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Composite anti-disturbance control for ship dynamic positioning systems with thruster faults

Ziwen Yu, Xinjiang Wei∗∗, Huifeng Zhang, Xin Hu, Jian Han

School of Mathematics and Statistics Science, Ludong University, Yantai, China

Abstract

Anti-disturbance control problem is studied for ship dynamic positioning systems with disturbances and

thruster faults. The disturbances include slowly-varying environmental disturbances and norm bounded dis-

turbances. For the slowly-varying environmental disturbance, a stochastic disturbance observer is established

to give the online estimation. For thruster faults, a fault diagnosis observer is designed. Then, a composite

anti-disturbance control (CADC) strategy is raised, which ensures asymptotic mean-square boundedness of the

closed-loop system. Finally, the simulation example proves the validity of the controller.

KEY WORDS: Anti-disturbance control; Dynamic positioning; DOBC; Fault diagnosis; Stochastic disturbance

observer

1 Introduction

There are various disturbances at sea level. The dynamic positioning(DP) can keep the ship in a predetermined

position or track in the presence of external environmental disturbance [1–4]. For unknown constant disturbance,

a nonlinear set-point-regulation controller was proposed using a port-Hamiltonian framework [5]. Considering the

unknown time-varying disturbance, a PID controller was given based on fuzzy rules [6].

In fact, ships will be affected by different types of disturbances on the sea surface [7, 8]. For multiple dis-

turbances, the composite hierarchical anti-disturbance control(CHADC) strategy was presented, which has ad-

vantages of high control precision and strong robustness [9–13]. Considering modeling uncertainty and marine

environmental disturbance, a composite control method is raised by combining disturbance observer-based control

and H∞ control [14]. In ref [15], a robust adaptive controller was given for systems with multiple disturbance.

When ships sailing on the sea for a long time, thruster faults will appear inevitably [16, 17]. The faults will

degrade system performance, reduce the DP accuracy, and even make the DP system unstable [18–20]. Therefore,

it is essential to study the fault diagnosis to improve the reliability of the DP systems [21, 22]. In [23], the asymp-

totic dynamic positioning for ships with actuator constraints was addressed, whereas the disturbances caused by

external environmental is not considered.

In this paper, the DP systems are considered with multiple disturbances and thruster faults. The stochastic

disturbance observer and fault diagnosis observer are given to evaluate the disturbance and fault concurrently.

Subsequently, a composite anti-disturbance control(CADC) strategy is raised. The main contributions are as fol-

lows:

1) The ship dynamic positioning systems with multiple disturbances and thruster faults are considered. In mul-

tiple disturbances, the slowly-varying environmental disturbance is considered, which is generated by an external

system with white noise.

2) The disturbance observer and fault observer are designed to evaluate the disturbance and fault. Then, the

composite controller is given by uniting the disturbance observer-based control with fault-tolerant control.

∗Corresponding author. Email: weixinjiang@163.com.

1



2 Mathematical modeling of ships

Two coordinate frames are defined to mean the ship motion, as represented in the Fig 1. AXY Z is the ship-

fixed frame. When the ship is symmetrical left and right, ships center of gravity is origin A. AX is directed from

stern to prow, AY is pointed to the starboard, AZ is from top towards bottom. OX0Y0Z0 is the north-east-down

frame. The OX0 axis, OY0 axis and OZ0 axis points north, east and the center of the earth, respectively. Origin O
is considered to be any point on the face of the globe. The dynamic positioning of ship’s mathematical model is as

below

η̇(t) = T (ι)υ, (1)

Aυ̇ = −Bυ + τ + ρ(t) + ϵ(t) + ε(t), (2)

where η = [x, y, ι]T is the position vector, υ = [u, v, r]T is the velocity vector, and

T (ι) =





cos(ι) − sin(ι) 0
sin(ι) cos(ι) 0
0 0 1



 , (3)

which satisfies T−1(ι) = T T(ι). τ = [τ1, τ2, τ3]
T is a three-dimensional column vector, which is formed from
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Figure 1: North-east-down and ship-fixed coordinate frames [24].

forces and moments that generated by the propulsion device. ρ(t) is slowly-varying environmental disturbances.

ϵ(t) is the norm bounded disturbance. ε(t) is a vector that represents the fault caused by the thruster system. A is

a inertia matrix, B is a damping matrix.

Based on [25], the yaw angle ι satisfies

T (ι) ≈ I. (4)

Remark 1: For the ship dynamic positioning systems, the wave-induced yaw ιw is small enough that T (ι) ≈
T (ι+ ιw)(ιw is less than 1◦ when the vessel sails on the sea and is less than 5◦ in the severe weather conditions).

Considering the yaw angle ι is extremely small, then cos(ι + ιw) ≈ cos(ι) ≈ 1, sin(ι + ιw) ≈ sin(ι) ≈ 0 and

T (ι) ≈ I .

Letting µ = τ , the DP system is expressed as

Ẋ(t) = GX(t) +H(µ(t) + ρ(t) + ϵ(t) + ε(t)), (5)
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X =

[

η
υ

]

, G =

[

0 I
0 −A−1B

]

, H =

[

0
A−1

]

,

where X(t) ∈ ℜn, G ∈ ℜn×n, H ∈ ℜn×m and µ(t) ∈ ℜm is the state vector, the coefficient matrix and the

control input vector. ρ(t) is slowly-varying environmental disturbances. ϵ(t) is the norm bounded disturbance,

ε(t) represents the fault caused by the thruster system.

Based on [26], ρ(t) is described as

{

ρ(t) = T−1(ι)h(t),

ḣ(t) = −N−1h(t) + Θζ(t),
(6)

where N ∈ ℜr×r is the known positive definite diagonal matrices, h(t) represents bias forces and moments,

Θ ∈ ℜr×r is the bounded positive definite diagonal matrices, ζ(t) ∈ ℜr is the zero-mean Gauss white noise, and

∥ζ(t)∥2 ≤ c∗, c∗ is a positive constant.

The fault is indicated as:

ε̇(t) = Jς(t), (7)

where J is a known matrix and ς(t) is bounded.

Assumption 1: The pair (N−1, HT−1(ι)) is observable and the pair (G,H) is controllable.

Lemma 1 [27]: For

dx(t) = m(x(t), t)dt+ n(x(t), t)dω(t), t ≥ t0 ≥ 0. (8)

If ∃V ∈ C2.1(ℜn ×ℜ+), κ ∈ Kν ⊂ K∞ and ψ, s, θ > 0, satisfy

κ(|x|ψ) ≤ V (x, t), (9)

LV (x, t) ≤ −sV (x, t) + θ, (10)

for ∀(x, t) ∈ ℜn ×ℜ+. Subsequently

lim
t→∞

supE|x(t; t0, x0)|
ψ ≤ κ−1(

θ

s
) (11)

for ∀(x, t) ∈ ℜn ×ℜ+. Therefore, the system (8) is asymptotically bounded in pth moment.

According to [28], by replacing ζ(t) with
dω(t)
dt

, the DP systems can be depicted by:

dX(t) = GX(t)dt+H(µ(t) + ρ(t) + ϵ(t) + ε(t))dt, (12)

{

ρ(t) = T−1(ι)h(t),

dh(t) = −N−1h(t)dt+Θdω(t),
(13)

based on [29, 30], ω(t) is an independent standard Wiener process.

3 Main results

Supposing X(t) is available. The composite observer consisting of SDO and FDO is devised to estimate ρ(t)
and ε(t). After that, the CADC strategy is proposed.
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3.1 Composite observer

3.1.1 Stochastic disturbance observer (SDO)

The SDO is given as











ρ̂(t) = T−1(ι)ĥ(t),

ĥ(t) = q(t) + L1X(t),

dq(t) = (−N−1 − L1HT
−1(ι))(q(t) + L1X(t))dt− L1GX(t)dt− L1H(µ(t) + ε̂(t))dt,

(14)

where ρ̂(t) is evaluation of ρ(t), p(t) is the auxiliary variable of SDO (14), and the observer gain L1 can be

determined by the method of pole placement.

Letting eh(t) = h(t)− ĥ(t), the error systems is

deh(t) = (−N−1 − L1HT
−1(ι))eh(t)dt− L1Heε(t)dt− L1Hϵ(t)dt+Θdω(t). (15)

3.1.2 Fault diagnosis observer (FDO)

The FDO is expressed as

{

ε̂(t) = p(t)− L2X(t),

dp(t) = L2H(p(t)− L2X(t))dt+ L2(GX(t) +Hµ(t) +Hρ̂(t))dt,
(16)

where ε̂(t) is the evaluation of ε(t), p(t) is the middle variable of FDO, the gain L2 of the observer(16) satisfies

L2H = D. (17)

Assuming D is a Hurwitz matrix. Denoting eε(t) = ε(t)− ε̂(t), then

deε(t) = Jς(t)dt+ L2Heε(t)dt+ L2HT
−1(ι)eh(t)dt+ L2Hϵ(t)dt. (18)

3.2 Composite anti-disturbance control (CADC)

The CADC strategy is put forward by using H∞ technique and toolbox of LMI, hence the system (12) is

asymptotically mean-square bounded.

On account of the SDO (14) and FDO (16), the composite controller is devised as follows

µ(t) = KX(t)− ρ̂(t)− ε̂(t), (19)

where K is coefficient matrix, which can be derived using the LMI.

On the basis of (12) and (19), one has

dX(t) = (G+HK)X(t)dt+HT−1(ι)eh(t)dt+Heε(t)dt+Hϵ(t)dt. (20)

Combining (15), (18) and (20), then

dℵ(t) = Ḡχ(t)dt+ H̄ϵ(t)dt+ J̄ς(t)dt+ Θ̄dω(t), (21)

ϖ(t) = Cχ(t), (22)
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where

Ḡ =





G+HK HT−1(ι) H
0 −N−1 − L1HT

−1(ι) −L1H
0 L2HT

−1(ι) L2H



 , H̄ =





H
−L1H
L2H



 ,

J̄ =





0
0
J



 , Θ̄ =





0
Θ
0



 , C =
[

C1 C2 C3

]

,ℵ(t) =





X(t)
eh(t)
eε(t)



 .

Then, the following results through the stability analysis of the system (21).

Theorem 1: Under Assumption 1, consider system (12) with multiple disturbances and thruster faults, if ∃Q1 > 0,

Q2 > 0, Q3 > 0, constant γ > 0 and matrix R1, satisfying

Ω =























Π11 Π12 HQ3 H 0 Q1C
T
1

∗ Π22 Π23 −L1H 0 Q2C
T
2

∗ ∗ Π33 L2H J Q3C
T
3

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ −I























< 0, (23)

where

Π11 = GQ1 +Q1G
T +HR1 +RT

1H
T,

Π12 = HT−1(ι)Q2,

Π22 = −N−1Q2 −Q2N
−1 − L1HT

−1(ι)Q2 −Q2T (ι)H
TLT

1 ,

Π23 = −L1HQ3 +Q2T (ι)H
TLT

2 ,

Π33 = L2HQ3 +Q3H
TLT

2 .

By adjusting the gain L1 of SDO (15), the gain L2 of FDO (18) and solving the gain K of the controller

(19) with K = R1Q
−1
1 , then all states of system (21) are asymptotically mean-square bounded. In the meantime,

∥ϖ(t)∥ < γ(∥ϵ(t)∥+ ∥ς(t)∥) for ∀ϵ(t), ς(t) ∈ L2(0, T ].
Proof:(i) For the system (21) with ϵ(t) = ς(t) = 0, selecting

V (ℵ(t), t) = ℵT(t)Ψℵ(t), (24)

and

Ψ =





Ψ1 0 0
0 Ψ2 0
0 0 Ψ3



 =





Q−1
1 0 0

0 Q−1
2 0

0 0 Q−1
3



 > 0. (25)

the derivative of (24) is

LV (ℵ(t), t) =
∂V

∂ℵ

(

Ḡℵ(t)
)

+ Tr(Θ̄TΨΘ̄)

= ℵT(t)
(

ΨḠ+ ḠTΨ
)

ℵ(t) + Tr(Θ̄TΨΘ̄)

= ℵT(t)Ξ0ℵ(t) + α(t), (26)

where

Ω0 = ΨḠ+ ḠTΨ, α(t) = Tr(Θ̄TΨΘ̄).

Since Θ̄ and Ψ are bounded, for (26), ∃ ı > 0, such that 0 < α(t) < ı, which implies that

LV (ℵ(t), t) = ℵT(t)Ξ0ℵ(t) + r(t) ≤ ℵT(t)Ξ0ℵ(t) + ı. (27)
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When Ξ0 < 0, ∃ν > 0, one has

Ξ0 < 0 ⇒ Ξ0 + νI < 0. (28)

Based on (24), (26), (27) and (28), choosing κ = λmin(Ψ)|ℵ|p, ϑ = θ
λmax(Ψ) and p = 2, the following

inequalities hold

κ(|ℵ|p) = λmin(Ψ)|ℵ|2 ≤ ℵT(t)Ψℵ(t) = V (ℵ(t), t), (29)

LV (ℵ(t), t) ≤ −ϑV (ℵ(t)) + ı. (30)

Subsequently,

EV (ℵ(t), t) ≤ V (ℵ(0))e−ϑt +
ı

θ
(31)

and

lim
t→∞

supE|ℵ(t; t0,ℵ0)|
p ≤

ı

ϑλmax(Ψ)
=
ı

θ
. (32)

In the light of Lemma 1, system (21) is asymptotically mean-square bounded under ϵ(t) = ς(t) = 0.

(ii) For the case of ϵ(t), ς(t) ∈ L2(0, T ], choosing

W (t) = E

∫ t

0

[

ϖT(s)ϖ(s)− γ2(ϵT(s)ϵ(s) + ςT(s)ς(s)) + LV (ℵ(s), s)
]

ds.

Considering (29), then

W (t) = E

∫ t

0

[

ϖT(s)ϖ(s)− γ2(ϵT(s)ϵ(s) + ςT(s)ς(s)) + LV (ℵ(s), s)
]

ds

≤ E

∫ t

0

[

ϖT(s)ϖ(s)− γ2(ϵT(s)ϵ(s) + ςT(s)ς(s)) + ℵT(s)Ω0ℵ(s)
]

ds+ ı

= E

∫ t

0





ℵ(s)
ϵ(s)
ς(s)





T

Ξ1





ℵ(s)
ϵ(s)
ς(s)



 ds+ ı

=W1(t) + ı, (33)

where

W1(t) = E

∫ t

0









ℵ(s)

ϵ(s)

ς(s)









T

Ξ1









ℵ(s)

ϵ(s)

ς(s)









ds, Ξ1 =









Ξ0 + CTC ΨH̄ ΨJ̄

H̄TΨ − γ2 I 0

J̄TΨ 0 − γ2I









. (34)

Our main results are as follows:

1): Ξ1 < 0 ⇔ Ξ2 < 0. Considering (21), (24), (34) and Schur complement lemma, Ξ1 < 0 ⇔ Ξ2 < 0, where

Ξ2 =























Λ11 Λ12 Ψ1H Ψ1H 0 CT
1

∗ Λ22 Λ23 −Ψ2L1H 0 CT
2

∗ ∗ Λ33 Ψ3L2H Ψ3J CT
3

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ −I























, (35)
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with

Λ11 = Ψ1G+GTΨ1 +Ψ1HK +KTHTΨ1,

Λ12 = Ψ1HT
−1(ι),

Λ22 = −Ψ2N
−1 −N−1Ψ2 −Ψ2L1HT

−1(ι)− T (ι)HTLT
1Ψ2,

Λ23 = −Ψ2L1H + T (ι)HTLT
2Ψ3,

Λ33 = Ψ3L2H +HTLT
2Ψ3.

2): Ξ2 < 0 ⇔ Ξ3 < 0. Multiplied by diag{Q1, Q2, Q3, I, I, I} on both sides of the matrix Ξ2 is adopted, yields

Ξ3 =























Π11 Π12 HQ3 H 0 Q1C
T
1

∗ Π22 Π23 −L1H 0 Q2C
T
2

∗ ∗ Π33 L2H J Q3C
T
3

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ −I























< 0, (36)

here

Π11 = GQ1 +Q1G
T +HKQ1 +Q1K

THT,

Π12 = HT−1(ι)Q2,

Π22 = −N−1Q2 −Q2N
−1 − L1HT

−1(ι)Q2 −Q2T (ι)H
TLT

1 ,

Π23 = −L1HQ3 +Q2T (ι)H
TLT

2 ,

Π33 = L2HQ3 +Q3H
TLT

2 .

3): Ξ3 < 0 ⇔ Ξ < 0. For Ξ3 < 0, choosing K = R1Q
−1
1 , we have Ξ < 0.

So, one has Ξ < 0 ⇔ Ξ3 < 0 ⇔ Ξ2 < 0 ⇔ Ξ1 < 0, which means that Ξ0 < 0 and W1(t) < 0 hold. From

(33), we have W (t) is bounded, then ∥ϖ(t)∥ < γ(∥ϵ(t)∥+ ∥ς(t)∥).

4 Simulation examples

Taking Cybership II with width of 0.29 m, length of 1.255 m and scale of 1:70 as an example [31].

4.1 Disturbance case 1: Θ = diag{3, 2.3, 2.6}

The coefficient matrices are taken as follows:

A =





25.8 0 0
0 33.8 1.0948
0 1.0948 2.76



 , B =





0.72253 0 0
0 0.88965 7.25
0 −0.03130 1.9



 .

Selecting η0 = [1 m, 1 m,π/4 rad]T and υ0 = [0 m/s, 0 m/s, 0 rad/s]T, then X(0) = [1, 1, π/4, 0, 0, 0]T.

Assuming the bound of ϵ(t) is 1 and the thruster fault is

ε(t) =
[

10− 10sin(0.001t+ 1) 10− 10sin(0.001t+ 2) 10− 10sin(0.001t+ 3)
]T
.
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Selecting the output as ϖ(t) = Cχ(t), γ = 10 and C1 = [1, 1, 1, 1, 1, 1], C2 = [0, 0, 0], C3 = [0, 0, 0], the

parameters of disturbance (6) are

N =





0.05 0 0
0 0.05 0
0 0 0.05



 ,Θ =





3 0 0
0 2.3 0
0 0 2.6



 .

By placing the poles of −N−1 − L1HT
−1(ι) at [−300 − 300 − 300], the observation gain L1 can be obtained

L1 =





0 0 0 7224.0000 0 0
0 0 0 0 9464.0000 306.5440
0 0 0 0 306.5440 772.8000



 .

Based on (18), choosing S = diag{−8,−8,−8}, the fault observation gain L2 can be obtained that

L2 =





0 0 0 −206.4000 0 0
0 0 0 0 −270.4000 −8.7584
0 0 0 0 −8.7584 −22.0800



 .

Based on Theorem 1, one has

Q1 =

















308.1337 −96.6093 −73.5695 −95.3816 12.7475 −51.0975
−96.6093 295.0344 −66.7552 4.0045 −86.8390 −44.3572
−73.5696 −66.7552 302.7190 23.5956 −10.4535 −171.8649
−95.3816 4.0045 23.5956 59.1977 −1.3900 9.4624
12.7475 −86.8390 −10.4535 −1.3900 50.5828 33.7809
−51.0975 −44.3572 −171.8649 9.4624 33.7809 231.2220

















,

Q2 =





36.9780 0 −0.0001
0 36.9785 0

−0.0001 0 36.9679



 , Q3 =





3.9564 0 0
0 3.9565 0.0001
0 −0.0001 3.9540



 ,

R1 =





−120.2714 −16.0909 −3.6584 −384.2185 −18.9038 −1.7369
−24.1237 −116.8468 −59.3510 −14.0846 −389.1557 −2.5195
−42.1946 −36.2377 −195.7416 −10.6494 24.0253 −250.8027



 .

K =





−35.6227 −33.0368 −30.6078 −45.5143 −35.7308 −29.8851
−36.9426 −41.7950 −36.2603 −38.4792 −56.4309 −33.3255
−28.9634 −28.8859 −29.6037 −29.0398 −28.9565 −29.6120



 ,

4.2 Disturbance case 2: Θ = 5× diag{3, 2.3, 2.6}

The initial values and design control parameters are the same as case 1, the parameters of the disturbances (6)

are given by

N =





0.05 0 0
0 0.05 0
0 0 0.05



 ,Θ = 5×





3 0 0
0 2.3 0
0 0 2.6



 .

In Fig 2-3, (a) is the ship’s trajectory from initial position (1m, 1m). The curves of ship position are illustrated

in (b). (c) represents the responses of ship velocity. The control input can be seen in (d). (e)-(f) show the curves of

estimation errors for the disturbances and faults.

In Fig 2(a) and 3(a), it is shown that the CADC can make the ship stay in desired position (0 m, 0 m) and

maintain a fixed attitude steadily compared with [14]. In (b)-(c) of Fig 2-3, we know that the CADC scheme

presented in this paper can make the states of DP ship asymptotically mean-square bounded. As can be seen from

Fig 2(e)-(f) and 3(e)-(f), the estimation errors of disturbances and faults are satisfactory.
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Figure 3: Comparison curves of disturbance case 2.
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5 Conclusions

For the ship dynamic positioning systems with multiple disturbances and thruster faults, a composite observer

including SDO and FDO is raised to evaluate the disturbances and faults simultaneously. Based on the estimation,

the CADC strategy is put forward by using disturbance observer-based control, H∞ control and fault-tolerant con-

trol. In this paper, the signal thruster fault is considered. The next work in the future is the anti-disturbance control

for the ship dynamic positioning systems with multiple disturbances and multiple faults.
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