Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Naturalistic Driving Measures of Route Selection
Associate With Resting State Networks in Older
Adults

Julie K. Wisch
Washington University in St. Louis

Catherine M. Roe
Washington University in St. Louis

Ganesh M. Babulal
Washington University in St. Louis

Nicholas Metcalf
Washington University in St. Louis

Ann M. Johnson
Washington University in St. Louis

Samantha Murphy
Washington University in St. Louis

Jamie Hicks
Washington University in St. Louis

Jason M. Doherty
Washington University in St. Louis

John C. Morris
Washington University in St. Louis

Beau M. Ances (¥ bances@wustl.edu )
Washington University in St. Louis

Research Article

Keywords:

Posted Date: November 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1028456/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 1/14


https://doi.org/10.21203/rs.3.rs-1028456/v1
mailto:bances@wustl.edu
https://doi.org/10.21203/rs.3.rs-1028456/v1
https://creativecommons.org/licenses/by/4.0/

Version of Record: A version of this preprint was published at Scientific Reports on April 20th, 2022. See
the published version at https://doi.org/10.1038/s41598-022-09919-x.

Page 2/14


https://doi.org/10.1038/s41598-022-09919-x

Abstract

Within a cohort of cognitively normal older individuals, we compared performance on naturalistic driving
with resting state functional connectivity using machine learning. Functional networks associated with
the ability to interpret and respond to external sensory stimuli and the ability to multi-task were
associated with measures of route selection. Maintenance of these networks may be important for
continued preservation of driving abilities. It is possible that targeted interventions could be developed to
train these networks.

Introduction

Driving requires the integration of a diverse set of skills, including planning, adjusting to novel external
stimuli and responding to visual cues’. Older drivers have an increased risk of crashes that may be due to
age-related changes in sensorimotor processing in combination with difficulties in spatial navigation?3.
The average older adult ceases driving about seven years prior to the end of their lives*®. For individuals
who stop driving, many will develop depression, lower social participation and physical activity, and

increased risk of transition to institutional care ©. Interventions that could enable older adults to continue
driving could have important societal benéefits.

Resting state (rsfc) functional MRI (fMRI) is an imaging technique that is highly sensitive to brain activity.
It measures this activity indirectly by quantifying changes in blood flow that correspond with changes in
neural activation. These observed blood oxygen level dependent (BOLD) changes map onto well-

established networks that are also observed in a task-based paradigm’?2.

A number of task-based fMRI studies have evaluated participants completing driving-related tasks using
simulators®~12. A diverse set of networks, including attention, motor control, decision making, and the
sensory networks have been shown to be activated. However, only one study has evaluated rsfc as a
function of driving skill. The study compared taxi drivers (skilled drivers) and non-drivers, finding that taxi
drivers possessed stronger connections integrating higher order control networks with sensory networks,
and weaker connections between sensory networks’.

Here we evaluated naturalistic driving data collected over a multi-year period for 64 cognitively normal
older adults (ages 60 — 85) and applied machine learning to identify rsfc networks that associate with
driving behaviors. This is an important addition to our understanding of the functional changes that
associate with aging, as we are able to connect measurements corresponding to real world tasks (in this
case, naturalistic driving data) with neuroimaging data.

Methods

Participants
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Cognitively normal older adults (n=64) enrolled in a driving study affiliated with the Knight Alzheimer
Disease Research Center (ADRC) at Washington University in St. Louis (WUSTL) were included in this
analysis. Methods of recruitment have been previously described'3#- All participants undergo regular
cognitive screening, and all participants also completed vision screening. This study was approved by the
WUSTL Institutional Review Board and each participant provided signed informed consent. Research was
performed in accordance with all relevant guidelines and regulations, including the Declaration of
Helsinki Ethical Principles for Medical Research involving Human Subjects.

Imaging

We obtained both structural and functional MRI on a 3T Siemens biograph scanner (Erlangen, Germany).
A detailed description of acquisition and processing can be found in the supplement. We used a seed-
based approach for rsfc. After calculating the mean time series for each functional region of interest
(ROI), we calculated the pairwise correlations between each ROI. Then we sorted these seeds into 13 pre-
defined networks to develop a 13 x 13 matrix of inter- and intra-network connections®. All imaging data
was collected within 2.5 years of driving study enroliment.

Driving

Naturalistic driving was captured using the Driving Real-World In-Vehicle Evaluation System
(DRIVES)'314. This data was obtained through the use of a GPS data logger (G2 Tracking Device, Azuga
Inc, San Jose, CA), installed in the onboard diagnostics-ll port of a vehicle. Date, time, speed, latitude and
longitude coordinates at 30-second epochs were collected whenever a vehicle drove. In addition to the
breadcrumb data, trip summary values including total distance travelled, counts of hard braking
incidents, hard accelerations, and duration exceeding the speeding limit for each trip were collected. All
participants supplied more than one year of driving data (= 3.01 years, = 1.06 years). Detailed
information on participant enroliment duration and time between rsfc collection and driving study
participation is available in the supplement.

Statistics

Driving parameters (complete list available in Table 1) were compressed into single values for each driver
over their entire recorded driving history. We performed a 1000 bootstrap lasso regression with 10-fold
cross-validation for lambda selection, using a previously described approach’®. We applied the R
package glmnet for implementation®. For each bootstrap iteration, we trained on 2/3 of the data and
tested on the remaining 1/3. We took each of the driving parameters in turn as the response variable, and
included each rsfc correlation value and driver age as features in the model. We looked for models with
mean absolute percent error (MAPE) of less than 10% indicating good forecasting power. In order to
identify the features that contributed the most to generating good predictions, we counted the number of
times each feature was retained by lasso regression (see Figure 1).
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Results And Discussion

After evaluating a variety of driving behavioral metrics, we found strong predictability for two measures
(straightness and actual-optimal distance ratio) with regards to rsfc networks. We observed positive
correlations between within-network ventral attention network (VAN x VAN) and salience — dorsal
attention network (SAL x DAN) and straightness, as well as a positive correlation between frontoparietal
— subcortical network (FP x SubCort) and the actual-optimal distance ratio in this sex-balanced cohort of
cognitively normal older adults.

In animal movement literature, maximum route straightness (straightness = 1) is considered the most
efficient orientation posture; however, even in the natural world animals frequently are not able to follow
perfectly direct routes due to any number of obstacles posed by the physical environment or potential
predators’”. By extension, drivers are constrained by transportation infrastructures and it is thus unlikely
that they are able to select perfectly straight routes. We considered higher straightness to represent more
optimal route finding, even given environmental constraints. It is likely that low straightness values would
indicate drivers who are getting lost more frequently and exhibiting avoidant driving behaviors that lead
them to take longer and/or more circuitous routes, such as the route shown in Figure 2B. In Figure 2B we
see a driver who took a much longer and circuitous route (shown in red) in order to avoid a highway (the
optimal route, shown in black).

Median route straightness (Figure 2A) could be predicted with 6.4% MAPE. A strong VAN x VAN
connection was associated with greater route straightness (Figure 2C, 2E). The VAN is responsible for
bottom up attentional processing’®1°, specifically, for exercising control upon receipt of various
extrasensory stimuli. The SAL x DAN inter-network connection also positively correlated with route
straightness (Figure 2C, 2F). The SAL x DAN network has been shown to associate with motor
inhibition2?. Taken together, we see that the two most important networks used for predicting route
straightness were associated with the ability to respond to a complex external environment, including the

ability to alter pre-planned motor activities.

Despite the utility described above, we acknowledge that utilizing straightness as our primary route
selection metric could be heavily influenced by the availability of roads. Therefore, we used
OpenStreetMap to identify the theoretically optimal route, which optimizes routing by predicted travel
duration, meaning that it finds the route that should be quickest rather than shortest distance?'. Our
working assumption was that drivers who take longer routes than the optimal route were either getting
lost, choosing to drive in primarily familiar areas even if they were not the most direct path from point A
to point B, or intentionally avoided challenging driving scenarios like high speed environments (again, see
Figure 2B) or complex intersections. We were able to predict the median actual — optimal distance ratio
with 2.0% MAPE.

We observed a positive correlation between our primary resting state network, this time FP x SubCort, and
the driving metric in question (Figure 2D, 2G). Lower FP x SubCort values indicate a greater proficiency at
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multi-tasking?2. Drivers who exhibited greater multi-tasking ability based on their rsfc values had lower
actual-optimal distance ratios, suggesting that the ability to multi-task is important to the ability to
consistently drive more direct routes. Notably, FP x SubCort changes occur with training??, meaning that
FP x SubCort targeted interventions could potentially lead to longer retention of access to personal
vehicles for older adults.

We expected straightness and the actual-optimal distance ratio to contain similar information; however,
they were relatively weakly correlated (R = 0.22). These results suggest that different information is
conveyed by the straightness index and the actual-optimal distance ratio. Future work that investigates
individual routes rather than aggregated median values is necessary to enhance our understanding of
these differences. Both metrics seem to relate to wayfinding in a naturalistic driving setting; however, we
are not able to determine if either (or both) are reflective of intentional route selections (e.g. drivers
choosing to avoid complex driving scenarios) or errors in wayfinding. If these factors could be isolated,
we could potentially derive even greater insight into the neurological underpinnings of different features
of driving with aging.

We observed that for older adults, retention of strong networks associated with the ability to interpret and
respond to external sensory stimuli and the ability to multi-task played important roles in the route
selection process. This general pattern aligns with the observed result of stronger connections between

control and sensory networks for drivers '. Defining these relationships is the first step to the
development of targeted interventions like cognitive training. Longer retention of access to personal
vehicles could increase the number of older adults that could age-in-place, as well as maintain the sense
of autonomy that comes with the ability to independently navigate.
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Table 1
Participant Demographic Data

Age at MRI (Years)

Mean (SD)

Median [Min, Max]

Sex

Male

Female

Education (Years)

Mean (SD)

Median [Min, Max]

Time from Start of Driving Enroliment to MRI (Years)
Mean (SD)

Median [Min, Max]

Time from End of Driving Enroliment to MRI (Years)
Mean (SD)

Median [Min, Max]

Radius of Gyration (mi)

Mean (SD)

Median [Min, Max]

Median Distance Travelled (mi)

Mean (SD)

Median [Min, Max]

Median Route Straightness

Mean (SD)

Median [Min, Max]

Median Actual-Optimal Distance Ratio
Mean (SD)
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Participants

(N = 64)

71.3 (5.06)
70.3[60.0, 84.7]

32 (50%)
32 (50%)

16.6 (2.19)
16.0 [12.0, 20.0]

0.997 (1.01)
1.03 [2.00, 2.49]

4.01 (1.03)
3.91[1.69, 6.55]

257.4 (251.4)
177.6 [18.54, 1146]

4.12 (2.40)
3.29 [0.684, 14.3]

0.718 (0.0535)

0.725[0.589, 0.838]

1.00 (0.0266)




Median [Min, Max]

Median Actual-Optimal Time Ratio

Mean (SD)

Median [Min, Max]

Number of Trips per Year

Mean (SD)

Median [Min, Max]

Mean number of hard braking events per trip
Mean (SD)

Median [Min, Max]

Mean number of hard acceleration events per trip
Mean (SD)

Median [Min, Max]

Mean number of overspeeding events per trip
Mean (SD)

Median [Min, Max]

Mean percentage of trip time sepnt overspeeding
Mean (SD)

Median [Min, Max]

Mean number of unique destinations per year
Mean (SD)

Median [Min, Max]

Ratio of unique destinations to total destinations
Mean (SD)

Median [Min, Max]

Participants
(N=64)
0.999 [0.939,1.10]

1.32 (0.274)
1.25[0.940, 2.15]

619 (360)
565 [120, 1950]

0.110 (0.0882)
0.0931 [4.80e-03, 0.509]

0.0423 (0.101)
0.0127 [0, 0.746]

0.394 (0.422)
0.288 [0, 1.94]

0.0122 (0.0168)
6.76e-03 [0, 0.0845]

201 (103)
187 [50.5, 520]

0.341 (0.0811)
0.335[0.208, 0.530]
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Figure 1

Vehicle data was collected via chip transmission (OBD-ll), and single summary values were created for
each measurement on a driver-by-driver basis. Resting state functional connectivity (rsfc) functional
magnetic resonance imaging (fMRI) was collected with time series data converted to a matrix of
correlations, consistent with previously published methodology. We then used a 1000 bootstrap
procedure to identify rsfc networks that predicted driving performance variables. For each iteration, we
trained the model on two-thirds of the dataset and evaluated the model performance on the remaining
one third. From each iteration we kept the networks that were retained by the lasso algorithm and the
mean average percent error of the proposed model. At the conclusion of the 1000 iterations, we counted
the total number of times each network was retained and calculated the total mean average percent error.
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(A) Route straightness was calculated by taking the Haversine distance (shown in red) divided by the
actual route (shown in black) distance (B) The actual — optimal distance ratio was calculated by dividing
the length of the actual route (shown in red) divided by the optimal route (shown in black). The actual
route driven was estimated using the coordinates from each 30s epoch breadcrumbs from the ODB-II
chip. The optimal route was generated by using Open Street Map. For this example, the actual route
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driven was six miles, while the optimal proposed route was four miles. The actual — optimal distance
ratio for this particular route was 1.5. (C) The networks most frequently utilized for prediction of the
median straightness index were the intranetwork ventral attention network connection (VAN x VAN) and
the salience — dorsal attention network connection (SAL x DAN). (D) The network most frequently utilized
for prediction of the median actual — optimal distance ratio was the frontoparietal — subcortical (FP x
SubCort) network connection. (E) There was a positive correlation between the VAN x VAN connection
and median route straightness. (F) There was a positive correlation between the SAL x DAN connection
and median route straightness. (G) There was a positive correlation between the FP x SubCort connection
and the median actual — optimal distance ratio
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