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Abstract
Groundwater metal pollution is a major concern for societies, especially in areas where the mining
industry is important. Index-based techniques, as the DRASTIC index, are often used to assess the
intrinsic groundwater vulnerability and could be modified to evaluate the aquifer vulnerability to specific
contaminants. Mines, mining wastes and related features are detectable with remote sensing techniques.
In this work we evaluate the vulnerability of the Rio Sonora Aquifer to metallic pollution by the traditional
DRASTIC method and by the addition of a land use (Lu) parameter in which possible sources of metals
(detected by remote sensing) were considered (DRASTIC+Lu). The methodology allowed us to locate
possible sources of metallic contamination. The Sonora River channel showed the higher vulnerability in
both calculated vulnerability indices (DRASTIC and DRASTIC+Lu). Generally, the addition of the land use
parameter caused a decrease in vulnerability but also a local increase where possible sources of metals
were found. Thus, the modified method facilitated the identification of highly vulnerable areas which is
relevant to better protect the studied aquifer.

1 Introduction
Groundwater is a valuable resource for human life and economic development. Its quantity and quality
are of vital importance in arid and semi-arid areas, where the climatic conditions are characterized by low
rainfall and high evapotranspiration, impacting surficial water resources and the aquifer recharge. The
concept of groundwater vulnerability was first introduced by J. Margat in 1968; today it is of importance
for the protection of groundwater resources. Assessing the vulnerability of an aquifer permits the
identification of areas that are more susceptible to being contaminated, allowing to carry out effective
protection measures and management plans for pollutants or wastes. Vulnerability assessment is really
relevant as remediation of aquifers would be difficult and expensive (Aydi, 2018; Yin et al., 2013).

The intrinsic vulnerability defines the vulnerability of an aquifer to a variety of pollutants, independently
of their nature, and it is related to the aquifer’s features (hydrological, geological, and hydrogeological)
(Oke, 2020). In that sense the vulnerability depends on the resistance of the aquifer itself when receiving
pollutants from outside, the lower the resistance, the greater the vulnerability. Influencing factors are:
depth to groundwater; net recharge rate; aquifer media; topography; vadose zone; hydraulic conductivity;
aquifer thickness; and, pumping density rate in case of over-pumping (Abu-Bakr, 2020).

Aquifers will have different reactions to different pollutants due to their physicochemical characteristics.
In those cases, it is more appropriate to talk about the specific vulnerability which defines the vulnerability
to a specific contaminant or group of contaminants considering the contaminants’ properties and its
interaction with the aquifer (Gogu and Dassargues, 2000; Voutchkova et al., 2021).

Many methods have been developed to assess the groundwater vulnerability; they can be classified into
three types: simulation methods, statistical methods, and index methods. The index-based techniques
have the advantage that they do not depend on data availability or similarities (Barbulescu, 2020), being
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widely used. One of the most widely used index-based methods is the DRASTIC index, developed by the
United States Environmental Protection Agency (EPA) to assess the potential for groundwater
contamination (Aller, 1987). DRASTIC considers seven parameters: Depth to water table (D), net Recharge
(R), Aquifer media (A), Soil media (S), Topography (T), Impact of the vadose zone (I), and hydraulic
Conductivity (C) which, together, form the acronym.

Frequently, new parameters are added to the seven main hydrogeological parameters of the DRASTIC
index. Additional parameters used by authors include: land-use (Kozłowski and Sojka, 2019), lineament
(Abdullah et al., 2015), proximity to rivers, residential areas and roads (Aydi, 2018), hydraulic parameters
(Lappas, I and Matiatos, I, 2014), redox state of the aquifer (Voutchkova et al., 2021), adsorption capacity
of soils (Jr and Viero, 2006), contamination index (Cd) and heavy metal pollution index (HPI) (Haque et
al., 2018). The DRASTIC index defines the aquifer intrinsic vulnerability; nevertheless, contaminant
specific methods have been developed based on it. Thus, DRASTIC modifications have been undertaken
to assess the groundwater vulnerability to nitrate (Jia et al., 2019; Voutchkova et al., 2021), pesticides (Al-
Mallah and Al-Qurnawi, 2018; Thapa, 2018) and mining pollutants (Barbulescu, 2020; Haque et al., 2018;
Tiwari et al., 2016).

Groundwater contamination related to the mining industry is an important global issue. Sulphide
oxidation and the associated acid mine drainage (AMD) or acid rock drainage (ARD) is considered as one
of the main water pollutants in many countries that have historic or current mining activities. AMD is
prominent in both active and abandoned mining sites (Simate and Ndlovu, 2014). Mining areas are
distinguished by the presence of waste dumps, mine tailings, water storage ponds, access roads and
heap leach pads. These features are common indications of mining impacts to the surrounding areas
and possible sources of metals. Some of these features are clearly detectable with remote sensing
techniques (Werner et al., 2019). Indeed, many efforts have been undertaken to detect mining wastes, its
impacts and site remediation by remote sensing (Balaniuk et al., 2020; Buczyńska, 2020; Connette et al.,
2016; Firozjaei et al., 2021; Hao et al., 2019; Khosravi et al., 2021; McKenna et al., 2020). Normalized
difference vegetation index (NDVI) is mostly used in vegetation growth research (Wang et al., 2021), it is
calculated as the level of greenness using imagery. NDVI is also a useful tool for distinguishing the
boundaries of vegetated terrain from tailings impoundments, which the NDVI primarily assigns negative
pixel values (Firozjaei et al., 2021; Schimmer, 2008; Zeng et al., 2017).

To our knowledge, this is the first attempt to evaluate groundwater vulnerability to metallic pollution by
the addition of a land use parameter in which possible sources of metals are considered to provide
greater certainty to the vulnerability assessment at mining areas. We applied a supervised classification
method to detect possible sources of metals on the area based on the NDVI values of known mining
sites, mining wastes and mineralized areas of the study site.

The aims of the present work were: (i) propose a new method combining remote sensing and the
DRASTIC procedure (modified DRASTIC method), (ii) identify possible sources of heavy metals (active
and inactive mines, mining wastes and mineralized areas) by a remote sensing work using a supervised
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classification procedure based on NDVI, (iii) assessing the ground water vulnerability to metal pollution at
the mining area of The Rio Sonora basin and, (iv) comparing and validating the results obtained by the
DRASTIC method and the proposed modified DRASTIC method.

2 Materials And Methods

2.1 Study site and context
The Rio Sonora aquifer is located in northwestern Mexico at the state of Sonora (Fig. 1), covering an area
of about 12,615 km2. The area accounts for a population of 23,261 inhabitants (CIAD, 2013) from
Aconchi, Arizpe, Banámichi, Baviácora, Huépac, San Felipe de Jesús and Ures municipalities.
Groundwater major use is for agriculture, followed by industrial and domestic usage.

It is an unconfined aquifer; its lateral limits correspond to intrusive igneous rocks of the granitic type and
extrusive rocks of the rhyolitic and andesitic type. In some areas, such as the Ures and San Felipe de
Jesús valleys, the Báucarit formation emerges, which is a conglomerate complex with medium to low
permeability. The Rio Sonora Aquifer is a porous-medium consisting of unconsolidated cobbles, gravels,
and sands with good granular porosity; thus, good permeability is restricted to the riverbed and tributary
streams (CONAGUA, 2015). The aquifer receives considerable amounts of water related to the summer
rainfall which occurs during July and August; this water input corresponds to approximately 43.26 hm3

year−1. Due to the extraction of water for human and industrial uses and natural processes such as
evaporation, evapotranspiration or underground flow (towards other basins or the sea), an output of
approximately 57.12 hm3 year−1of water is estimated, which indicates a negative change in storage of
13.86 hm3 year−1 (CONAGUA, 2015).

Main mineralized zones within the area are, from north to south: Buenavista del Cobre (Cu–Mo) in
Cananea, El Gachi (Pb–Zn) east of Arizpe, Santa Elena (Au) east of Banámichi, San Felipe de Jesus (Cu,
Pb, Zn and Au), El Jaralito (W), and Washington (Cu, W, and Mo) to the west and east of Baviácora,
respectively (Archundia et al., 2021). The area has tree active mines, Buenavista del Cobre, El Jaralito, and
Santa Elena and 15 known abandoned mines (Guzmán et al., 2019).

The study area has a long history of mining activity. Thus, mine tailings, abandoned mines, active mines,
as well as natural mineralization (Calmus et al., 2018; Del Rio-Salas et al., 2019; Guzmán et al., 2019)
occurs in the region. The main mining operations correspond, from north to south, to the El Gachi mine
(Pb-Zn) located east of Arizpe, the Santa Elena mine (Au) localized east of Banámichi, the San Felipe
mine (Cu, Pb, Zn and Au), as well as, El Jaralito (W) and the Washington mine (Cu, W and Mo) situated
west and east of Baviácora, respectively (Calmus et al., 2018). The El Gachi mine is currently inactive and
corresponds to a distal replacement deposit related to a porphyry copper-like environment, lodged in
sediments that correspond to the Early Cretaceous (Zuñiga-Hernández, 2010). The Santa Elena mine is
the largest active mining site within the study area; it is considered of hydrothermal origin, the elements
with the highest abundance are Au, Ag, Zn and Pb (Calmus et al., 2018). The San Felipe mining area is
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currently abandoned; it has several mineral deposits in the form of hydrothermal veins. The main
extraction minerals were pyrite, chalcopyrite, galena and sphalerite. This area is also characterized by the
presence of abandoned tailings (Del Rio-Salas et al., 2019). The Jaralito mine is of the skarn-type deposit
and has records of pegmatite bodies with W-Be mineralization (Roldán-Quintana, 1991). The Washington
mine is currently abandoned and corresponds to a breccia sedimentary rock located in a sequence of
volcanic rocks of the Tarahumara Formation (Simmons and Sawkings, 1983; Zuñiga-Hernández, 2010).

There are records of metal contamination in the region since the 1980s (Gomez-Alvarez et al., 1990). Del
Rio-Salas et al., (2019) observed that efflorescence minerals and mine tailings from the area have a high
toxicity and potential to affect the quality of water (groundwater and surficial) in the region. The mobility
and accessibility of some potentially toxic elements (Zn, Pb, and As) were investigated from the mining
tailings of San Felipe de Jesús and adjacent agricultural soils located within the aquifer. Zinc was mainly
recovered from labile fractions in oxide-rich tailings (~ 60%) and in a lower amount from sulfide-rich
tailings (~ 30%). The percentage of mobile fractions (sum of water-soluble, exchangeable, and bound to
carbonate fractions) in agricultural soils was as follows: Zn ~ 60%, Pb ~ 15%, and As ~ 70% (Loredo-
Portales et al., 2020). Recently, Archundia et al., (2021) documented point source locations of potentially
toxic elements producing contamination of the Rio Sonora basin where the studied aquifer is located.

2.1.1 Geology
A variety of igneous, sedimentary and metamorphic rocks emerge in the study area, ranging from the
Precambrian to recent times. The oldest are intrusive igneous and metamorphic rocks that emerge in the
western part of Banámichi and Huépac (Fig. 1). The metamorphic rocks correspond to schists and
gneisses of the Lower Proterozoic. The intrusive igneous rocks correspond to granites of the Cananea
(north of the study area) granite complex, with an age of 1.44 G.a (Anderson and Silver, 1977; Calmus et
al., 2018) from the Middle Proterozoic. The Paleozoic is characterized by quartzites from the Cambrian at
the municipalities of Banámichi and Huépac (Fig. 1), and intercalations of limestone and sandstones
with a certain degree of metamorphism that emerge at the municipalities of Hermosillo, Ures and
Baviácora (Fig. 1), corresponding to the Carboniferous-Permian. This set is known as metamorphic
Paleozoic units, which occur on the western edge of the study area in the direction of the Sonora River
channel. The Mesozoic is present in outcrops on the eastern and western edges of the study area. The
oldest rocks of this period correspond to intercalations of rhyolite-sandstone, sandstone-siltstone and
shale-sandstone located west of the Municipality of Banámichi and southwest of the Municipality of
Arizpe (Fig. 1). The Cretaceous is characterized by a volcanic-sedimentary environment with outcrops of
Andesite-Sandstone and Andesite-Andesite Toba (Calmus et al., 2018; Coney and Reynolds, 1977). The
end of the Cretaceous period is represented by plutonic rocks (granites and granodiorites) which are
distributed in the area, mainly in the central area, at Ures, Baviácora and Aconchi (Fig. 1). Cenozoic rocks
cover the greatest extension in the study area. The Cenozoic is characterized by a magmatic environment,
thus volcanic rocks such as the Andesite and Basalt Rhyolites are present. In addition, pyroclastic
emissions are present in the northern part, the edges of the study area and at the municipalities of Ures.
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The Quaternary is defined by the presence of alluvial and fluvial deposits located in the channels of the
rivers, streams and flood plains (CONAGUA, 2015).

2.2 Evaluation of the intrinsic aquifer vulnerability
The DRASTIC method was used to determine the intrinsic aquifer vulnerability at the Rio Sonora aquifer.
The model was developed by the Environmental Protection Agency (EPA) in 1987 to evaluate the
potential for groundwater contamination (Aller, 1987). Today it is the most frequently used method to
asses aquifer vulnerability at porous media (Al-Mallah and Al-Qurnawi, 2018; Barbulescu, 2020; Jia et al.,
2019; Kozłowski and Sojka, 2019; Lappas, and Matiatos, 2014). It has been already used to asses
groundwater vulnerability to pollution at mining areas (Bukowski et al., 2006; Haque et al., 2018; Tiwari et
al., 2016). The method is based on seven hydrogeological parameters: Groundwater depth (D), Recharge
(R), Aquifer media (A), Soil (S), Topography (T), Impact of the vadose zone (I) and Hydraulic Conductivity
(C). It is based on four major assumptions: i) the contaminant is introduced at the ground surface; ii) the
contaminant is flushed into the groundwater by precipitation; iii) the contaminant has the mobility of
water; and iv) the area evaluated is 40 ha or larger ( Aller, 1987). The method produces index numbers
derived from the rating (r) and weights (w) assigned to each parameter, the higher the DRASTIC index, the
greater is the groundwater pollution potential. The DRASTIC index (D) was calculated as follows:

The DRASTIC index varies from 23 to 230. The categories to interpret the DRASTIC index are: very low
vulnerability (23-64), low vulnerability (64-100), medium vulnerability (106-147), high vulnerability (147-
188), very high vulnerability (188-230).

The maps corresponding to the seven parameters were constructed with available hydrogeological data
in the GIS-ArcView software. The depth to groundwater was estimated from 2014 piezometric data from
168 wells. Piezometric data was obtained from the Water National Commission (CONAGUA) from Wells
located along the Sonora River. For the areas where there was no data, it was interpolated using the
Inverse distance weighted interpolation based on existing values. The recharge was estimated from daily
precipitation data (1925 to 2012) obtained from CONAGUA weather stations at Arizpe, Sinoquipe,
Banámichi, Huépac, Aconchi, Mazocahui, Ures and Topahue (Fig. 1) using the formula:

RN=P-Er (mm/year)

Where RN is the net recharge (mm), P is the mean annual precipitation (mm) and Er is the real annual
evapotranspiration (mm). The Er was estimated using the Turc method (Belmonte-Jiménez et al., 2005).

Recharge data was interpolated to the whole study area using the Inverse distance weighting (IDW)
method. The aquifer media and the Impact of the vadose zone thematic maps were constructed based on
existing geological maps from the Sonora Water Commission; data was reclassified according to the
types of lithology recommended by Aller, (1987). The soil media thematic map was constructed based on
the World Soil Information (2017) data base; data was reclassified according to the soil types

D = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw
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recommended by Aller, (1987). The topography data was generated in ArcGis from the Continuum of
Mexican Elevations of the Mexican National Institute of Statistic and Geography (INEGI, 2013). Used
hydraulic conductivity values were obtained from the Global Hydrogeology Maps (GLHYMPS) of
permeability and porosity (Gleeson et al., 2014) applying the formula:

Where K (m / s) is the hydraulic conductivity that depends on the viscosity and density of the fluid, 𝑘 (m2)
is the permeability, 𝜌 (kg m3) is the density of the fluid (water = 999.97 kg m3), 𝑔 (m s2) is the
acceleration due to gravity (9.8 m s2) and 𝜇 (kg m*s−1) is the viscosity of the fluid (water = 0.001).

2.3 Evaluation of the aquifer vulnerability to metal pollution
at mining areas: DRASTIC + Lu
A modification to the DRASTIC method was carried out by adding a land use parameter (Lu) including the
location of possible metals sources (known mining areas, mining wastes and mineralized areas) detected
using remote sensing methods. The detection of the possible sources of metals was performed following
the supervised classification method based on the NDVI values of known mining areas, mining wastes
and mineralized areas of the study site.

2.3.1 Detecting possible sources of metallic contamination
by remote sensing
In this work, remote sensing was used in order to locate potential sources of metals related to mining
activity (mining tailings, active/inactive mines) or areas with exposed natural geochemical anomalies in
an efficient and economical way covering large areas affected by mining activities. Freely-available
satellite images were obtained from SENTINEL 2 at a resolution of 10 m; they were processed with the
free access Quantum GIS software (QGIS Development Team, 2019). We used two May 22, 2019 images
covering the study area presenting 0.1% cloudiness, in a UTM / WGS84 projection (Universal Transversal
Mercator) of 100km x 100km. We selected the bands 2, 3, 4 and 8 with a spatial resolution of 10 meters.
They were processed using QGIS and the Semi-Automatic Classification Plugin (SCP) to carry out the
atmospheric correction using the dark pixel subtraction method (DOS1). Selected bands were combined
to produce a mosaic dataset using the Mosaic Raster Layer de SAGA (System for Automated
Geoscientific Analyses) by the Nearest Neighbor method.

Spectral characteristics of tailings and other background features (water bodies, vegetation and bare soil)
were studied by the photointerpretation of 5 points (selected manually) of each class located inside the
study area.

NDVI was employed to distinguishing the boundaries of vegetated terrain from tailings impoundments,
mining sites and areas with exposed natural geochemical anomalies, which are characterized by negative

K =
kρg

μ
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pixel values. The NDVI assigns values in a range from -1 to 1, negative values and close to -1 correspond
to bodies of water and negative values close to zero correspond to areas with bare or rocky soil, sand or
snow (Saravanan et al., 2019); thus, we focus on negative values close to 0. NDVI was calculated as
follows:

To increase the precision of the method and effectively distinguish from bare soils and built-up areas, the
optimal NDVI threshold was defined based on the minimum and maximum NDVI values exhibited by 5
training fields (areas of known identity) including mining wastes and active/inactive mines of the study
site (Table 1).

Table 1
Training fields.

Site Description Coordinates UTM (X, Y)

San Felipe de Jesús Mine tailings 572710.25, 3302388.74

Santa Elena Mine Active mine, mine tailings 580748.16, 3321310.64

Santa Rosa Mine tailings 568697.7, 3306965.56

El Carmen Mine tailings 581333.92, 3341470.91

El Realito Processing plant 580574.86, 3284836.18

The polygons generated as described above were subsequently verified and validated manually to ensure
the selection of polygons corresponding to the class “possible sources of metallic contamination”
counting for mining tailings, active/inactive mines and areas with exposed natural geochemical
anomalies. We considered areas of at least 400 m2 or four pixels. Detection was validated by comparing
visually the identified polygons to existing information (Zeng et al., 2017).

2.3.2 DRASTIC + Lu
The DRASTIC method was modified by introducing a Land Use (Lu) parameter (100m2 resolution) in
which the potential sources of metals (identified using remote sensing) were integrated as one class type.
The original Lu data was obtained from the Mexican National Institute of Statistic and Geography (INEGI,
2016). Ratings were defined based on the potential to lead to metallic contamination of each class.
Assigned ratings and the Lu parameter weight are shown in Table 2. Most of the study area is covered by
secondary vegetation, grasslands, forest and scrub, with assigned rating of 1, considered with little
influence on metal pollution. Ratings of 5, 6 and 7 were assigned to areas with human activity. Ratings to
agriculture activity depends on irrigation type as the water infiltration promotes the mobility of
contaminants to the aquifer. Finally, a rating of 10 was assigned to the mining and mineralized areas due
to their polluting potential.

NDVI =
NIR − Red

NIR + Red
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Table 2
Ratings of considered land use types.

Land use (Lu)

Class Description Rating

Possible
source of
metals

Mining areas, mining wastes and mineralized areas 10

Rainfed
agriculture

Annual and semi-permanent agriculture 6

Irrigated
Agriculture

Annual irrigation and semi-permanent irrigation agriculture 7

Urban Urban 5

Water body Water body 1

Pastureland Cultivated Grassland, Induced Grassland, Natural Grassland 1

Forest Oak and Prosopis scrub 1

Scrub Microphyllous desert scrub, thorn, subtropical scrub and Prosopis scrub 1

Secondary
vegetation

Shrubby Secondary Vegetation of oak Forest, Shrubby Secondary
Vegetation of Sarcocaule Scrub, Shrubby Secondary Vegetation of
Subtropical Prosopis and Shrubby Secondary Vegetation of Xerophilous
Prosopis

1

Wheight 5

The DRASTIC + Lu index was calculated as follows:

In order to compare both methods, the results obtained in the original and modified DRASTIC method
were normalized to scale from 0 to 100. The index was divided into five categories: very low vulnerability
(<20), low vulnerability (20-40), medium vulnerability (40-60), high vulnerability (60-80), very high
vulnerability (80-100).

2.3 Validation

2.3.1 Map removal sensitivity analysis of the DRASTIC + Lu
To investigate the effects of adding the Lu parameter on the vulnerability map, we performed the map
removal sensitivity analysis which show the sensitivity of the vulnerability map by removing one or more
parameters from the analysis. It is computed in the following way (Babiker et al., 2005):

DLu = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw + LurLuw

S = ׀) − V/׀ ) ∗ 100
V

N

V ´

n
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where S is the sensitivity measure expressed in terms of variation index, V and V  are the unperturbed
(DRASTIC) and the perturbed (DRASTIC + Lu) vulnerability indices respectively, and N and n are the
number of data layers used to compute V and V .

2.3.2 Correlation between groundwater metal
concentrations and calculated indexes
The groundwater metal concentrations from governmental surveys (public data) carried out by the
National Water Commission (CONAGUA) were used to associate and correlate the metal pollution in the
groundwater to the vulnerability indexes obtained with the original DRASTIC and modified methods. Used
data is freely available at http://www.fideicomisoriosonora.gob.mx/fideicomiso.html and corresponds to
Al, Cu, Zn, Mn y Fe average concentrations (measurements between august and september 2014 in mg
L−1) from 28 wells located following the Sonora River (Figure 1). We calculated the spearman correlation
due to the non-normality of data.

3 Results And Discussion

3.1 Assessment of the intrinsic aquifer vulnerability with
DRASTIC
The seven thematic maps representing the parameters of the DRASTIC method were prepared using
existing input data based on GIS.

Groundwater Depth (D) According to the input data obtained from CONAGUA, the parameter varies
between 0 and 23 m. The ratings assigned according to the DRASTIC method (Aller, 1987) ranged
between 3 and 10 (Fig. 2). Input data was obtained from points located following the Sonora River from
north to south of the studied aquifer and not well distributed on the study area; thus, some imprecision
could be attributed. Nevertheless it is largely accepted that in the area groundwater depth ranges from 1
to 30 m, increasing in the direction of the Sonora River, which is shaped by the basement topography
underlying alluvial and fluvial deposits, as well as by the narrowing of the Rio Sonora that lifter the water
level, causing it to emerge (Archundia et al., 2021; CONAGUA, 2015).

Recharge (R) This parameter was calculated based on precipitation input data from 8 climatological
stations dating between 1925 - 2012 and IDW interpolation. Some imprecision could be expected as
climatological stations were located following the Sonora River, where the municipalities of the area are
located. Recharge values of 0 to 51 mm were obtained in the central part of the southern portion, values
between 51 and 102 mm were obtained on the margins of the southern portion and values from 102 to
178 mm were found in the upper and more extensive part. The ratings assigned according to the
DRASTIC method (Aller, 1987) were between 1 and 9 (Fig. 3).

Aquifer media (A) The lithology of the study area is mainly of igneous and metamorphic rocks, which are
poorly permeable and non-porous unless fractured (rating 3). Sequences of sedimentary rocks, such as

´

´
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sandstones and shales, appear sporadically within the study area (rating 6). In some areas located near
of San Felipe de Jesús and Arizpe conglomerates and basalt occur, and a high rating was assigned (7
and 8 respectively) as they present interconnected pores and fractures. Conglomerate are also common
in the surrounding of the Sonora River channel. The alluvium (rating 10) is mainly located in the Sonora
streambed and its tributaries (Fig. 4).

Soil (S) According to the World Soil Information (2017), four soil texture types occur in the study area (Fig.
5). Soils with a large fraction of clay occur surrounding the Sonora River (rating 3). Sandy-clay soils are
present in the lower proportions and especially in the middle and southern portion of the study area
(rating 4). Clay-loam soils are located on high altitudinal areas (rating 5). Sandy clay loam soils are found
in the highest altitudinal areas where igneous and metamorphic rocks are located (rating 6) (Fig. 5). It is
important to note that the World Soil Information combines existing regional and national updates of soil
information worldwide so it may lack precision at a local scale.

Topography (T) Most of the study area has slope values greater than 18%, near the Sonora River and at
the southeastern part very low and null slope values occur. Rating varies between 1 and 10 (Figure 6).

Impact of the vadose zone (I) Igneous and metamorphic rocks with reduced permeability are located at
the eastern and western parts of the study area (rating 4). Sedimentary and permeable rocks occur from
north to south following the Sonora River channel (rating 6). Basaltic rocks, which could show significant
porosity and permeability, are in spots at the north and the center (rating 7). Finally, the alluvium, highly
permeable, is found from north to south associated to the Sonora River channel (rating 8) (Fig. 7).

Hydraulic Conductivity (C) Hydraulic conductivity values were obtained from high resolution global
lithology existing maps; thus some imprecision could be expected. Most of the study area present values
between 0 and 28.55 cm day−1. Some spots which coincide with the presence of carbonate rocks show
values greater than 81 cm day−1, corresponding to an average conductivity in free aquifers (Fig. 8). The
area with the lowest hydraulic conductivity (rating 1) corresponds to the igneous body known as the
Aconchi batholith.

DRASTIC index. The DRASTIC vulnerability index was computed overlaying the seven hydro-geological
parameter maps presented above: values range from 64 to 171. The groundwater vulnerability of the Rio
Sonora aquifer fluctuates from low, at some places in the center and the south, to high (Fig. 9). The
results of this study show that 23.61 % of the study area has low pollution potential, 72.95 % has
moderate pollution potential and 3.43 % has high pollution potential. The distribution of the Rio Sonora
aquifer intrinsic vulnerability is mainly conditioned by the lithology and the impact of the vadose zone.
The yellow and green colors correspond to areas with igneous rocks, which were classified as low
permeable rocks. In the center of the study area, the orange color corresponds to the conglomerate rocks
and the red color represents the channel of the Sonora River where the alluvium is found. In the southeast
zone there are also colorations that indicate high vulnerability, most likely due to the lithology (alluvial
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deposits) and a low slope. This is of great importance since most of the drinking water supply wells are
located near the channel of the Sonora River of high vulnerability.

3.2 Evaluation of the Rio Sonora aquifer vulnerability to
metal pollution (DRASTIC + Lu index)
The DRASTIC method was modified by introducing an extra parameter considering the Land Use (Lu) in
which the potential sources of metals, identified by remote sensing, were incorporated.

3.2.1 Detection of possible sources of metallic
contamination by remote sensing
Figure 10 show the averaged spectral characteristics of tailings, water bodies, vegetation and bare soil in
the study site. When comparing spectral signatures, we notice the different behaviors of background
features, which validate the use of remote sensing for the identification of possible sources of metallic
contamination as mine tailings. The group of "Water body" and "Vegetation" show typical behaviors. The
reflectance value of a water body decreases as the wavelength increases, due to low reflection in the near
infrared. Vegetation presents a peak in the infrared spectrum. Both the Mine Tailings and the Bare Soil
groups present high reflectance values in the studied bands. However, the first tend to have a reflectance
peak in the red band and higher reflectance values.

The NDVI values threshold defined based on considered training fields was between -0.2504 and 0.1946
it allowed detecting non-vegetated areas including considered training fields (Fig. 11).

Base on defined NDVI threshold and after the manual filtration, 60 areas representing the possible
sources of metallic pollution were located (Fig. 12 and SI.1). Among the most important detected points
are the tailings dam of the Santa Elena mine and the Santa Elena mine itself, which are found 4.5 km
from the Banámichi municipality. Both conform the largest detected point with approximately 779,297
m2. The mining tailings of San Felipe de Jesús have 33,022 m2 and are located 670 m southeast of the
San Felipe of Jesus municipality in front of an agriculture area that is directly affecting it as recently
observed by Loredo-Portales et al., (2020). Natural mineralized areas were located northwest of
Banámichi near the Zatecona abandoned mine, east of the Aurora town near El Aguilillo abandoned
mine. Other identified areas correspond to excavation areas located close to mines or to mines
themselves. Generally, identified areas are distributed in parallel to the Sonora River and in the highest
elevation zones. It should be mentioned that our results only estimate the extent of mineralized areas
because they could be masked by alluvial deposits, vegetation or landslides. When comparing with
existing information of the Mexican Geological Survey (Servicio Geológico Mexicano, SGM), the number
of new identified mining areas is notable southeast of Ures. All mining wastes identified by the Mexican
National Center for Disaster Prevention (CENAPRED, 2017), as well as, all considered training fields were
identified through the proposed methodology.

3.2.2 DRASTIC + Lu index
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Identified possible sources of metallic pollution were integrated to the Land use information of the
Mexican National Institute of Statistic and Geography (INEGI, 2016). The DRASTIC +Lu index was
computed as described in the methodology section. Figure 13 shows the DRASTIC+Lu index which varied
from 69 to 201. The study area presents moderate and high vulnerability values, according to the
vulnerability scale proposed by Aller (1987). The elevated areas located between Mazocahui and Ures
(south of the study area) display low vulnerability values (64-106), representing the 14.11% of the study
area. Moderate vulnerability values between 106 and 146, correspond to igneous rocks with elevated
slope, representing 75.78% of the area. Areas of high vulnerability (147-188) are located following the
Sonora River and correspond to conglomerate rocks and represents 9.53% of the zone. Areas with very
high vulnerability (188-230) correspond to the Sonora riverbed, representing the 0.58%.

3.3 Comparison between calculated indexes.
Normalized vulnerability maps (on a scale of 1 to 100) obtained by the DRASTIC and DRASTIC+Lu
methods are shown in Figure 14. We notice that in both maps the areas of lower vulnerability are in upper
parts, corresponding to igneous rocks and areas with pronounced slope. Greatest vulnerability values
(dark red color) correspond to conglomerate rocks, the presence of agricultural areas and low slope. The
mining and mineralized areas are almost imperceptible on the scale of the maps, but they increased the
vulnerability at a local level. Comparing both maps, a general decrease in vulnerability can be observed in
the DRASTIC +Lu map. The area of very high vulnerability (80-100) decreased by 15%, the extent of high
vulnerability (60-80) decreased by 81.3%, the zone of medium vulnerability increased slightly (8.4%), the
area of low vulnerability increased in 94% and the area of very low vulnerability increased by 154.9%.
This analysis allowed the identification of high vulnerability areas on which protection efforts need to be
focused and to localize small sites with strong negative local effects.

3.4 Validation of the proposed DRASTIC + Lu method
The map removal sensitivity analysis was preferred because it tests the sensitivity of operations between
map layers (Thapa, 2018) helping to evaluate its influence on the vulnerability assessment. Table 3 show
statistical calculation of results. The DRASTIC + Lu vulnerability index computed for the study area is
least sensitive to the Aquifer media (average value 0.82) and highly sensitive to the Groundwater depth
(average value 3.75). Regarding the effect of GIS identified sources of metallic pollution included on the
Lu parameter, the influence of the Lu cover is high in our study area showing the third highest value. This
validates the performed modification to the DRASTIC method and demonstrates the importance of
considering the sources of metallic contaminants when assessing the groundwater vulnerability in a
mining context.
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Table 3
DRASTIC + Lu map removal sensitivity analysis.

Removed factor Min Max Mean Std. Deviation

D 0 5.27 3.75 0.7

R 0 2.71 1.08 0.47

A 0 2.27 0.82 0.34

S 0.02 3.2 1.48 0.61

T 0 3.25 1.73 0.46

I 0.02 3.7 1.45 0.71

C 0.13 3.02 1.28 0.37

L 0.1 4.46 1.51 0.3

Observed groundwater metal concentrations from governmental surveys (public data) did not show a
significant correlation (p value >0.1 for all tested metals) with the vulnerability zones identified using
DRASTIC and DRASTIC + Lu methods. This observation suggests that sources of observed metal
concentrations in groundwater could be of geogenic origin rather than superficial. Nevertheless, the lack
of a significant correlation could also be associated to the fact that metal concentrations were
determined after a mining spill event that occurred at the Buenavista del Cobre mine located north and
outside of the study area. Thus, metal concentrations may be related to horizontal transport process
within the aquifer. Furthermore, metals can show high reactivity with some vadose zone and aquifer
components not considered here, thus affecting the correlation between considered metal concentrations
and computed vulnerability values. There is evidence of the stabilizing power of the soils of the study
area. Rivera-Uria et al., (2018) observed that soil carbonate content has an impact on the neutralization of
acid solutions causing the immobilization of metals. Recently, Archundia et al., (2021) detected no
metallic ground water pollution at the study area, possibly indicating that no entry of metallic pollutants
from the surface is occurring. Based on this, results produced on this study can be used for the design of
protective measures and land use plans that effectively prevents groundwater pollution in detected highly
vulnerable areas.

To better understand the metal (and others) pollutants fate and dynamics in the study area it is important
to perform studies on the prediction of groundwater flow, superficial soil and subsurface (vadose zone)
properties and reactivity against metals. In that sense and in order to improve the vulnerability
assessment it is suggested to characterize soil types and properties as well as ground water depth at a
local scale.

4 Conclusion



Page 15/33

The proposed remote sensing methodology allowed to locate 60 possible sources of metallic
contamination, corresponding to mining tailings, open-pit wastes, areas with exposed natural
mineralization and areas with current mining activity. Within the identified sources, only three correspond
to exposed natural mineralization areas, possibly indicating that the method might not be sensitive
enough. The use of higher resolution satellite images could improve the precision to locate them but
significantly increasing the costs of the method.

The Sonora River channel has the higher vulnerability in both calculated vulnerability indices (DRASTIC
and DRASTIC+Lu) indicating that the aquatic resources of the populations located within the study area
are threatened. To improve the precision of the modified method results, an effort in the characterization
of the water depth and soil type information at the local scale is needed. With the application of the
modified DRASTIC index and, in comparison with the results obtained with the traditional DRASTIC index,
a decrease in vulnerability was observed, mainly in conglomerate rocks and higher elevation areas
located parallel to the Sonora River channel. This general decrease in vulnerability coupled with a local
increase of vulnerability where possible sources of metals are located, facilitated to highlight highly
vulnerable areas which is relevant to better protect the studied aquifer.
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Figure 1

Study area corresponding to the Sonora River aquifer. The figure contains the municipalities, known
mineralizes zones, mine tailings, mining sites and hydrogeological sampling points used to validate the
results.
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Figure 2

Groundwater depth in the Rio Sonora aquifer.
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Figure 3

Recharge (R).
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Figure 4

Aquifer media (A).
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Figure 5

Soil (S).
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Figure 6

Topography (T).
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Figure 7

Impact of the vadose zone (I).
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Figure 8

Hydraulic Conductivity (C).
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Figure 9

The Rio Sonora aquifer DRASTIC vulnerability map.
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Figure 10

Spectral curves for representative surface features in the Sentinel 2 image
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Figure 11

NDVI at a portion of the study site and the San Felipe de Jesús training field.
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Figure 12

Possible sources of metallic pollution detected by remote sensing and training fields.
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Figure 13

The Sonora River DRASTIC+Lu index.
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Figure 14

Normalized vulnerability maps (on a scale of 1 to 100) obtained by the DRASTIC and DRASTIC+Lu
methods are shown in Figure
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