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Abstract

Background: Organ dysfunction (OD) assessment is essential in intensive care units (ICUs). However, no
OD scoring system has so far considered the duration of OD, which is clinically relevant. This study
aimed to develop and validate an ICU mortality prediction model based on the Sequential Organ Failure
Assessment (SOFA) score, incorporating the time dimension with machine learning methods.

Methods: Data from the elCU Collaborative Research Database and Medical Information Mart for
Intensive Care (MIMIC) -lll were mixed for model development, and the MIMIC-IV dataset and Nanjing
Jinling Hospital Surgery ICU (SICU-JL) dataset were used for external testing. Adult patients in the ICUs
for more than 72 hours were deemed eligible. The total SOFA score and individual scores were calculated
every 12 hours for the first three days of ICU admission. Time-dimensional variables were derived from
the consecutively recorded SOFA scores and individual scores for each organ. A modified SOFA model
incorporating the time dimension (T-SOFA) was stepwise constructed to predict ICU mortality using
multiple machine learning algorithms. The predictive performance was assessed with the area under the
receiver operating characteristic curves (AUROC). Also, we utilized the SHapley Additive exPlanations
(SHAP) algorithm for data visualization and model explainability.

Results: We extracted a total of 66,709 ICU patients from the mixed datasets for model development and
15,423 patients for validation. The T-SOFA M3 that incorporated the time dimension features and age,
using the XGBoost algorithm, significantly outperformed the original SOFA scores (AUROC 0.800 95% Cl
[0.787-0.813] vs. 0.693 95% CI [0.678-0.709], p<0.01) in the validation set. Good prediction performance
was maintained for the T-SOFA M3 in test Set A and test Set B, with AUROC of 0.803, 95% CI[0.791-0.815],
and 0.830, 95%CI [0.789-0.870], respectively. Significant contributors demonstrated by the SHAP analysis
included total SOFA score, Respiration-score, CNS-score, age, Cardiovascular-score, and SOFA Organ
dysfunction Unalleviated Time Index.

Conclusions: A SOFA-based, time-incorporated prediction model was developed and validated by
machine learning algorithms, showing satisfactory predictability and medical interpretability.

Background

Organ injury or dysfunction caused by a primary illness is a common reason for intensive care unit (ICU)
admission[1]. Although the original diseases of critically ill patients vary, organ dysfunction(OD) is
associated with substantial morbidity and mortality[2]. Therefore, OD assessment is a routine in ICUs to
determine the impact of the underlying disease and the effects of therapies.

OD assessment system has evolved from the Multiple Organ Dysfunction Score (MODS) to the sequential
organ failure assessment (SOFA) score, which was extended from sepsis to all critically ill patients after
the establishment of the Sepsis-3 criteria [3—5]. Theoretically, OD evaluation should be conducted along
three dimensions: the severity of each OD, the number of organ systems involved, and the duration of
each OD. OD is a dynamic process rather than a static event [4], so a temporal assessment can assist
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clinicians in understanding the progression of the disease and potentially facilitating decision-making.
Unfortunately, to date, none of the existing OD scoring systems have taken the time dimension into
account.

The assessment of time dimension is complicated by the fact that the duration of OD could be different
from one system to another, and changes in OD during ICU stay are multidirectional. Previous studies
proposed concepts such as ASOFA to reflect the direction and magnitude of variation, but information on
the duration of each OD remains unaccountable [6]. Artificial intelligence algorithms have recently had a
wide range of applications in healthcare practice [7], where machine learning or deep learning algorithms
could process time-series data to improve prediction accuracy by extracting potentially valuable time
features[8]. However, the cost is that the prediction process became a "black box"
(unexplainable),sacrificing medical interpretability.

This study aimed to develop and validate a novel ICU mortality prediction model based on the SOFA score
by incorporating time dimension through a machine learning algorithm. Furthermore, the impact of time
dimension on ICU mortality was further clarified by interpretable algorithms.

Methods
Data sources

The study data was extracted from three real-world, open-source databases: Medical Information Mart for
Intensive Care (MIMIC-III) version 1.4, MIMIC-IV version 1.0, and elCU-Collaborative Research Database
(elCU-CRD) version 2.0 and one local dataset: Nanjing Jinling Hospital Surgery ICU (SICU-JL) database.
The MIMIC-lIl database retrospectively included clinical data from all critically ill patients at Beth Israel
Deaconess Medical Center from 2001 to 2012, including demographic data, bedside vital sign
measurements (approximately once per hour), laboratory test results, records of therapeutic interventions
and medical care and mortality (including in-hospital and after-discharge)[9]. MIMIC-IV is an updated
version of the MIMIC database, containing data collected between 2008 and 2019[10]. We selected
patients admitted between 2013 and 2019 from the MIMIC-IV database to distinguish it from the MIMIC-
[l database, thereby making it an external dataset. The elCU-CRD is another public database consisting
of more than 200,000 admissions to ICUs from 208 hospitals across the US between 2014 and 2015,
which provided a degree of generalizability to the training model due to its comprehensive geographic
coverage and a more broad range of critical illnesses[11]. The SICU-JL database contained 2,155
electronic health records from the Surgical ICU of Jinling Hospital, Nanjing University, between 2018 to
2020. The following inclusion criteria were used for the present study: 1. adult critically ill patients aged =
18 years; 2. ICU stay at least 72 hours. The criterion-compliant data from the MIMIC-Il and the elCU-CRD
were mixed and randomly divided in a ratio of 8:2, where 80% of the selected admissions were used as a
training cohort. The remaining 20% were served as an internal validation cohort to verify the predictive
performance and optimize hyperparameter settings to prevent over-fitting. The data from the MIMIC-IV
database was used as an external test set A, and data from the SICU-JL dataset served as external test
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set B to ensure the generalizability of the model. We had obtained proof of completion of the course on
human research and signed a data use agreement on PhysioNet, and approved by MIT's Institutional
Review Board. Data collection from the SICU-JL dataset was approved by the institutional review board of
the Jinling hospital. The study was conducted in accordance with the tenets of the Declaration of
Helsinki. Informed consent was waived by the IRB-JL in light of the retrospective nature.

Data extraction and preprocessing

Demographic information (e.g., age, gender, ethnicity, etc.), clinical data related to SOFA score (e.g.,
Oxygen partial pressure, mean arterial pressure, Glasgow Coma Scale (GCS) score, etc.), and the
outcomes of patients were extracted from the dataset. The raw clinical data required to calculate the
SOFA score were collected every 12 hours after ICU admission, with T for the first 12 hours at admission
and T¢ at 72 hours after ICU entry. The total SOFA score and the sub-scores were calculated
simultaneously, thereby resulting in six consecutive time points.

Definition of time dimension variables

We defined several novel variables to reflect the temporary change of OD as follows(Fig. 1): 1) The time
point when the total SOFA score or a sub-score = 2 was counted as an Organ dysFunction unit Time
(OFuT) out of the six time points. We defined the sum of OFuT multiplied by the mean value of the total
SOFA score or the corresponding sub-scores as the OFT Index (OFTI). 2) The difference in the total SOFA
score or a sub-score between two adjacent time points (ASOFA=SOFAT,,;-SOFAT, x€[1,2,3,4,5]) =0
was recorded as an Organ dysfunction Unalleviated unit Time (OUuT), and the summed OUuT multiplied
by the mean value of the total SOFA score or the corresponding sub-scores was called the OUT Index
(OUTI). 3) The time point when ASOFA>0 was defined as an Organ dysfunction Aggravated unit Time
(OAUT), and the summed OAuUT multiplied by the mean value of the total SOFA score or the
corresponding sub-scores was defined as an OAT Index (OATI). 4) With the sub-score value (0-4 points) or
the total score value (0-24 points) as the y-axis and time (0-3 days) as the x-axis, the study time points
were connected, constituting the SOFA curves. The area under the SOFA curves was described as the
SOFA-Time Area Under the Curve (STAUC), which could reflect the cumulative changes of OD over the 72
hours.

Conventional time series features of total SOFA score and sub-scores (e.g., Mean, maximum, minimum,
variance) were also included for analysis [12].

Prediction model development, testing, and explanation

We used a supervised classification learning algorithm to construct a prediction model for ICU mortality
based on SOFA score. The maximum SOFA score during the first 72 hours was included as the original
SOFA as a baseline reference[13]. Then we progressively incorporate related variables into the prediction
model. First, the total SOFA score and sub-scores at each time point were included. The model was
trained using four machine learning algorithms, eXtreme Gradient Boosting (XGBoost) [14], Support
Vector Machines (SVM) [15], Random Forest (RF)[16], and Logistic regression to obtain the T-SOFA M1. In

Page 5/16



the second step, the time dimension was taken into account by incorporating the abovementioned
temporary variables to train a prediction model called T-SOFA M2. In the third step, given that ageis a
well-proven risk factor for all-cause mortality in ICUs[17], we added age to M2, thereby creating T-SOFA
M3. All training models would be performed in the internal validation set to prevent over-fitting. The
performance of T-SOFA were further compared with the original SOFA and tested using datasets with
public database and local database.

We used a unified framework, SHAP (SHapley Additive exPlanations), to obtain the impact of each
variable on the designated outcome (ICU mortality), which could interpret the contribution of different
organ systems and time features to the prediction model. Variables with an impact value=0.1, as
indicated by the SHAP algorithm, were considered significant for ICU mortality.

Missing data preprocessing

Most of the variables involved in this study were time-series data. Missing data were imputed by the last
observation carried forward (LOCF)[18]. If an original variable required for SOFA score calculation is
missing and cannot be imputed by proximity, it is filled using the mean value of the variables in the data
set at the corresponding time point, when the missing data are normally distributed; otherwise, the
median is used.

Statistical analysis

Differences in clinical characteristics between the training set, internal validation set, and external test
sets were compared using the ANOVA or Kruskal-Wallis test, and categorical variables were compared
using Pearson's chi-squared test. Comparisons of differences in temporary variables between survivors
and non-survivors were made using a two independent sample t-test. The primary outcome was all-cause
mortality in the ICUs, and the predictive performance was evaluated by the area under the receiver
operating characteristic curves (AUROC). Differences in predictive performance between models were
compared with a non-parametric DeLong test with a two-sided p<0.05 criterion for statistical
significance[19]. Statistical analyses were performed using Stata 15.0 software, and the machine
learning algorithm modeling was implemented in Python 3.7 and R 3.6.3

Results

A total of 66,709 patients from the MIMIC-IIl database and the elCU-CRD were used to develop the
mortality prediction model. Then 80% of the patients were randomly allocated for training and 20% for
internal validation. 13,929 patients from the MIMIC-IV database and 1,494 patients from the SICU-JL
database served as the external test set A and test set B, respectively (Additional file 1. Figure S1.). The
modeling cohort consisting of both the training and internal validation sets showed significant
differences from the external test cohort in terms of baseline clinical characteristics of admissions and
outcomes (Table 1). The patients from both test sets had ICU mortality around 9.7% (test set
A:1358/13929, test set B:145/1494), which were higher than those in the training and internal validation
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sets (9% [4785/53367] and 9% [1206/13342], respectively). Almost all the SOFA-related temporary
variables and age differed statistically between survivors and non-survivors (Additional file 1. Table S1).

Prediction performance assessment

In the validation set, the original SOFA score showed an AUROC of 0.693 (95%Cl 0.678-0.709) in
predicting ICU mortality. The XGBoost algorithm outperformed the others (Table 2. and Additional file 1.
Table S2) among the four machine learning algorithms and was therefore adopted as the modeling
algorithm. T-SOFA M1 incorporated individual organ systems and multiple time points had an AUROC of
0.759 (95% CI [0.744-0.773]). T-SOFA M2, which further included temporary variables, had an AUROC of
0.787(95% CI[0.774-0.801]), higher than T-SOFA-M1 (p < 0.01). The AUROC for T-SOFA M3 was elevated
to 0.800 (95% CI [0.787-0.813]) when adding age, which is significantly better than T-SOFA M2 (p < 0.01).
To further confirm these findings, the prediction performance of each model was then tested in external
test sets. The T-SOFA M3 outperformed the original SOFA and all the other models(p < 0.01). The AUROC
of T-SOFA M3 was 0.803 (95% CI [0.791-0.815]) in test set A, and the AUROC of original SOFA, T-SOFA M1
and T-SOFA M2 were 0.739 (95% ClI [0.726-0.755]), 0.776 (95% CI [0.763-0.789]) and 0.797 (95% CI [0.784-
0.809)), respectively (Fig. 2C). In the local test set B, T-SOFA M3 yielded an AUROC of 0.830 (95% ClI
[0.789-0.870]) and remained significantly better than the original SOFA score (AUROC=0.773 95% Cl
[0.728-0.818], p<0.01).

Clinical interpretability of prediction models

Among all the variables, the significant contributors to ICU mortality appeared to be the total SOFA score,
the respiration score, the CNS score, the age, the cardiovascular score, and the SOFA OUT], with variable
important for the projection(VIP) value of 0.2861, 0.2836, 0.2594, 0.2548, 0.1437 and 0.125, respectively
(Fig. 3A). The SHAP values for each feature were visualized using a summary plot (Fig. 3B). Additionally,
the prediction model provided individualized mortality risk factor analysis of instances through the SHAP
algorithm (Additional file 1. Figure S2).

Discussion

In this study, a SOFA-based, time-incorporated mortality risk prediction model(T-SOFA M3) for critically ill
patients was developed and validated. We defined several novel temporary variables to describe the
dynamic change of OD quantitively from different perspectives. The results showed that a prediction
model incorporating time dimension and age using machine learning algorithms had a significantly
better predictive performance for ICU mortality than the original SOFA.

The SHAP algorithm was applied to evaluate the contribution of the time dimension. The results showed
that various OD types have different impacts with the respiration system, the CNS system, and the
cardiovascular system ranking the top three, consistent with what are used in the popular gSOFA score[5,
20]. Among all the temporary variables, the impacts of SOFA OUTI, which reflects the duration of
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persistent(unalleviated) OD, ranks highest, even higher than that of renal dysfunction, indicating the
importance of the time dimension. The better interpretability provided by the SHAP model can potentially
further guide treatment and facilitate clinical decision-making. Furthermore, our model derived from the
impacts of each variable could be used for individual prediction, which would be of clinical use for risk
stratification in ICU settings, which was impossible with previously proposed modified SOFA models[6,
13,21-23].

Although efforts to develop new predictive models based on the SOFA score were repeatedly presented in
the literature [6, 13, 20, 24-27], the T-SOFA M3 has several unique advantages. Firstly, the training set was
obtained from the mixed datasets (MIMIC-IIl and elCU-CRD) with a large sample size, which may
compensate for the remarkable heterogeneity among ICUs in the US. Secondly, the model was externally
tested using an open-source multi-center dataset and a local single-center dataset, respectively,
demonstrating excellent predictive performance and geographical generalizability. More, we collected
total SOFA scores and individual scores every 12 hours within 72 hours of ICU admission, which was
relatively infrequent and therefore doable in real practice, implicating its potential for future clinical use.

In recent years, the application of the SOFA score has in a broader range of diseases. Although the SOFA
score was not initially developed to predict mortality but to evaluate comorbidities[4], it has become a
well-established tool for prognosis prediction[28]. As a consequence, a lot of modified SOFA models have
emerged to overcome the limitations of the SOFA score [29]. The modified SOFA systems incorporating
the SOFA score derivatives like ASOFA, MAX SOFA, Mean SOFA, etc., could significantly outperform SOFA
at admission, suggesting that characteristics representing changes in OD over time could help improve
the performance.

Lilian Minne et al. systematically reviewed the performance of SOFA-based models for predicting
mortality in critically ill patients and concluded that MAX SOFA had the best predictive performance
(AUROC range = 0.792 to 0.922), while ASOFA showed variable performance across studies (AUROC
range = 0.51 to 0.828) according to the definitions [13] [29]. Another alternative option was to optimize
the SOFA by replacing individual components with more clinically reliable ones. Previous studies have
attempted to use the Richmond Agitation-Sedation Scale (RASS) score as a substitution as the Glasgow
Coma Scale (GCS) score tends to be inaccurately recorded. However, they failed to find the superiority of
RASS score modified SOFA over the original version[30]. Adding other systems or variables to the original
SOFA, such as the gastrointestinal system, was also considered and tested. Yehudit Aperstein et al.
proposed the Novel Gastrointestinal Dysfunction Assessment Tool (Resting energy expenditure daily
balance, Gastric residual volume, vomiting, and Bowel movements) as the seventh organ dysfunction
assessment criterion of the modified SOFA and demonstrated improved prediction accuracy[21]. However,
their modified SOFA score did not gain much popularity due to the subjective and inaccurate nature of
assessing gastrointestinal dysfunction [31]. In the T-SOFA M3, age was the only additional variable apart
from the original SOFA-required data since it was readily available and there was a strong correlation
between age and mortality [32, 33].

Page 8/16



There are some limitations to our study. First of all, both the training and validation sets were extracted
from retrospective data, which inevitably contained missing data and recording errors. Although multiple
efforts were made to minimize the potential bias, there was still some data distortion. Therefore,
prospective studies are necessary to further validate the discriminative ability of the model. Moreover, our
model requires consecutive 72-hour SOFA data, which denies its use in the "very early" (124 hours) stage
of ICU admission.

Conclusions

We developed and validated a SOFA-based time-incorporated mortality prediction model by machine
learning algorithms, with satisfactory discrimination and medical interpretability. Further prospective
clinical studies are required to demonstrate the value of time dimension in clinical practice.

Abbreviations

ICU

Intensive Care Unit

oD

Organ Dysfunction

MODS

Multiple Organ Dysfunction Syndrome
SOFA

Sequence Organ Failure Assessment
MIMIC

Medical Information Mart for Intensive Care
elCU-CRD

elCU Collaborative Research Database
OFTI

Organ dysFunction Time Index

OFuT

Organ dysFunction unit Time

OUTI

Organ dysfunction Unalleviated Time Index
OUuT

Organ dysfunction Unalleviated unit Time
OATI

Organ dysfunction Aggravated Time Index
OAuT

Organ dysfunction Aggravated unit Time
STAUC
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SOFA-time Area Under Curve

LR

Logistic Regression

XGBoost

eXtreme Gradient Boosting

SVM

Support Vector Machine

RF

Random Forest

AUROC

Area Under the receiver operating characteristic Curve
ROC

Receiver Operating characteristic Curve
SHAP

SHapley Additive exPlanations
LOCF

Last Observation Carried Forward
BMI

Body Mass Index

GCS

Glasgow Coma Scale

Std

Standard deviation

ASC

Absolute Sum of changes

var

variance

skew

Skewness

RASS

Richmond Agitation-Sedation Scale
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Figure 1

Diagram of the time dimensional characteristics associated with calculating the respiratory score in the
instance.
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Figure 2

Receiver operating characteristic (ROC) curves for the machine learning models and the original SOFA

score in predicting ICU mortality in different datasets: A. Training set; B. Validation set; C. Test set A; D.
Test set B
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Figure 3

The impact of the input features on predictions. (A) Top 20 input features with impact on mortality
prediction. (B) The relationship between each feature and the ICU mortality, with the colors reflecting the
magnitude of each feature value (high in red, low in blue), with the points to the left of the central axis
representing features that move the prediction towards survival and the points to the right representing
features that drive the prediction in a non-survival direction.
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