not only indicated that BsWRKY genes are associated with plant growth, but also playing a vital role in drought
stress regulatory networks. Collectively, these results indicated that WRKY family members participate in embryonic
development, meristem growth and environmental stress regulation during the growth and development of B. striata.

2.4 Conservative motif of WRKY protein
A total of 10 conserved motifs were obtained by using online MEME for motif analysis of WRKY transcription factors
in B. striata (Fig. 2A, B, C). Among them, motif3 were contained in 28 members except BsWRKY7. Motif1 and motif2
existed in 26 members, motif8 was found in 6 members, motif4 was detected from 4 members. The CD-search
analysis found that motif1, motif2, and motif4 belong to WRKY domains, motif8 was a zinc finger domain relates to
WRKY. Interestingly, the motif3 had no function record in the database currently, which needs to be further studied.

2.5 Conserved domains identification and evolutionary analysis
Through the online server CD-search, the structure domains of the WRKY genes family were analyzed for comparison.
The results showed that 24 members of the 29 BsWRKY had typical WRKYGQK heptapeptide domain and W-box, but
there was different degree of variation which mainly occurred in the N-terminal. Five transcription factors, i.e. BsWRKY
7, 16, 17, 22 and 27, had incomplete domains, like missing N or C terminus. It was speculated that the deletion may
occur in the evolutionary process.
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To place the evolution role and further identify the functions of BsWRKY genes, these 29 WRKY sequences from B.
striata, 22 WRKY from Arabidopsis thaliana and 20 WRKY from Dendrobium catenatum were used to perform a
phylogenetic analysis (Fig.3). The 29 BsWRKY transcription factors were grouped into three major groups. Group I
included 6 members as BsWRKY 4, 17, 19, 10, 25, 26 and 28, which contains two WRKY conserved domains. Group III
had members of BsWRKY1, 15 and 22, which containing only one WRKY domain with the zinc finger structure of type
C2HC. In addition, Group II had only one domain with the zinc finger structure of C2H2, which could be further divided
into 5 subgroups. In which, subgroup II-a had only member of BsWRKY12, subgroup II-b had four as BsWRKY 18, 23,
24 and 27, subgroup Ⅱ-c had BsWRKY2, 5, 6, 7, 10 and 29, subgroupⅡ-d was consisted by six members i.e. BsWRKY8,
9, 11, 13, 14 and 16, subgroupⅡ-e hold three members as BsWRKY3, 20 and 21.

According to the evolutionary tree, event of domain’s gain or loss might occur in the process of evolution, and group I
was closer the real ancestor. The evolutionary relationship of WRKY genes among B. striata, A. thaliana and D.
catenatum indicated that the three may have similar roles in certain biological functions. The results showed that
BsWRKY5, BsWRKY12 and BsWRKY3 had the highest similarity with AtWRKY3, AtWRKY40 and AtWRKY14,
respectively.

2.6 GO enrichment and KEGG functional cluster of WRKY genes
The GO and KEGG analysis results (Table 3) showed that most of BsWRKY genes were divided into three categories
with functions of cellular components, biological processes and molecular functions, except BsWRKY8, 14, 16, 20 and
22. Among the biological processes, 19 genes were annotated for transcriptional regulation, BsWRKY18 and
BsWRKY27 for cell cycle, BsWRKY25 for DNA repair and BsWRKY17 for meiosis prophase. In the molecular function
category, 16 proteins were annotated for sequence specific DNA binding and 20 proteins for sequence specific DNA
binding transcription factor activity. Among the large group of cellular components, only BsWRKY12 was annotated
into the troponin complex, and BsWRKY25 had DNA ligase (NAD+) activity. KEGG analysis showed that BsWRKY19,
20, 26 and BsWRKY28 were involved in environmental information processing, signal transduction, MAPK signal
transduction pathway, environmental adaptation, plant pathogen interaction and biological system.

Table 3

 GO function classification of WRKY protein of B. striata
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Gene
name

Biological processes   Molecular
function

  Cellular
components

Transcriptional
regulation

DNA
repair

Cell
cycle

Meiosis
prophase

Sequence-
specific
DNA
binding

Sequence-
specific DNA
binding
transcription
factor activity

DNA
ligase
(NAD+)
activity

Troponin
complex

BsWRKY
1

√ √ √

BsWRKY
2

√ √ √

BsWRKY
3

√ √ √

BsWRKY
4

√ √ √

BsWRKY
5

√ √ √

BsWRKY
6

√

BsWRKY
7

√ √ √

BsWRKY
8

BsWRKY
9

√ √ √

BsWRKY
10

√ √ √

BsWRKY
11

√

BsWRKY
12

√ √ √ √

BsWRKY
13

√ √ √

BsWRKY
14

BsWRKY
15

√ √ √

BsWRKY
16

BsWRKY
17

√ √

BsWRKY
18

√ √

BsWRKY
19

√ √ √



Page 10/18

BsWRKY
20

BsWRKY
21

√ √ √

BsWRKY
22

BsWRKY
23

√

BsWRKY
24

√ √ √

BsWRKY
25

√ √

BsWRKY
26

√ √ √

BsWRKY
27

√ √

BsWRKY
28

√

BsWRKY
29

√ √ √

 

2.7 EST-SSR polymorphism of WRKY genes in B. striata
The EST-SSR markers have the advantages of high polymorphism and variability, high reproducibility, accurate and
rapid detection (Li et al., 2015). A total of 10 among the 29 sequences were detected with SSR sites by NWISRL, of
which 3 sequences were dinucleotide repeats and 7 sequences were trinucleotide repeats. The lowest number of
replicates was 5, and the highest number was 18. The primer pairs of the 10 SSR sites were designed by DNAMAN
software which could be amplified stably in all the four landraces (Table A), and the length of the amplified products
ranged from 100 to 200 bp (Fig. 4). These results indicated that WRKY gene family was probably high-conserved in
different B. striata germplasms. These newly found SSR primers could be used as molecular markers to identify the
members of BsWRKY gene families in different germplasm (Zhong et al., 2021).

3. Discussion
WRKY transcription factors are important transcription factors involved in growth, development and response to stress
in eukaryotes, and play an important role in plant survival. Based on bioinformatics analysis, the physicochemical
properties, enzyme restriction sites, conserved motifs, cis elements, evolutionary relationships and functions of WRKY
gene family of B. striata were analyzed, and EST-SSR sites were detected and verified. Based on the transcriptome data
of B. striata, a total of 29 members of BsWRKY gene family were screened. Among them, 24 members had typical
WRKYGQK conserved structure and downstream W-box [(T/C) TGAC (C/T)] homeostasis element. However, five
members (BsWRKY7, 16, 17, 22 and 27) had different degrees of deletion at the C-terminal or N-terminal, which
indicated that they might be self-regulation or cross regulation between WRKY genes. Among them, the length of
BsWRKY7 conservative domain was less than half, but it had elements involved in defense and stress response. GO
enrichment indicated that BsWRKY7 has specific sequence DNA binding transcription factor activity and participates
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in cell transcription regulation, which belongs to subgroups II-c in classification. Therefore, its function and binding
specificity could be further investigated.

Subcellular localization showed that 24 BsWRKY genes played a role in the nucleus, while BsWRKY28 was located in
the endoplasmic reticulum. It had a response element for regulating the cell cycle as well as other regulatory elements
such as drought, anaerobic stress, salicylic acid response and ATBP-1 binding site. KEGG analysis showed that
BsWRKY28 was involved in environmental adaptation and also belonged to the subgroups Ⅱ-c. These results indicated
that it was involved in the synthesis and regulation of important substances in the process of cell growth and
development and played a vital role in the stress. BsWRKY17 was located in vacuoles and had a signal peptide and
transmembrane structure. It was speculated that BsWRKY17 may be function as a secreted protein, which will be
secreted into cells after synthesis and then played a role. BsWRKY16 was located in chloroplasts with seven restriction
sites, and also had cis-acting elements related to flavonoid synthesis, suggesting that BsWRKY16 was involved in
regulating the synthesis of plant secondary metabolites. Previous studies have shown that WRKY is also involved in
the synthesis of terpenoids and played a key regulatory role (Park et al., 2021). BsWRKY14 and BsWRKY29 played a
role in mitochondria. BsWRKY14 had auxin response element and low temperature response element. BsWRKY29 had
MYBHv1 binding site, abscisic acid response element, hypoxia specific induction element, salicylic acid response
element, ATBP-1 binding site and MeJA response element. Both of them had gibberellin response element and
anaerobic induction element. So we speculated that these two elements may be involved in the regulation of cell
maturation and senescence, BsWRKY29 also belonged to subclass II-c, suggesting that subgroups II-c might play an
important role in stress response (Na et al., 2018). The BsWRKY gene family had plant hormone or stress response
elements, which were tissue-specific and have synergistic effects among members. Its function is to respond to
hormonal signals and stress. We speculated that all genes contain light-response elements, which affect the cell cycle
and help plants cope with various stresses. Many studies show that WRKY gene in banana (Zheng et al., 2021), longan
(Fan et al., 2017), Artemisia annua (Xue and Jue, 2021), rice (Li et al., 2021), barley (Viana et al., 2021) and other plants
is involved in regulating the maturity and senescence of plants, promoting the accumulation of specific products, and
responding to one or more abiotic stresses. Despite these similarities, plant development is a very complicated
process, and BsWRKY genes could be directly or indirectly involved in a certain regulatory role. Therefore, it is
necessary to conduct more in-depth and detailed research on these genes.

Former studies reported that AtWRKY3 involved in biological stress response (Aboul-Maaty and Oraby, 2019),
AtWRKY40 participated in drought stress response in A. thaliana (Ju et al., 2019), AtWRKY14 played a role in plant
antiviral (Che et al., 2018). Therefore, we speculated that genes BsWRKY5, BsWRKY12 and BsWRKY3 might play a
regulatory role in stress resistance in B. striata. GO enrichment classified the BsWRKY gene family into three categories
of biological processes, molecular functions, and cell components. In which the WRKY gene family was involved in
important processes such as cell cycle, transcriptional regulation, and meiosis. KEGG clustering also confirmed that
BsWRKY gene family was involved in signal transduction and environmental information processing, growth and
development regulation, stress response and hormone signal transduction, which inferred that WRKY family was an
important factor in plant growth and development and response to environmental stress. EST-SSR polymorphism
detection showed that the occurrence frequency of WRKY gene family in B. striata was 34.48%, which was dominated
by trinucleotide repeats, indicating that the WRKY family in different B. striata varieties was conserved. This indicated
that this gene family has genetic conservative. Therefore, the SSR sites can be used to identify the genetic diversity of
germplasm resources, and provide some reference for the molecular-assisted breeding and genetic diversity analysis
of plants, which is of great significance for the development and utilization of gene function and the evaluation of
germplasm resources.

4. Conclusion
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WRKY transcription factor family was named from the highly conserved region WRKY domain, which can specifically
bind to the W-box in the promoter of the target gene and regulate the expression of the target gene. The WRKY gene
family of B. striata was a highly conserved gene family with hereditary conservation among different species. It
contained many hormone response elements and stress response elements, and had many enzyme digestion sites,
which make it involved in the growth and development process of plants and the key points for regulation of the
synthesis of secondary metabolites. It’s one of regulators in primary and secondary metabolism and played an
important role in the stress. According to the bioinformatics analysis and function characterization of each member of
the BsWRKY family, we screened the relative sequence for each function. In different locations, WRKY not only played
its own functions, but also coordinated the regulation of the whole life activities. These results provided a theoretical
basis for further study of the functions and regulatory mechanisms of WRKY gene family of B. striata. As transcription
factors, WRKY genes had different function, while some potential WRKY TFs may be to control the growth and
development in B. striata, for instance, tubers development and biomass accumulation of B. striata. However, more
functions and internal regulatory mechanisms need to be studied. By studying the WRKY gene family, gene editing
technology can be used to conduct in-depth research on the members of this gene family, and further explore the
functions of this gene family and the regulatory mechanisms involved in regulating plant growth, development and
stress response. There will be opportunities to improve stress resistance and secondary metabolites in plants of great
significance for cherished medicinal plants.
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Figure 1

Cis-responsive elements in the upstream region of the initiation codon of BsWRKY genes. Different colored boxes
indicated different cis-responsive elements.
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Figure 2

The size(A), sequence(B) and location(C) of the conserved motifs on WRKY protein family. The length and order of the
boxes with different colors represent the actual size and location of each motif in protein sequence respectively.
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Figure 3

Phylogenetic tree of WRKY genes in B. striata and A. thaliana and D. catenatum.
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Figure 4

SSR profiles of B. striata.
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