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Abstract

Background and Objective: Mortality prediction is widely used to strat-
ify patients into different risk categories and to provide prognosis
evaluation. Nowadays, scoring systems, which predict mortality with
some scores reflecting the severity of diseases and physiological states
of patients in ICU, have been widely applied for in-hospital mortal-
ity prediction. Many research works which focus on designing better
machine learning models and algorithms for mortality prediction also
have achieved great performance. However, it is not enough to make
post-discharge prognosis of mortality only with the aid of better mod-
els and algorithms while richer patient related information can make
big differences. In this study, we propose a deep learning method con-
sidering patient diagnosis information for post-discharge prognosis of
mortality. This method can help to significantly improve the performance
of prediction. Further more, we propose a method of calculating disease
Shapley values to evaluate the mortality risk brought by disease factors.
Methods: Deep learning models including long short-term memory
(LSTM) and temporal convolutional network (TCN) are trained with
patient physiological time series data and diagnosis information of
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different prevalence to predict post-discharge mortality risk of dif-
ferent time windows. Disease Shapley values to evaluate the mor-
tality risk brought by disease factors are the weighted average of
marginal contributions of diseases to patient mortality. Experiments
of several post-discharge mortality prediction tasks of different time
windows are conducted on the large freely accessible MIMIC-III
dataset. To provide more sufficient comparison, the diagnosis infor-
mation is also introduced for traditional machine learning models.
Results: In our experiment, LSTM achieves highest AUROC and the
improvements of which are 8.67%, 9.68%, 13.33%, 12.32% and 12.25%
with the help of diagnosis information for five post-discharge mortal-
ity prediction tasks of different time window. Several patient examples
are shown to present the mortality risk brought by disease factors,
of which the analysis results are in line with clinical experiences.
Conclusions: In general, our proposed method can improve performance
of ICU patient post-discharge mortality prediction and help to eval-
uate how much do different kinds of diseases which a patient suffers
from increase his mortality, thus providing support for clinical decisions.

Keywords: Intensive care units, Mortality prediction, Deep learning,
Diagnosis information, Shapley values

1 Introduction

In the medical system, intensive care unit (ICU) is specially used to treat
severely ill or unconscious patients. To provide life monitoring and support for
these critically ill patients, ICUs are equipped with the most comprehensive
treatment and monitoring equipment, such as ventilators, electrocardiogram
monitors, blood gas analyzers, etc. Even with advanced equipment and pro-
fessional medical staff, the mortality rate of ICU patients is still very high.
Mortality prediction, which is an important patient outcome prediction task,
could help to quantify the severity of the patient’s physiological condition [1].
By reflecting the severity of diseases or the prognosis of patients, mortality pre-
diction can help clinicians to make better clinical decisions and help patients
to better know the physiological status of themselves [2]. Hence, ICU patient
mortality prediction has been a very hot research topic in the field of medical
informatics.

In early studies, experts developed a series of scoring systems to assess
the in-hospital mortality of ICU patients, such as Logistic Organ Dysfunction
system (LODS) [3], Sequential Organ Failure Assessment (SOFA) [4], Acute
Physiology, Chronic Health Evaluation (APACHE) [5], etc. However, due to
the non-specific characteristic and stringent linear constraint of model, pre-
dictions made by scoring systems can be inaccurate for individual patient
[6]. Nowadays, massive volumes of data recorded in electronic health records
(EHRs) also supported researchers to design models and algorithms for
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in-hospital mortality prediction which aim at improving the predicting per-
formance and facilitating the clinical decision making. Outperformance of
mortality prediction methods based on machine learning models have been
shown by many works [6-13]. Some of them show better prediction perfor-
mance of machine learning models than traditional scoring systems [7, 8] and
some of them develop various models and machine learning algorithms for
mortality prediction [6, 9-13]. Further more, the deep learning models achieve
particularly satisfactory performance in ICU mortality prediction tasks due to
their strong ability of capturing non-linear patterns hidden in data [14]. Many
researchers develop deep learning models which can deal with various modals
of data and provide valuable clinical decision support [15-20].

Studies mentioned above have made progress in in-hospital mortality pre-
diction, while post-discharge mortality is also of concern to both clinicians
and patients [21]. Because of the complex illness and disease history of
patients, the prognosis of post-discharge long-term mortality is a big challenge
[22]. However, without the limitation of making prediction in hospital, the
post-discharge mortality prediction models can take more patient related infor-
mation into consideration. For example, Grnarova et al. propose an automatic
mortality prediction method based on the unstructured textual content of clin-
ical notes, which brings improvement to the difficult problem of post-discharge
mortality prediction [23]. Although the extent to which disease events before
ICU admission affect prognosis has been debated [24], the information about
the diseases patients suffering from is of potentially value for post-discharge
mortality prediction. Christiansen et al. reveal that morbidities have impact
on mortality among ICU patients by analysing the mortality of patient groups
with Charlson Comorbidity Index (CCI) levels [22]. Nielsen et al. investigate
how the disease history of different length of years affects mortality prediction
and reveal that taking account of long-term and short-term disease history
can give more precise prognostic estimates than scoring systems in which only
a small number of comorbidities are included in the computation [25]. Dai et
al. conduct stastical analysis with MIMIC-III database, revealing closely cor-
relations between diseases patients suffer from and mortality of patients [26].
For those reasons, we consider investigating the effect of diagnosis informa-
tion during the ICU admissions for post-discharge mortality prediction task
with deep learning models. The mian difference between our work and [25] is
that they aggregate a long history of diseases while we consider the diagnosis
information during admissions for mortality prediction. And they investigate
effect of different length of disease history while we innvestigate the diagno-
sis information of different prevalence for post-discharge mortality prediction.
Additionally, because the causes of death of post-discharge patients are cared
about by clinicians [27], we provide a method to evaluate mortality risk brought
by disease factors based on each individual’s physiological condition and the
diagnosis information.

In this article, we propose a deep learning post-discharge mortality pre-
diction method considering diagnosis information for ICU patients. In our
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proposed method, easily available patient vital signs data and diagnosis infor-
mation are fused to predict post-discharge mortality for ICU patients, which
can greatly improve the predicting performance of the deep learning models.
Besides, the computation of disease Shapley values is introduced to evaluate
mortality risk brought by different disease factors.

The main findings and contributions are summarized as follows:

(1) The proposed post-discharge mortality prediction method considering
patient diagnosis information during the admissions can significantly improve
the prediction performance of deep learning models and traditional machine
learning models.

(2) The method of computing disease Shapley values, is used to evaluate the
hazrad the diseases cause to a single patient. With the aid of disease Shapley
values, individual patient’s disease condition can be analyzed to help doctors
clarify the priority of multiple diseases and facilitate subsequent treatment.

(3) The proposed methods are tested on MIMIC-III dataset on the follow-
ing five post-discharge mortality prediction tasks: will a patient die within 30
days , within 90 days, within 180 days, within 365 days and within 5 years. Our
method is presented to improve the prediction performance for both deep learn-
ing models and traditional machine learning models. The evaluation results
with disease Shapley values are in line with clinical experiences.

The remainder of this study is organized as follows. In Section 2, the mate-
rials and methods part, we first expound detailed process of data extraction
and preprocessing. Then we introduce our deep learning method of predicting
ICU patient post-discharge mortality considering diagnosis information and
the calculation of disease Shapley values. The experimental results and analy-
sis are presented in Section 3. Finally, some conclusions, limitations and future
work discussions are presented in Section 4.

2 Materials and methods

In this section, the preparation of data and the proposed method are intro-
duced in detail. An overview of our proposed method is presented in Figure 1.
In the following part, we first give an introduction of vital signs and diagno-
sis information data extraction and preprocessing with MIMIC-III database in
Section 2.1. In Section 2.2, the method of fusing patient physiological data and
diagnosis information is introduced first. Then, deep learning models including
long short-term memory (LSTM) and temporal convolutional network (TCN)
are introduced. In Section 2.3, we introduce the method of computing disease
Shapley value.

2.1 Data extraction and preprocessing

2.1.1 Data extraction

In this study, we conduct our experiments and analysis on the publicly avail-
able medical information mart for intensive care III (MIMIC-III) dataset [28],
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Fig. 1 An overview of the proposed ICU patient post-discharge mortality prediction method
considering patient diagnosis information

which can be used to conduct research after application. This dataset con-
tains information from the electronic health record (EHR), including patient
demographic information, vital signs, lab events, diagnosis information, etc. In
MIMIC-III, each patient is unique with a SUBJECT_ID. Each SUBJECT_ID
corresponds to one or more HADM_IDs which means a patient has one or
more hospital admissions. And for each HADM_ID, one or more ICUSTAY _IDs
can be matched, which means a patient may be admitted to the ICU one
time or several times within an admission. Beginning with exhaustive clinical
data of over 60,000 ICU stays of 40,000 patients, we apply a similar patient
cohort selection inclusion criteria following previous benchmark research [29].
First, admissions with multiple ICU stays or transfers between different ICU
units or wards are excluded, which aims to reduce the ambiguity of outcomes
associated with hospital admissions rather than ICU stays. Then, we exclude
admissions which correspond to patients died in hospital because we aim at
training the model for patients who discharge alive. And admissions which
have ICU stays less than 48 hours are excluded because we will extract data of
48 hours for mortality prediction. Finally, considering the differences between
adults and pediatric physiology, we drop the patients younger than 18. After
above process, we get a cohort with 18,324 ICU stays.

Then, we extract basic vital sign data and diagnosis information for
patients who meet the selection inclusion criteria. The vital sign data of each
admission are represented as a sequence of EHR events with timestamps in
MIMIC-IIT database. There are three most important elements in each event:
a timestamp at which the event is recorded; the name of the event; and a
numerical value of the event. We group the events of each patient into one-hour
intervals by timestamp. The time window of patient data is set as 48 hours,
which means for each physiology variables, 48 values (may include missing val-
ues) are used. The diagnosis information in MIMIC-III is recorded in the form
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of International Classification of Diseases (ICD). In MIMIC-III database, the
code version is ICD-9 . For each patient, we extract a list of ICD-9 codes from
DIAGNOSES_ICD table.

2.1.2 Patient mortality label preparing

After identifying the patient cohort for modeling and analysis, we prepare the
mortality labels for all of them. According to the discharged time and death
time recorded in the database, we calculate the time interval between discharge
and death of patients. The prediction time window in our study is set as 30
days, 90 days, 180 days, 1 year and 5 years referencing some studies [30-32].
For each patient, we assign 5 labels which mean whether a discharged patient
will die in 30 days or not, in 90 days or not and so on. The binary labels of
each patient ¢ can be represented as yf’Od, y?Od, y}SOd, yl1 Y and yf Y respectively.
2.1.3 Preprocessing of patient vital sign data and diagnosis
information

Vital sign multivariate time series. The vital sign raw data are extracted as
form of EHR events with timestamp. In this study, we select 17 predictors,
including capillary refill rate, diastolic blood pressure, fraction inspired oxygen
and so on, for mortality prediction. The statistical summary of the predic-
tors is shown in Table 1. With observation window of 48 hours opted, all the
events occur in which are partitioned into 48 one-hour periods according to
the timestamps. The last observation value is kept if several values of some
predictor exist in the same one-hour period. The missing values are imputed
with the most recent value of the predictor if there is one and pre-specified
normal values otherwise. Binary mask inputs for each predictor at each times-
tamp are also provided to represent whether a value is a real one or an imputed
one. And the categorical variables are processed into one hot vector form. The
numeric predictors are dealt with standard normalization. After above pro-
cess, a matrix X; = (:cgft)) ~NxT is used to represent values of the IV variables
during the T hours of patient . N and T are 76 and 48 in our study, respec-
tively. The element xsf) in the matrix is the nth variable value at timestamp
t. For deep learning models such as LSTM and TCN, the matrix of shape
time-stepsx features (48x76 in our study) can be directly received as input
data.

Diagnosis information. In our study, the diagnosis information of patients is
used to facilitate the post-discharge mortality prediction of ICU patients. After
the data extraction process, we get a list of ICD-9 codes for each patient admis-
sion. There are more than 14,000 diagnosis codes in ICD-9. Representing each
disease of patients as binary variable will cause the problem of extremely high
dimension and sparsity. To overcome that problem, we use the clinical classi-
fication software (CCS) developed by healthcare cost and utilization project
(HCUP) to cluster diagnoses into manageable number of clinically meaningful
categories [33]. We use single-level diagnosis classification scheme to achieve the
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Table 1 Summary of statistical information of the overall patient cohort, survival patient
chort and patient cohort died in different time window. The median values [first quartile,
third quartile] are presented for variables except for the number of admissions.

Patient cohort

Overall Survived (,30 days] (30 days, 90 days] (90 days, 180 days] (180 days, 365 days] (365 days, 5 years]
# admissions 18324 11672 1081 982 830 936
Capillary refill rate 0.00 0.00 0.00 0.00 0.00 0.00
0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00,1.00] 0.00,1.00] 0.00,0.00]
Diastolic blood pressure 59.00 60.00 57.00 58.00 57.00 58.00 7.4
[51.00,69.00] [52.00,70.00] 49.00,67.00] 49.00,67.00] 49.00,67.00] 49.00,67.00] 49.00,67.00]
Fraction inspired oxygen 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.40,0.50] 0.40,0.50] [0.40,0.60] [0.40,0.60] 0.40,0.50] [0.40,0.60] [0.40,0.60]
Glascow coma scale eye opening 4.00 4.00 4.00 4.00 4.00 4.00

3.00,4.00] 3.00,4.00] [3.00,4.00] [3.00,4.00] [3.00,4.00] [3.00,4.00] [3.00,4.00]
Glascow coma seale motor response 6.00 6.00 6.00 6.00 6.00 6.00 6.00
[6.00,6.00] 6.00,6.00] [5.00,6.00] [5.00,6.00] [5.00,6.00] [6.00,6.00] [6.00,6.00]
Glascow coma scale total 14.00 15.00 13.00 14.00 14.00 14.00 14.00
10.00,15.00] [10.00,15.00 9.00,15.00] 9.00,15.00] [10.00,15.00] [10.00,15.00] [10.00,15.00]
Glascow coma scale verbal response 5.00 5.00 5.00 5.00 5.00 5.00 5.00
[4.00,5.00] [4.00,5.00] [2.00,5.00] [1.00,5.00] [1.00,5.00] [2.00,5.00] [1.00,5.00]
Glucose 128.00 128.00 130.00 128.00 128.00 129.00 129.00
[106.00,161.00]  [106.00,159.00]  [104.00,167.50]  [103.00,165.00] [103.00,164.00] [103.00,166.00] [105.00,164.00]
Heart Rate 85.00 85.00 86.00 85.00 84.00 84.00 5
73.00,97.00] [74.00,97.00]  [74.00,100.00] [73.00,97.00] [74.00,97.00] [72.00,97.00] 72.00,95.00]
Height 70.4 170.00 166.50 170.00 170.00 165.00 168.00
[163.00,178.00]  [163.00,178.00]  [157.00,176.50]  [163.00,178.00] (163.00,177.25] [157.00,176.50] [160.00,175.00]
Mean blood pressure 77.00 7767 74.00 75.00 74.33 75.3 5.
[68.00,87.67)] [68.67,88.00] [65.00,85.00] [66.00,85.67] [66.00,85.00] [66.67,86.33] [67.00,87.00]
Oxygen saturation g 98.00 98.00 98.00 98.00 98.00 98.00
[96.00,100.00]  [96.00,100.00]  [96.00,100.00] 96.00,100.00] 96.00,100.00] 96.00,100.00] 96.00,100.00]
Respiratory rate 18.00 18.00 19.00 19.00 19.00 19.00 18.00
[15.00,22.00] [15.00,22.00] [16.00,23.00] [16.00,23.00] [15.00,23.00] [15.00,22.00] [15.00,22.00]
Systolic blood pressure 118.00 118.00 114.00 116.00 115.00 117.00 118.00
[104.00,134.00]  [104.00,134.00]  [100.00,131.00]  [102.00,133.00] [102.00,132.00] [103.00,134.00] [104.00,136.00]
Temperature 37.00 37.10 36.72 36.78 36.78 36.89 37.00
[36.50,37.56] [36.56,37.60] [36.22,37.28] 36.30,37.30] 36.39,37.39) 36.44,37.50]
Weight £0.00 82.10 73.90 74.18 78.00
[67.00,96.00] [68.95,98.60] [62.28,88.05] [62.40,89.03] 2.87,90.70]
pH 738 7 7.37 7.36
[7.32,7.42] [7.32,7.42] [7.30,7.42] [7.30,7.43] [7.30,7.42]

clustering, which aggregates illness and conditions into 275 mutually exclusive
categories. Most of the categories are clinically homogenous. The descending
numbers of patients of CCS categories (which we deem as disease in the fol-
lowing part) with prevalence more than 1% in our dataset are shown in Figure
2 and the information of top 10 CCS categories with highest prevalence is
presented in Table 2. The complete correspondence between ICD-9 codes and
CCS categories are presented in Supplementary material. There are 34 dis-
eases with prevalence more than 10%, 65 diseases with prevalence more than
5% and 140 diseases with prevalence more than 1%. Figure 3 shows top 20
diseases with highest prevalence in patient cohort who died in different time
window and the prevalence of those diseases in survival patients in the dataset
are also presented for comparison. It can be found that the prevalence of most
diseases in died patients (red bar) are higher than survival patients (blue bar).
From Figure 3 we can find that the categories of top 20 diseases are similar
among the five mortality time windows but prevalence of diseases shows some
differences. Figure 4 shows top 20 diseases (within the 140 diseases) with high-
est mortality rate in different time window. We can find that the patients who
suffer from critical illness such as secondary malignancies (CCS 42), leukemias
(CCS 39), cancer of bronchus and lung (CCS 19) and son on, are more likely
to die in a year from discharge. The diseases of highest after-one-year mor-
tality are quite different from those in-one-year. For example, diseases like
other diseases of bladder and urethra (CCS 162), Parkinson’s disease (CCS
79), nephritis, nephrosis, renal sclerosis (CCS 156) and so on, have a highest
after-one-year mortality. These diseases are chronic diseases which are not so
fatal in a short term but also affect the live quaility of patients.
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Table 2 Presentation of top 10 CCS categories with highest prevalence

CCS category CCS category description ICD-9 code ICD-9 code description
411 Postmyocardial infarction syndrome
101 Coronary atherosclerosis andother heart disease .
V45.82 Percutaneous transluminal coronary angioplasty status
- - 201.1 Benign essential hypertension
98 Essential hypertension 401.9 Unspecified essential hypertension
398.91 Rheumatic heart failure (congestive)
108 Congestive heart failure;nonhypertensive
428.9 Heart failure, unspecified
427 Paroxysmal supraventricular tachycardia
106 Cardiac dysrhythmias
785.1 Palpitations
276 Hyperosmolality and/or hypernatremia
55 Fluid and electrolyte disorders .
995.1 Angioneurotic edema, not elsewhere classified
272 Pure hypercholesterolemia
53 Disorders of lipid metabolism .
2724 Other and unspecified hyperlipidemia
276.61 Transfusion associated circulatory overload
238 Complications of surgical procedures or medical care
V9009 Other retained radioactive fragments
302 Ego-dystonic sexual orientation
259 Residual codes; unclassified
V8909 Other suspected maternal and fetal condition not found
280 Iron deficiency anemia secondary to blood loss (chronic)
59 Deficiency and other anemia
285.9 Anemia, unspecified
003.1 Salmonella septicemia
2 Septicemia (except in labor)
995.92 Severe sepsis

B Prevalence > 10%
e Prevalence > 5%
Prevalence > 1%

20000

17500

Number of admissions

Fig. 2 Number of patients of each disease with different prevalence threshold

As patients with different life length suffer from different kinds of diseases
and patients suffering from different kinds of diseases have different mortal-
ity rate, we consider taking diagnosis information as part of patient features
for mortality prediction. After clustering the large number of ICD-9 codes
with CCS, we can use a vector with binary entries to represent patient dis-
eases, in which each entry represents whether a patient suffers from certain
disease or not. In this study, we select diseases which meet some prevalence
threshold, thus obtaining disease vectors of different length. The threshold

of prevalence is set as 10%, 5% and 1%, the corresponding disease vec-
dis(pre>10%) __ disy disa disga\T dis(pre>5%)
i = (z; P T )T X

tors of patient ¢ are x , T
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; ; ; d >1% ; ; ; . .

(w?1817m?1327 - 3’)?2365) and x is(pre>1%) _ (xfwl,x?w?, ey x?”“o)T, in which
. dis; . .

each binary entry =, ™’ represents whether a patient suffers from some disease

dis; or not.
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2.2 Deep learning post-discharge mortality prediction
method considering diagnosis information for ICU
patients

2.2.1 Fusion of patient physiological data and diagnosis
information

After the patient vital sign data preprocessing, each patient gets a vital sign
multivariate time series matrix for deep learning mortality prediction mod-
els. And after the preprocessing of patient diagnosis information, each patient
gets a binary vector representing the diseases he suffers from. In this study, we
adopt an easy way to fuse the patient physiological data and diagnosis informa-

tion data. We pad the same disease vector to each timestamp, thus obtaining
dis(pre>10%) (@) dis(pre>5%) ()

three matrices X; = (T, )3ax4s, X; = (2, )esxas and
X?Zs(we>1%) = (1:552)140”8, which can be concatenated with vital signs

multivariate time series matrices through time axis.

2.2.2 Mortality predicting deep learning models

Our proposed mortality prediction method is based on deep learning models.
Recurrent neural network (RNN) and convolutional neural networks (CNN)
are two outstanding types of deep learning models which have been widely
applied to many clinical studies such as outcome prediction [15], readmission
prediction [34], critical illness prediction [35] and disease progression prediction
[36]. The former one is good at data with temporal properties and the latter is
good at data with spatial properties. We implement two representative models
long short-term memory (LSTM) [37] and temporal convolutional network
(TCN) [38] which can both capture patterns in sequential data. For LSTM,
the ability of capturing patterns in sequential data is achieved by recurrently
updating the hidden layer state. The hidden layer state can be calculated with
the following equations:

—_

fi =c(Wyphi_1 + Wex, + by)
i = oc(Winhs 1 + Wipx; + by)
¢; = tanh(Wzhy_1 + Waxy + bg)
¢, =fici 1 +i; O ¢
o, = 0(Wonhi—1 + Woxi + by)
h; = 0; ® tanh(cy)

AN N N N /N /N
U = W N
= L D = =2 -

(=)

where x; is variable vector of X; at time point ¢. The initial hg = 0. The o
(sigmoid) and tanh functions are applied element-wise. The W matrices and
b vectors are parameters determined by the error back propagation during the
neural network training stage. The hidden state of timestamp ¢ can be repre-
sented as hy = LSTM (x¢,h;_1). The final hidden state hy can be transformed
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into the mortality probability through a dense layer and sigmoid function.
The architecture of our LSTM model is shown in Figure 5, which consists of
2 hidden layers with 256 units each. The dropout rate and recurrent drop out
rate are set as 0.2 in both hidden layers. For TCN, its special architecture can
take a sequence of any length and map it to an output sequence of the same
length just as with an RNN. The basis of TCN is dilated convolution, which
can increase the receptive field of model and even with fewer parameters. The
detailed structure of our TCN is presented in Figure 6. For both LSTM and
TCN, the loss function is binary cross entropy represented as follows:

L(y,9) = —(y - log(9)) + (1 —y) - log(1 — 9) (7)

Hyper-parameter estimation is conducted via a trial and error way. We opti-
mize the parameters aiming at minimizing the prediction error. We start with
initial range of coarse values, measure prediction error, and then adjust hyper-
parameters in order to get the least loss on the validation dataset. Finally, the
number of epochs is set as 100 (early stopping is also set based on validation
loss with patience of 20 to avoid over-fitting), batch size is set as 64 and Adam
(adaptive moment estimation) [39] is chosen as optimizer. And because the
labels of all five tasks are im-balanced, we conduct over sampling for training
data.

Output

;

h

LSTM Layer 1
# of units=256
Dropout rate=0.2
Recurrent dropout rate=0.2
Activation function=tanh

1 T

Input

Fig. 5 Architecture of our long short-memory neural network

2.3 Evaluate the mortality risk brought by disease
factors through disease Shapley values

To evaluate how diseases of a single patient increase his mortality, we compute
disease Shapley values referring to a machine learning interpreting technique
which uses the idea of Shapely values to measure how input values of features
impact on the output of a model [40]. Shapley value is a concept coming from
game theory which aims to allocate the coalition output in a game to all
members according to their contributions in a most fair way [41]. By computing
expectations of contributions over the member set of all possible permutations
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Fig. 6 Architecture of our temporal convolutional network

and taking all possible interactions between players into consideration, Shapley
values can achieve a fair way of allocating the total output of coalition. In
our study, Shapley value is used to evaluate the mortality risk in different
time window brought by disease factors. Under this circumstance, the output
of the coalition is the mortality of a single patient and the members in the
coalition are diseases the patient suffering from. The disease Shapley values
¢ (f(-),X;,d;), which represent the impact of disease d for patient i, can be
calculated with trained models f(-), the vital sign matrix X; and disease set
d; as follows:

G Xud) = Y |z 1(|da| — || = 1)!

dsubCd;\d?

(8)

it ] . . . . .
the x} and x] are multi-hot disease vectors in which the entries are set
as one if the corresponding diseases are in d;“* U d? and d5“® and the rest

i+
of entries are set as zero. The g(-) is the operation of padding x! or x]

and concatenating them with X;. The disease Shapley values are calculated
as expected contribution to the mortality of some disease over all permuta-
tions of the rest. To provide a more intuitive view of the cumulative effect of
patient diseases, we also calculate the patient mortality in a way of generat-
ing cumulative disease sets. With patient vital sign multivariate time series
and a series of cumulative disease sets in which the diseases are added accord-
ing to the ascending disease Shapley values, a series of mortalities for a single
patient can be calculated. The whole process of computing disease Shapley
values and cumulative mortality is presented in Figure 7 by taking a dummy
patient with disease set of d; = {d},d?,...,d""',d"} as example. The num-
ber of diseases patient i suffers from is d.i (which is m in the example) and

! [Flo(Xix] ) = flg(Xi,xd )
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d}, d? are the second and the fifth diseases in the CCS disease category list,
respectively. We can conduct a loop process to calculate each disease Shap-
ley value for each single patient. In the figure, we only present the process in
the condition that j = 1. When calculating the Shapley value of disease j,
we first generate 2! disease subsets from d; in which d/ is excluded. Then
we obtrain 2™~! corresponding subsets by adding d{ to each subset gener-
ated above. Then a series of disease vectors xg ~ and xf can be obtained
through the mapping from generated disease subsets. Finally, the Shapley
value of disease j can be calculated with Eq. (7). By repeated above process,
a disease Shapley value list | },qbf,...,gb;"_l,qbfl] can be obtained. Accord-
ing to the ascending disease Shapley values, a cumulative disease subset list
[dsvmo, s dg T dSY ) s generated for outputting the cumulative

s d; :
mortahty [ys o ysim Lyt g to present the cumulative effect of

diseases to patient mortahty.

Diagnosis information of patient

i - [EE d,={d)d} ,....d]"",d]"}
Forjin[l,2,...,m-1,m],

conduct following calculations to get ¢/
(Taking j =1 as example)

i Vital signs time ” i
Subset of diseases . ' 'tal signs t o J Subset of diseases
excluding Disease vector X; series of patient i Disease vector X; adding d/

@ = [III- = R )
{["/ :<d,:} I g
Djjjj[ T -+ +
EEEEEE S

dd, Y R - -

@

#(f(). X, d) = z 1/(2(X,x/ ) - f(g(X,,x/ )]

14,11

Output[¢, @7 ,....8" ", 4" ]

Ascending disease Shapley values Cumulative mortality risk

147 ¥, |~ |d}" | -D!
q,

g 7

T - W ()

cumy cum,,

: : Ly ym oy o]
'=|‘1]='
D:ED] O, o - e O - E\:\:\] D:E\:D E\:\:\] oo
" =g di™ ={d"} di ={d", d} Mt = L2 idem =g d .. d?d Y

Cumulative disease subset list [d/"",d;"" ,...,d""" ,d/""™ ]

Fig. 7 Calculating process of disease Shapley values and cumulative mortality

3 Experimental results and analysis

In this section, we conduct some experiments on MIMIC-III dataset to inves-
tigate the effect of taking consideration of diagnosis information in patient
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post-discharge mortality prediction. Besides, we take some patients with high
mortality predicted by the model as example to present the hazard diseases
bring to patient mortality.

3.1 Design of experiments

In this study, there are 5 tasks separately to predict whether a patient will die
in 30 days, in 90days, in 180 days, in 365 days and in 5 years. Mainly two part
of experiments are conducted on the several tasks.

Firstly, we compare the mortality prediction performance of traditional
scoring systems, traditional machine learning models and deep learning
models. Scoring systems implemented include SOFA and LODS. Trditional
machine learning models including logistic regression (LR), support vec-
tor machine (SVM) [42], random forest (RF) [43] and XGBoost [44] are
implemented. Those models can not take multivariate time series data as
input, so we extract hand-engineered statistical features of patient vital
signs. The statistical features including mean, standard deviation, maxi-
mum, minimum, skewness and kurtosis are calculated within 7 sub timeseries
including full 48 hours, first 5 hours, first 12 hours, first 24 hours, last
24 hours, last 12 hours and last 5 hours. For each patient ¢, a vector
(xi,meanl » Ti,stdy y +-+5 Li,max,, » Li,min, » Li,kurt, s Li,skew, )T is obtained. The length
of the vector is 714 (generated from 17 predictors, 7 sub timeseries and 6 sta-
tistical features) in our study. And the data in training set are also dealt with
missing value imputation, standard normalization and over sampling.

Then, we present the results of deep learning models taking diagnosis infor-
mation of different prevalence into consideration. To further prove the effect
of adding diagnosis information for mortality prediction, we also implement
traditional machine learning models taking diagnosis information into consid-
eration. By changing the threshold of prevalence of diseases in our dataset,
we can adjust the number of disease categories (namely the length of disease
vector) added as patient features. In this study, we set the threshold values of
prevalence as 10%, 5% and 1% which correspond to disease vectors of size (34,
1), (65, 1) and (140, 1).

To avoid accidental results of experiment, we conduct 5-fold cross-
validation. The original dataset is divided into 5 partitions of roughly equal
size and the ratio of positive and negative classes in each partition is roughly
the same as original dataset. Random seeds are kept to eliminate the random-
ness brought by the splits of dataset. The overall performance is obtained by
averaging the results of each fold, i.e.,

1 K
P-——L%"p
K; K 9)

where Pg is the performance metric, which in our study is area under
the receiver operating characteristic curve (AUROC) score and area under
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precision-recall curve (AUPRC) score, which are adopted to evaluate the dis-
crimination ability of the model in the condition that data are imbalanced
labeled. The higher the AUROC and the AUPRC are, the better the model
is; K is the number of folds, which is 5 in our study.

Our experiments are conducted with Python 3.7.3. The logistic regression,
support vector machine and random forest are implemented with scikit-learn
library of 0.23. XGBoost is implemented with xgboost library of 1.3.3. The
LSTM and TCN models are implemented with Keras 2.3.1 and Tensorflow
2.1.0.

3.2 Results and analysis

In this section, we first present the results of the several mortality predic-
tion tasks with different models and different volume of diagnosis information.
Then, several patients died in five time windows are shown to present the
evaluation of a single patient mortality risk brought by disease factors.

3.2.1 Prediction performance comparison

The experimental result comparison of traditional scoring systems, traditional
machine learning models and deep learning models are shown in Table 3. We
present the mean value and standard deviation of AUROC and AUPRC of the
5 folds of each task. For each task, the highest two AUROC and AUPRC are
marked in bold. From the table, we can find that most machine learning models
have better performance than scoring systems. SVM shows weak performance
in the 30-days, 90-days and 180-days mortality prediction, but performs well
in the rest tasks. Random forest performs well in the 180-days, 1-years and 5-
years mortality prediction. As for deep learning models, TCN performs well in
30-days and 90-days mortality prediction and LSTM achieves the best results
except for 5-years mortality prediction.

The experimental results of traditional machine learning models and deep
learning models using different volume of diagnosis information are compared
in Table 4. Instead of marking the highest AUROC and AUPRC, we mark
the highest AUROC and AUPRC of the best two models in bold. For exam-
ple, the best models for 30-days mortality prediction task are TCN and LSTM
and the highest AUROC of the two models are TCN and LSTM using diag-
nosis information of prevalence more than 5% and 10%, respectively. Besides,
for each model, the best result are marked with an asterisk. For example, the
best result of logistic regression on the task of 30-days mortality prediction
is obtained when using diagnosis information of prevalence more than 1%.
From the table, we can find that adding diagnosis information improves the
AUROC and AUPRC for both traditional machine learning models and deep
learning models. For 30-days mortality prediction task, the AUROC scores
are improved up to about 9.74%, 6.56%, 4.22%, 6.66% and 8.67% for logistic
regression, SVM, RF, XGBoost, TCN and LSTM by using disease informa-
tion, respectively. There are also improvements for AUPRC scores for models
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using diagnosis information. As for longer term post-discharge mortality pre-
diction tasks, the effect of adding diagnosis information is more significant
both in AUROC and AUPRC for all models, which means vital sign data
from relatively short period of time can not reflect the physiological state of
patients sufficiently in longer term, while the diseases patients suffer from can
provide more information about it. Additionally, diagnosis information helps
to improve the performance more for deep learning models than traditional
machine learning models, which is probably due to the strong ability of deal-
ing with the unstructured time series data and capturing potential non-linear
relationships between information of patient vital signs and diseases of deep
learning models. With the help of diagnosis information, deep learning models
can outperform all traditional machine learning models including SVM and
random forest which even has better performance than deep learning models
without diagnosis information.

In general, our method can improve the post-discharge mortality prediction
performance to a greater extent, which means patient diagnosis information
can help to better evaluate the physiological state of patients. We believe meth-
ods focusing on designing better model structure and algorithm for mortality
prediction are likely to achieve better prediction performance with the help
diagnosis information.

3.2.2 Evaluation of mortality risk brought by disease factors

For each task, we take one fold of experiment using LSTM as predicting model
and the length of disease vector is determined according to the AUROC scores
on the validation set to conduct the evaluation of mortality risk brought by
disease factors. For each task, we present three patients who are predicted
with low mortality without diagnosis information and high mortality with
added diagnosis information in Figure 8-Figure 12. All of the patients presented
actually died in the corresponding time window.

In Figure 8-Figure 12, the bar plot represents the computed disease Shap-
ley values, which reflect the expected change value in the predicted risk of the
model when a patient suffers from a disease versus when he doesn’t. The line
chart is predicted mortality with generated patient disease vectors to reflect
the cumulative effect of diseases. The y-value of each dot represents the cumu-
lative mortality. It is predicted with the cumulative disease set which includes
the corresponding disease of the dot and those on the left. In Figure 8, patient
1 and 2 suffer from acute illness such as acute myocardial infarction and acute
and unspecified renal failure. the disease Shapley values of these diseases for
these patients are high, which means the model predicts these patients of high
mortality largely due to these diseases. As for patient 1~3, the predicted mor-
tality is relatively low without diagnosis information, which means their vital
signs don’t show very bad physiological condition. The diagnosis information
associated with vital signs reveal the high mortality risk of the patients. As for
patient 13 in Figure 12, the predicting mortality is relatively high without the
diagnosis information, which means his vital signs data reflects a not optimistic



Table 3 Experimental results comparison of traditional scoring systems, traditional machine learning models and deep learning models.

30-days mortality

90-days mortality

180-days mortality

1-year mortality

5-years mortality

Methods AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
SOFA  0.6079+0.0205  0.0936+£0.0090  0.6047+0.0139  0.1657£0.0093  0.6109£0.0138  0.2255+0.0060  0.6118+£0.0108  0.2903+0.0076  0.6191£0.0095  0.4737+0.0147
LODS  0.6550+0.0165  0.1053+£0.0074  0.6505£0.0133  0.18800.0098  0.6517£0.0092  0.2559:£0.0108  0.6514:£0.0090  0.3295:0.0051  0.6532+0.0174  0.5080::0.0183

LR 0.6611+0.0215  0.1052+£0.0088  0.6799£0.0089  0.2031£0.0096  0.6830+£0.0108  0.2771£0.0115  0.6890£0.0098  0.3532+0.0128  0.7096£0.0097  0.5664::0.0096
SVM  0.6406£0.0157  0.0944+0.0033  0.6502£0.0087  0.1843+0.0085  0.6588+0.0150  0.2572£0.0113  0.6723+0.0064  0.3454-0.0102  0.7206+0.0103 0.5927+0.0108
RF 0.6771£0.0083  0.1162:£0.0070  0.6854£0.0098  0.2147+0.0086  0.6979:£0.0136  0.2970£0.0163  0.707640.0047 0.3784+0.0121 0.7235+0.0120 0.5929-0.0181

XGBoost  0.6785+0.0159  0.1158+£0.0076  0.6921+0.0111  0.2186+0.0120  0.6898+0.0088  0.2849+0.0163  0.6897+0.0046  0.3637+0.0110  0.7059+£0.0083  0.5684-0.0098
TCN  0.6876:+£0.0175 0.121940.0162 0.696940.0173 0.2207+0.0261  0.6965:0.0189  0.3027+0.0316  0.6952+0.0303  0.3591£0.0303  0.6959+0.0234  0.5584::0.0200
LSTM  0.701340.0248 0.1395+£0.0205 0.707640.0140 0.229740.0124 0.6993+£0.0112 0.2994+0.0148 0.7064:£0.0189 0.380040.0224  0.7095+£0.0167  0.5788+0.0164

Table 4 Experimental results of traditional machine learning models and deep leaning models considering diagnosis information. The baseline
models without diagnosis information and models with different length of disease vectors are compared. The +m%D means the threshold of
prevalence of diseases. The highest AUROC and AUPRC of the best two models in bold and the best result of each model are marked with an asterisk

30-days mortality

90-days mortality

180-days mortality

1-year mortality

5-years mortality

Methods AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
LR 0.6611£0.0215  0.1052£0.0088  0.6799+0.0089  0.2031+0.0096  0.6830+£0.0108 02771200115  0.6890£0.0098  0.3532+0.0128  0.7096£0.0097  0.5664::0.0096
LR+10%D 0.7155£0.0200  0.1365:0.0141  0.7419+0.0084  0.2632+0.0148  0.7403+£0.0078  0.3633£0.0182  0.7587£0.0061  0.4542+0.0058  0.7699+£0.0063  0.6450-:0.0061
LR+5%D 0.7202£0.0197  0.1402£0.0115  0.7477+0.0119  0.2677+0.0177  0.7550+£0.0101  0.3689£0.0188  0.7623£0.0059  04571+0.0088  0.7751£0.0069  0.6508-0.0067
LR+1%D 0.7255£0.0186*  0.1443£0.0142%  0.7560+0.0091%  0.2768+0.0101%  0.7632£0.0071*  0.3762£0.0158*  0.7725+0.0055%  0.4693+0.0114%  0.7838+£0.0071*  0.6618=0.0066*
SVM 0.6406=0.0157 0094400033 0.6502+0.0087  0.1843+0.0085  0.6588+£0.0150  0.2572£0.0113  0.6723£0.0064  0.3454+0.0102  0.7206+£0.0103 0.5927+0.0108
SVM410%D  0.6755£0.0153  0.1078+0.0054  0.6941£0.0069  0.2142+£0.0085  0.7128+0.0130 03113300164  0.7284:£0.0067  0.4093£0.0123  0.7555:0.0087  0.6315:0.0116
SVM+5%D 0.6793£0.0161  0.1102£0.0050  0.6994+0.0059  0.2167+£0.0087  0.7172+£0.0128  0.3165:0.0164  0.7310£0.0068  0.4123+0.0120  0.7581:£0.0088  0.6340+0.0117
SVM41%D  0.6826£0.0161%  0.1120£0.0051%  0.70430.0062¢  0.2200+£0.0089%  0.7224£0.0121*  0.3220+0.0156*  0.7371+0.0065%  0.4213£0.0140%  0.7612+£0.0088%  0.6377+0.0118*
RF 0.6771£0.0083  0.1162£0.0070  0.6854£0.0098  0.2147+0.0086  0.6979+0.0136  0.2070£0.0163  0.7076:0.0047  0.3784+0.0121  0.7235+0.0120  0.5929-:0.0181
RF+10%D 0.7024£0.0256  0.1273£0.0182  0.7204+0.0103  0.2523£0.0106*  0.7417+£0.0126  0.3393£0.0074  0.7493£0.0056  0.4266+0.0137  0.7551£0.0084  0.6252+£0.0123
RF+5%D 0.7013£0.0210  0.1234£0.0111  0.7283+0.0090  0.2490+0.0057  0.7455+0.0147  0.3448+£0.0206  0.7507£0.0061  0.4309+0.0116  0.7549+£0.0086  0.6262+0.0080%
RF+1%D 0.7057+£0.0243%  0.1286£0.0157%  0.7323+0.0102%  02487£0.0051  0.7481:£0.0109%  0.3514£0.0151%  0.7556£0.0050%  0.4353+0.0218%  0.7557£0.0063*  0.6244:£0.0075
XCBoost 0.6785£0.0159  0.1158£0.0076  0.6921+0.0111  0.2186+0.0120  0.6808+£0.0088  0.2849+0.0163  0.6897+0.0046  0.3637+0.0110 0.7059+0.0083 0.5684:0.0098
XGBoost+10%D  0.7152+0.0204  0.14324£0.0185  0.7385£0.0058  0.2768£0.0162  0.7462+0.0136  0.3720+0.0208  0.7602:£0.0089 04631200105  0.7599+0.0044  0.6405::0.0085
XGBoost+5%D  0.7234:£0.0167  0.1454+0.0180%  0.7447+0.0186  0.2720+0.0210  0.7534£0.0132  0.3793£0.0200  0.7621+£0.0050*  0.4626+0.0166  0.7664-:0.0082  0.6432£0.0117
XCGBoost+1%D  0.7239+0.0208%  0.1424:£0.0140  0.7484+0.0110%  0.2780+£0.0178*  0.7536:0.0055*  0.3826£0.0120%  0.7598+0.0084  0.4649+0.0183%  0.7717£0.0050%  0.6545:0.0075%
TCN 0.6876£0.0175  0.1219+0.0162  0.6969+0.0173  0.2207+0.0261  0.6965£0.0189  0.3027+0.0316  0.6952+0.0303  0.3591+0.0303  0.6950+0.0234  0.5584::0.0200
TCN+10%D 07219400214  0.1556+0.0215  0.7654:0.0088  0.2986:0.0148% 0.7837-£0.0103* 0.3997:£0.0235*  0.7821£0.0086  0.4787+£0.0204  0.7859£0.0048  0.6702:0.0106
TCN+5%D  0.7334£0.0308% 0.1643+0.0259*  0.7611£0.0174  0.2805:£0.0253  0.7768+0.0034  0.3801+0.0152  0.7827£0.0055  04792£0.0100  0.7890+0.0051 0.6714:£0.0076
TCN+1%D 0.7189+£0.0253  0.1574£0.0226  0.7717£0.0062*  0.2000+0.0253  0.7823:£0.0058 03951200107  0.7875:£0.0096* 0.483240.0164* 0.79481:0.0058% 0.67820.0106*
LSTM 0.7013£0.0248  0.1395£0.0205  0.707620.0140  0.2207+0.0124  0.6993£0.0112  0.2004£0.0148  0.7064£0.0189 0.3800+0.0224  0.7095+£0.0167 0.5788=0.0164
LSTM+10%D  0.7621:£0.0132* 0.17752£0.0204* 0.7761£0.0115%  0.3032£0.0177 07815200108  0.3962+0.0193  0.7832:+£0.0087  0.4818+£0.0109  0.7890£0.0055  0.67300.0111
LSTM+5%D  0.7471£0.0155  0.1668+0.0130  0.7732:£0.0067  0.2058£0.0110  0.7888+0.0086  0.4033+0.0207  0.7851£0.0101  04839+£0.0124  0.7919+0.0055  0.67780.0142
LSTM+1%D  0.7513£0.0107  0.1666+0.0130  0.7751+£0.0043  0.3077+0.0174* 0.7925:£0.0090* 0.4116+0.0114* 0.792140.0099* 0.5048-0.0168% 0.7964:£0.0077* 0.6861-£0.0126*
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condition. When considering the diseases he suffered from, the physiological
status assessed by the model gets worse. With the aid of the disease Shapley
values, we can learn which diseases bring high mortality risk to patients and
get better assessment on patient physiological state, which might be helpful
for therapeutic interventions.

o ety (PeliEmbl Patient CCS category & corresponding diseases
gns . i Acute myocardial infarction (100), Chronic obstructive
2z pulmonary disease and bronchiectasis (127), Congestive
g“ 1 heart failure; nonhypertensive (108), Cardiac
=0 dysrhythmias (106), Bacterial infection; unspecified site
001 None CC398 CC8% cc52 6683 ces 106ccs 108ccs 127¢cs 100 (3), Septicemia (except in labor) (2) , Heart valve
= ;T;::l:‘::azz:avz::: Patient 2 R disorders (96), Essential hypertension (98)
g W Acute and unspecified renal failure (157), Cardiac
2z dysrhythmias (106), Chronic obstructive pulmonary
g » 2 disease and bronchiectasis (127), Congestive heart
=0 4 - failure; nonhypertensive (108), Fluid and electrolyte
f" None CCs55  CC5108  CCS127  CC5106  CCS157 disorders (55)
Joo| = Eoule oy Petlent3 Chronic obstructive pulmonary disease and bronchiectasis
R (127), Urinary tract infections (159), Urinary tract
z 3 infections (157), Other gastrointestinal disorders (155),
g“ Diabetes mellitus without complication (49), Essential
=0e hypertension (98), Deficiency and other anemia (59),
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Fig. 8 Disease hazard evaluation examples of patients died in 30 days
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Fig. 9 Disease hazard evaluation examples of patients died between 30 days and 90 days

3.2.3 Discussion

A series of experiments are conducted and the results are presented in this
section. We find that our proposed method can improve the mortality pre-
diction performance tasks for both traditional machine learning models and
deep learning models. The degree of prediction performance improvement
varies with the tasks and model chosen. In general, the prediction performance
improvement is more significant for deep learning models such as TCN and
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Fig. 10 Disease hazard evaluation examples of patients died between 90 days and 180 days
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Fig. 11 Disease hazard evaluation examples of patients died between 180 days and 1 year
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Fig. 12 Disease hazard evaluation examples of patients died between 1 year and 5 years

LSTM than traditional machine learning models such as logistic regression,
SVM, random forest and XGBoost, which is probably because deep learning
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models have stronger ability of capturing potential non-linear relationships
between patient vital signs and disease information. The prediction perfor-
mance improvement is obviously significant for longer term tasks such as 1-year
and 5-years post-discharge mortality prediction, which is because the snapshot
of patient vital signs are not enough to reflect his longer term physiological
state while the diseases patients suffer from can provide more information
about it. The experimental results are in line with clinical experience that the
patient physiological state is closely related with the diseases he suffers from.
In addition to using diagnosis information to predict the mortality of patients,
we also provide a way of evaluating the hazard of diseases brought to a sin-
gle patient mortality. By computing disease Shapley values, we can learn to
what extent different diseases affect different patient’s physiological state. As
for the patient examples shown in our study, acute critical illness such as acute
myocardial infarction, acute and unspecified renal failure and so on bring sig-
nificant risk to patient mortality in one year. And illness such as secondary
malignancies, various kinds of cancers also have serious bad effect on patients
mortality. Although our method can not provide evaluation in a causal way,
we can better predict post-discharge mortality and better evaluate the long
term patient physiological state, which could help doctors to adopt therapeu-
tic interventions and help patients to better know the condition of their health
status.

4 Conclusions, limitations and future work

In this study, we propose a deep learning post-discharge mortality predic-
tion method considering diagnosis information, which is tested on MIMIC-IIT
dataset and proven to improve the performance in several mortality prediction
tasks for deep learning models. This method also works for traditional machine
learning models. Besides, we also provide a way of evaluating mortality risk
brought by disease factors to a single patient by disease Shapley values. With
the aid of the disease Shapley values, individual patient’s disease condition
can be analyzed to help doctors clarify the priority of multiple diseases and
facilitate subsequent treatment.

There are some limitations and future work in our study. Firstly, we only
represent the patient diagnosis information with a binary vector in a simplest
way, which can not reflect the severity of patient diseases and relations between
diseases. We will try to represent the diseases patients suffer from referring to
methods which can better represent the relationships between diseases. With
more detailed information about the severity of diseases patients suffer from,
the physiological state of patients can be evaluated more accurately. Then,
the mining of unstructured textual content of clinical notes of patients are not
investigated in this study, which may further facilitate the post-discharge mor-
tality prediction. Although there are some limitations of our research yet, we
think this study is valuable for ICU clinical post-discharge mortality prediction
and for the following up studies on ICU mortality prediction.
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