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Abstract
Aims The process of karst rocky desertification has been closely related to improper land use in southwest China. Now this habitat is the subject of an
important ecological restoration project. However, the changes in soil properties and microbial characteristics in response to this vegetation restoration remain
poorly understood.

Methods We investigated four vegetation types, including dragon fruit, Chinese pepper, walnut teak, with corn as a control, in southwest China, in 2019. We
measured the impacts of these vegetation types on soil properties and microbial biomass, enzyme activity, and microbial community composition (using high-
throughput sequencing technology).

Results The different vegetation types had significantly different impacts on soil exchangeable Ca2+, soil organic carbon and available nutrients. The
vegetation types also significantly affected microbial biomass. Soil enzyme activity, including b-1,4-glucosidase, b-1,4-N-acetylglucosaminidase, alkaline
phosphatase, and catalase, were significantly different among vegetation types. All vegetation types were dominated by the bacterial phyla Acidobacteria,
Proteobacteria, and Actinobacteria and the fungal phylum Ascomycota, except for corn which was dominated by the fungal phylum Mucoromycota. Non-
metric multidimensional scaling (NMDS) showed that the vegetation type exhibited different microbial b-diversity, especially in winter. The vegetation type,
season, and soil properties collectively explained 46% and 59% of soil bacterial and fungal community composition, respectively. The bacterial-fungal
interactions under the six vegetation types were distinctly different between summer and winter.

Conclusions Compared with traditional corn, the restoration of natural vegetation partially reversed KRD by improving soil properties, increasing microbial
biomass, and differentiating the microbial community structures in the different vegetation types.

1. Introduction
Surface and near-surface karst outcrops occupy 20% of the world’s ice-free dry land (Ford and Williams 2013). Karst areas are extremely valuable resources
and host a rich variety of plants and animals (Gutiérrez et al. 2014), supply water to 25% of the planet’s population (Ford and Williams 2013) and are closely
associated with rural poverty (Wang et al. 2019). However, karst rocky desertification (KRD) with degradation of soil ecosystems and plant communities has
occurred in many countries and regions (Jiang et al. 2014). The exposed karst area in southwest China is one of the world's three largest continuous areas of
carbonate rocks (Yuan 2008). It provides a variety of unique ecological niche and is one of the world’s 34 biodiversity hotspots (Myers et al. 2000). However, it
possesses 10 million ha of KRD due to improper land use (National Forestry and Grassland Administration of China 2018; Jiang et al. 2014). The process of
KRD is positively related to vegetation degradation from secondary forest to sparse shrub and grassland, but this degradation could be partly reversed by
ecological restoration (Liu et al. 2009). The Chinese "14th Five-Year Plan" (2021–2025) proposes promotion of a comprehensive and scientific management
plan to tackle KRD. The process of halting KRD had previously involved ecological restoration techniques to restore degraded ecosystems (Yuan 2008).

Soil microorganisms are the key drivers of biogeochemical processes in the atmosphere, hydrosphere, lithosphere, and biosphere (Bardgett et al. 2008; Chen et
al. 2018; Eugene 2011). Using 16S rRNA amplicon metagenomics, Avitia et al. (2021) showed that the composition of the soil microbial community changed
when grasslands transitioned to woody plant cover. Zhao et al. (2018) found that areas afforested with Robinia pseudoacacia over a 42, 27 and 17 year
chronosequence increased their microbial diversity and altered community structure compared to farmland. In non-karst ecosystems, microbial community
structures and activities are also affected by climate (temperature and precipitation) (Shi et al. 2020; Zhou et al. 2016), land use (Tian et al. 2017), fertilization
(Zhao et al. 2020), gradient (Shen et al. 2020), elevated atmospheric CO2 (Fang et al. 2015), organic input (Sun et al. 2020; Zhou et al. 2016), and invasive
plant species (Wang et al. 2017). Alterations in microbial community structures corresponded with changes in the microbial substrate due to numerous
environmental factors, especially to the fraction of soil organic carbon (SOC) (Zhao et al. 2018).

The microbial communities and activity in karst ecosystems are also sensitive to changes in environmental factors (Chen et al. 2019; Tang et al. 2019). Using
ecoenzymatic stoichiometry methodology, Chen et al. (2019) showed that the soil microbes in karst ecosystems are more limited by carbon (C) and
phosphorus (P), than by nitrogen (N) levels, compared with non-karst ecosystems. Furthermore, Tang et al. (2019) found that six bacterial groups were
significantly correlated with soil Ca2+ and available P, suggesting a Ca2+-driven bacterial response mechanism as KRD progressed. Karst rocky desertification
reduces the amount of SOC, resulting in a decrease in soil microbial biomass (Li et al. 2013). Zhu et al. (2012) showed that bacterial diversity, fungal diversity,
and metabolic diversity were significantly higher in shrublands, secondary forests, and primary forests than in farmlands and grasslands, while the fungal
diversity of primary forests was significantly lower than in shrublands and secondary forests. Restoration measures using the tree species Toona sinensis,
hybrid elephant grass Pennisetum spp., and a mixture of Zenia insignis and hybrid elephant grass, effectively improved vegetation structure and coverage,
and partially restored microbial abundance (Li et al. 2018a). Li et al. (2018b) investigated N functional genes in soil profiles as vegetation recovery progressed
and found that active N-acquisition increased as the vegetation recovered. Vegetation restoration increased soil enzyme activity and microbial biomass,
before fungi gradually took over as the major decomposers (Hu et al. 2016). Therefore, both KRD and vegetation restoration directly and indirectly affect soil
enzyme activity and microbial communities through changes in soil properties.

Due to environmental heterogeneity and discontinuous soil distribution, more articles on the soil microorganisms of non-karst habitats have been published
than on the karst ecosystem in China. However, recently more attention has been paid to the eco-environmental issues in the karst ecosystem, especially
habitat fragility, the process of KRD, ecological restoration, and ecosystem services. In this study, we investigated the impacts of vegetation restoration using
four economically important plants on soil properties, enzyme activity, and microbial biomass and community structure. We aimed to: (1) estimate the effect
of vegetation type and season on soil physico-chemical properties; (2) investigate the responses of microbial biomass and enzyme activity to vegetation type
and season; and (3) clarify how the vegetation type and season affect soil enzymes, microbial biomass, diversity, and community structure.
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2. Materials And Methods

2.1 Study site
The study site is located within the Guanling-Zhenfeng demonstration area for the reduction and control of karst rocky desertification, Guizhou Province, China
(25°39'13" ~ 25°41'00" N, 105°36'30" ~ 105°46'30" E). The site is characterized by a humid subtropical monsoon climate with a mean annual temperature of
18.4°C and a mean annual precipitation of 1100 mm, 83% of which falls from May to October. The lithology is dolomitic limestone of the Middle Triassic
system, and the soil type is calcareous. This site suffers from serious soil erosion due to anthropogenic disturbance, especially related to cultivation, which
has led to KRD, with a rock exposure rate of 70% per year (Li et al. 2020) and a thin, discontinuous soil layer. The native forest cover has diminished (Cheng et
al. 2020) and some economically important revegetation has now been carried out to reverse the effects of KRD, including the planting of dragon fruit
(Hylocereus undatus), Chinese pepper (Zanthoxylum bungeanum), walnut (Carya cathayensis), teak (Tectona grandis), honeysuckle (Lonicera japonica), and
paper mulberry (Broussonetia papyrifera).

2.2 Study design and field sampling
This study sampled soils underneath dragon fruit (DF), walnut (WN), teak (TW), and Chinese pepper growing in depressions (CPD) and on sloping sites (CPS)
(Fig. 1). Traditionally farmed corn (Zea mays) (CN) growing on a nearby terraced slope served as a comparison. Detailed information on the six sample sites
is shown in Table 1. Within each site, six plots were selected with two plots each on the upper, middle, and lower slopes. The upper, middle, and lower slope
plots were 10 m apart within a site for the DF, TW and CN, and 5 m apart for the WN, and CPD and CPS. Five soil samples were collected per plot at a depth of
20 cm, along an S-shaped transect, in June and November 2019, and mixed to form one composite sample.

Table 1
Description of six vegetation types in the karst ecosystems.

Vegetation type Location Elevation
(m)

Slope angle
(°)

Management practice

Dragon fruit 25°40'26"
N

105°39'51"
E

606~630 14 (terraced
slope)

For each dragon fruit, fertilization with 2.5 kg cow dung compost in January and 0.5 kg
compound fertilizer in July in each year, biomass harvest.

Chinese pepper in
depression

25°39'40"
N

105°39'4"E

704 0
(depression)

Fertilization with compound fertilizer (N:P:K= 15:8:12) in February, May and July in each
year, no cultivation and biomass harvest.

Corn 25°40'26"
N

105°39'57"
E

620~638 15 (terraced
slope)

Cultivation and fertilization with urea in April and June in each year, biomass harvest.

Walnut 25°39'30"
N

105°38'33"
E

820~826 13 (terraced
slope)

No human disturbance of cultivation, fertilization, biomass discard.

Teakwood 25°40'24"
N

105°39'56"
E

599~615 12 (terraced
slope)

No human disturbance of cultivation and fertilization, biomass discard.

Chinese pepper
on slope

25°39'27"
N

105°38'35"
E

828~840 30 (terraced
slope)

Sloping land, fertilization with compound fertilizer (N:P:K= 15:8:12) in February, May and
July in each year, no cultivation and biomass discard.

2.3 Analysis of soil physico-chemical properties
The following soil physico-chemical properties were determined using the methods of Bao (2000): soil moisture was measured using an oven-drying method;
soil pH was measured in a 1:2.5 (soil:water) mixture using the potentiometric method; exchangeable Ca2+ (Ca2+) was measured using the ammonium acetate
extraction-atomic absorption spectrophotometer method; SOC was measured using the vitriol acid-potassium dichromate oxidation method; total nitrogen
(TN) was measured using the Kjeldahl method; soil NH4

+-N and NO3
−-N were measured using a continuous flow autoanalyzer following extraction with 2 M

KCl with a 1:5 ratio; available phosphorus (AP) was measured using the NaHCO3 method; and available potassium (AK) was analyzed using the flame
photometer method (Cui et al. 2018).

2.4 Microbial biomass measurement and enzyme activity assay
Microbial biomass carbon (MBC) and nitrogen (MBN) levels were determined using the chloroform fumigation-extraction method (Joergensen and Brookes
2005). Fresh soil from each composite was sieved (2 mm sieve) and six 25 g subsamples were incubated in the dark at 25 °C for 7 d. Three of these
subsamples were fumigating with ethanol-free chloroform and incubated in the dark at 25 °C for 24 h. The remaining three subsamples were mixed with 100
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ml 0.5 M K2SO4 in a rotatory shaker (200 rpm). The fumigated subsamples were extracted using a similar method to the unfumigated subsamples. All
extracts were filtered and analyzed using the potassium dichromate-dilution heat colorimetric method. Extracellular enzyme activity, including C-acquiring
β-1,4-glucosidase (ΒG), N-acquiring β-1,4-N-acetylglucosaminidase (NAG), and organic P-acquiring alkaline phosphatase (AKP), were determined by micro-
plate enzyme assay (Cui et al. 2018). Enzyme activity was expressed as nanomoles of substrate released per hour per gram of soil organic matter (nmol g
SOM−1 h−1). Catalase (CAT) activity was determined using the KMnO4 titration method (Guan 1986).

2.5 Determination of microbial community composition
DNA extraction: all soil samples collected were processed individually. The total DNA was extracted using a MoBioPowerSoilTM DNA Isolation Kit (MO BIO
Laboratories Inc., Carlsbad, CA, USA), according to the manufacturer’s instructions, and DNA integrity was determined by electrophoresis on a 1% agarose gel.
The DNA was quantified using a Qubit2.0 DNA Kit (ThermoFisher Scientific, Waltham, MA USA), according to the manufacturer’s instructions.

PCR amplification and Illumina MiSeq sequencing: microbial structure and diversity were analyzed using high-throughput sequencing (Illumina HiSeq 2500,
BioMarkerTechnologies Co., Ltd., Beijing, China). DNA quality and quantity were assessed in the ranges 260 nm/280 nm and 260 nm/230 nm. Then, DNA was
stored at -80°C until further processing. The bacterial community composition was assessed by sequencing the V3-V4 region of the 16S rRNA gene using the
PCR primers 5'-ACTCCTACGGGAGGCAGCA-3' and 5'-GGACTACHVGGGTWTCTAAT-3' (Walters et al., 2016). The fungal internal transcribed spacers (ITS) of the
18S rRNA gene were amplified using the primer sets ITS1 5'-CTTGGTCATTTAGAGGAAGTAA-3' and ITS2 5'- GCTGCGTTCTTCATCGATGC-3' (Mueller et al.,
2014). The amplification products from the first PCR step were purified through VAHTSTM DNA Clean Beads for the second round of PCR. Finally, all PCR
products were quantified using a Qubit2.0 DNA Kit. The amplicons were sequenced using an Illumina Hiseq 2500. The sequences were initially processed
using Prinseq (PRINSEQlite 0.19.5 – http://prinseq.sourceforge.net/) to remove low-quality data and improve the syncretic rates of the subsequent sequence.
Split sequences for each sample were merged using FLASH V1.2.7 (Magoc and Salzberg, 2011). UCLUST (version 1.2.22) was used with a cut-off of 97% to
cluster the operational taxonomic units (OTUs), and the taxonomic classification was performed using an RDP Classifier (Version 2.2, based on Bergey’s
taxonomy), with the classification threshold set at 0.8. The sequences were taxonomically identified using a BLASTn search of a curated NCBI database.

2.6 Statistical analyses
All statistical analyses of soil properties and Pearson’s correlations were analyzed using the SPSS 20.0 program (SPSS Inc., USA). The significance between
vegetation types and seasons was assigned at P < 0.05 using two-way analyses of variance (ANOVA) with Tukey’s test. The bacterial and fungal community
compositions (β-diversity) were assessed using non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances. Permutational multivariate
analysis of variance (PERMANOVA) was performed to investigate the effects of vegetation type on the compositions of the bacterial and fungal communities.
NMDS and PERMANOVA were performed using the vegan package in R software (Team 2021). Microbial network analysis at the bacterial and fungal OUT
level was performed using the MENA platform (http://ieg4.rccc.ou.edu/mena) based on Spearman correlation scores (Spearman’s r > 0.7 or r < -0.7; P < 0.01)
(Deng et al. 2012). The networks were visualized using the Gephi program, version 0.9.2 (Bastian et al. 2009). We used a structural equation model (SEM) to
investigate the direct and indirect influences of vegetation type, season, and soil properties on soil enzyme activity, microbial biomass, Shannon diversity
index, and community composition. We constructed a priori SEM based on current knowledge, model modification indices, and stepwise removal of non-
significant relationships (de Vries and Bardgett 2016). We used a minimum set of parameters to assess model fit using the multigroup modeling approach
with the R package lavaan (Rosseel 2012), including soil properties, enzyme activity, and microbial biomass. We used the first two NMDS axes as proxies for
bacterial and fungal community composition. Pearson’s correlation heatmaps were constructed using BMKCloud (www.biocloud.net).

3. Results

3.1 Soil physico-chemical properties
The results of the two-way ANOVA showed that the soil properties were significantly different between all vegetation types (Table 2). In both summer and
winter, the soil moisture content was between 21.14% – 31.84% under all vegetation types. According to the average pH in the two seasons, the vegetation
types were ranked: WN (7.92) > CPD (7.85) > CPS (7.66) > DF (7.64) > CN (7.53) > TW (7.35). In summer, the soil exchangeable Ca2+ content was highest under
CPD and lowest under CN, while in winter it was highest under DF and lowest under CPS. With respect to SOC and TN contents, the vegetation types followed
the order: CPS > WN > CPD > TW > DF > CN. In summer and winter, according to the soil NO3

−N content, the vegetation types ranked in the order: CN > DF >

CPD > CPS > WN > TW. However, regarding the soil NH4
+-N content, the order was WN or CPS > CN, DF > TW or CPD. In summer and winter, the AP content

under CPD was 1.4–8.6 times greater than under the other vegetation types. For all vegetation types, the range of soil AK content was lower than that for AP
content. Taking the average value, the soil AK content was the highest at 139 mg/kg under DF and lowest at 74 mg/kg under CPS.
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Table 2
Soil physico-chemical properties of six vegetation types in 2019

Vegetation
type

Soil moisture

(%)

pH Ca2+

(g/kg)

SOC

(g/kg)

TN

(g/kg)

NH4
+-N

(mg/kg)

NO3
−-N

(mg/kg)

AP

(mg/kg)

AK

(mg/kg)

Summer                  

DF 25.27±0.68b 7.68±0.03bc 2.30±0.11ab 11.11±0.82d 1.06±0.10d 0.22±0.03a 4.76±0.98ab 2.12±0.32b 112.32±3.74a

CPD 27.77±0.84ab 7.86±0.05ab 2.62±0.08a 24.33±0.34c 2.20±0.03c 0.19±0.02a 3.48±1.00abc 11.12±1.17a 109.15±6.86a

CN 23.60±1.68b 7.59±0.08c 2.11±0.09b 8.85±0.30d 0.80±0.03d 0.28±0.09a 7.28±1.40a 2.25±0.75b 108.74±4.19a

WN 27.41±0.77ab 7.95±0.02a 2.32±0.09ab 29.02±0.94b 2.65±0.07b 0.41±0.07a 2.12±0.70bc 2.52±0.62b 105.07±11.65

TW 24.35±2.37b 7.48±0.07c 2.38±0.20ab 11.66±0.16d 1.05±0.02d 0.20±0.08a 0.62±0.07c 1.20±0.23b 88.03±6.46ab

CPS 31.84±1.48a 7.67±0.06bc 2.12±0.04ab 37.49±2.14a 3.36±0.21a 0.29±0.09a 2.19±0.79bc 2.62±0.89b 73.09±9.81b

Winter                  

DF 25.5±0.96ab 7.60±0.05ab 2.80±0.10a 11.41±0.55c 1.41±0.15b 2.56±0.07a 5.83±0.77b 3.02±0.35b 166.35±7.79a

CPD 29.68±1.26a 7.85±0.03a 2.32±0.12ab 25.57±0.86b 2.97±0.16a 2.55±0.07a 4.59±0.41bc 7.25±0.96a 146.85±9.6ab

CN 27.83±1.65a 7.47±0.27ab 2.48±0.16a 10.60±0.50c 1.30±0.03b 2.67±0.15a 8.14±0.28a 2.43±0.37b 143.22±5.76a

WN 29.95±1.09a 7.9±0.00a 1.62±0.14cd 30.22±1.53b 3.39±0.08a 2.70±0.10a 2.75±0.10d 2.48±0.26b 96.97±9.13cd

TW 21.14±2.10b 7.23±0.13b 1.88±0.10bc 16.33±2.25c 1.54±0.20b 2.40±0.05a 2.44±0.01d 1.70±0.06b 122.99±13.89

CPS 29.62±1.12a 7.66±0.08ab 1.30±0.10d 39.28±1.64a 3.96±0.61a 2.79±0.15a 3.42±0.30cd 3.03±0.50b 75.60±5.86d

Two-way
ANOVA

                 

Vegetation
type

ns *** *** *** *** * *** *** ***

Season *** ns *** * *** *** ** ns ***

Vegetation
type ×
Season

ns ns *** ns ns ns ns ** **

DF dragon fruit, CPD Chinese pepper in depression, CN corn, WN walnut, TW teakwood, CPS Chinese pepper on slope, Ca2+ exchangeable Ca2+, SOC soil organ
carbon, TN total nitrogen, AP available phosphorus, AK available potassium. Values (Means ± standard error) followed by the different letter are significantly
different within columns in the same season (P < 0.05). *, **, and *** indicate significant differences at P < 0.05, P < 0.01, and P < 0.001, respectively. ns mean
no significance.

Except for soil pH and AP content, soil properties changed significantly with the seasons (Table 2). Under all vegetation types, the soil pH declined by 0.02–
3.37% from summer to winter. Soil Ca2+ content increased by 22% and 17% under DF and CN, respectively, but decreased by 11% – 39% under the other
vegetation types. The contents of soil SOC and TN both increased under all vegetation types, notably by 20% for SOC and 63% for TN under CN. Similarly,
under TW the soil NO3-N and NH4

+-N contents increased by 12% – 296% and 559% – 1217%, respectively. From summer to winter, the soil AP content
increased by 43%, 42%, and 16% under DF, TW, and CPS, respectively, and decreased by 35% under CPS. Meanwhile, the soil AK content increased by 32–48%
under CN, CPD and CPS, TW, and DF, and decreased by 8% under WN. The interactions between vegetation type and season were significant for soil Ca2+, AP,
and AK contents, but were not significant for the other soil properties.

3.2 Soil microbial biomass and enzyme activity
Vegetation type had a very significant impact on soil MBC and MBN (Table 3). The soil MBC and MBN contents under CPD and CPS, and WN were higher than
those under TW, DF, and CN. In summer, the soil MBC under CPS was the highest, and 2.77 times the lowest value under DF. Meanwhile, soil MBN under WN
was the highest and 1.3 times greater than under TW. Compared to summer, the soil MBC in winter was significantly lower by 23–26% under all vegetation
types except for TW, which increased by 0.72%. Meanwhile, soil MBN decreased significantly by 62% – 83% under all vegetation types. The ratios of
MBC/SOC, MBN/TN, and MBC/MBN showed significant differences among the six vegetation types and the two seasons (P < 0.01, Table S1). The MBN/TN
ratio was also significantly affected by the interaction of vegetation type and season (P < 0.001, Table S1).
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Table 3
Soil microbial biomass and enzyme activities of six vegetation types in 2019

Vegetation type MBC

(mg/kg)

MBN

(mg/kg)

ΒG

(nmol/g/h)

NAG

(nmol/g/h)

AKP

(nmol/g/h)

CAT

(ml/g/30min)

Summer            

DF 130.69±6.01c 50.7±7.98b 309.76±6.27b 266.36±11.61b 346.38±9.19ab 11.34±0.01a

CPD 266.7±17.66b 89.16±3.05a 98.90±12.48d 53.72±7.46c 123.73±9.23c 11.27±0.01a

CN 132.12±8.92c 55.14±2.27b 413.38±11.99a 344.04±36.10ab 521.41±76.02a 11.35±0.01a

WN 356.7±21.15a 93.33±6.15a 102.93±4.14cd 25.69±3.96c 278.28±21.00bc 11.21±0.02a

TW 162.83±12.36c 40.61±1.28b 355.40±24.6ab 406.38±40.33a 523.55±68.15a 11.38±0.01a

CPS 361.68±39.77a 79.29±6.2a 187.22±39.57c 122.70±36.95c 213.43±53.77bc 10.97±0.10b

Winter            

DF 99.75±15.47b 11.42±2.33bc 414.84±30.42a 1204.40±87.49a 1058.3±136.69ab 11.31±0.01a

CPD 203.99±4.41ab 29.92±2.65a 106.21±3.60c 463.37±47.29b 338.65±17.47c 11.28±0.01ab

CN 97.48±7.27b 9.27±0.4c 406.40±70.24a 1246.01±122.96a 1435.61±185.45a 11.30±0.00a

WN 275.05±15.75a 35.19±4.28a 81.39±10.75c 337.92±14.22b 300.49±15.21c 11.25±0.01c

TW 164±42.33ab 13.06±3.14bc 275.18±20.19ab 1286.76±99.89a 1418.18±147.96a 11.29±0.02ab

CPS 261.73±42.89a 23.04±3.75ab 173.79±23.03bc 495.47±174.82b 775.04±121.44bc 11.25±0.00c

Two-way ANOVA            

Vegetation type *** *** *** *** *** ***

Season *** *** ns *** *** ns

Vegetation type × Season ns ** ns *** *** ***

DF dragon fruit, CPD Chinese pepper in depression, CN corn, WN walnut, TW teakwood, CPS Chinese pepper on slope, MBC microbial biomass carbon, MBN
microbial biomass nitrogen, ΒG β-1,4-glucosidase, NAG β-1,4-N-acetylglucosaminidase, AKP alkaline phosphatase, CAT catalase. Values (Means ±
standard error) followed by the different letter are significantly different within columns in the same season (P < 0.05). ** and *** indicate significant
differences at P < 0.01 and P < 0.001. ns means no significance.

Vegetation type also significantly influenced enzyme activity, including ΒG, NAG, AKP, and CAT (Table 3). All of the enzyme activities under TW, CN, and DF
were generally higher than those under WN, and CPS and CPD. Regarding ΒG, the enzyme activity ranged from 80–415 nmol g−1 h−1 in both summer and
winter. Compared with summer, enzyme activity was significantly elevated in winter by 34% under DF, but declined by 21% and 23% under WN and TW,
respectively. NAG activity was elevated 2.2-, 2.6-, 3-, 3.5-, 7.6-, and 12-fold under TW, CN, CPS, DF, CPD, and WN, respectively. Under all vegetation types, AKP
activity was also significantly elevated by 8–263%. In both summer and winter, CAT activity under CPS was significantly lower than under all other vegetation
types.

3.3 Microbial community composition and network analysis
In summer, the microbial diversity indexes of bacteria and fungi, including ACE, Chao, and Shannon, showed no significant difference among all vegetation
types (Table 4). From summer to winter, the bacterial ACE index declined by 0.56% – 3.98% under all vegetation types except under DF, which increased by
0.65%. The bacterial Chao index increased under DF and CPS, but decreased under the other vegetation types. Under CPD, the bacterial Shannon index
significantly increased by 2.6%. For fungi, the Chao index increased by 14% and 12% under CPD and CPS, respectively, but decreased by 11% under CN. The
Shannon indexes increased significantly by 46% and 17% under WN and CPS, respectively, but decreased by 28%, 22%, and 17% under DF, CN, and CPD,
respectively.
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Table 4
The α-diversity index of microbial community of six vegetation types in 2019

Vegetation type Bacteria   Fungi

Ace Chao Shannon   Ace Chao Shannon

Summer              

DF 1114.32±14.86a 1125.5±12.35a 8.56±0.12a   489.02±37.71a 483.09±38.22a 4.76±0.40a

CPD 1110.54±8.98a 1133.42±12.62a 8.47±0.07a   501.01±47.95a 492.42±44.68a 5.16±0.77a

CN 1118.12±8.59a 1137.36±9.8a 8.45±0.08a   572.46±26.55a 542.96±29.65a 4.53±0.73a

WN 1124.32±14.97a 1137.6±15.38a 8.65±0.05a   461.52±24.54a 454.8±15.84a 3.08±0.49a

TW 1128.2±6.66a 1137.88±7.23a 8.43±0.15a   467.92±16.99a 477.19±15.43a 4.57±0.26a

CPS 1104.98±11.12a 1110.77±12.81a 8.25±0.23a   474.04±16.32a 441.45±9.25a 4.56±0.23a

Winter              

DF 1121.58±6.29a 1138.92±7.47a 8.59±0.10a   512.15±30.81a 487.43±16.75ab 3.45±0.52b

CPD 1091.79±12.12a 1108.68±14.56a 8.69±0.04a   594.51±46.16a 551.15±16.45a 4.29±0.41ab

CN 1103.7±15.66a 1115.04±18.61a 8.47±0.22a   564.59±27.12a 483.69±20.31ab 3.54±0.55b

WN 1101.36±10.29a 1115.06±9.95a 8.75±0.04a   500.23±21.11a 481.55±19.92ab 4.50±0.27ab

TW 1083.35±19.64a 1091.69±22.66a 8.33±0.16a   456.86±38.35a 457.24±31.26b 4.52±0.22ab

CPS 1098.78±13.12a 1112.91±13.96a 8.60±0.05a   500.79±21.07a 501.33±22.49ab 5.36±0.12a

Two-way ANOVA              

Vegetation type ns ns ns   ** ns ns

Season * * ns   ns ns ns

Vegetation type × Season ns ns ns   ns ns *

DF dragon fruit, CPD Chinese pepper in depression, CN corn, WN walnut, TW teakwood, CPS Chinese pepper on slope. Values (Means ± standard error)
followed by the different letter are significantly different within columns in the same season (P < 0.05). * and ** indicate significant differences at P < 0.05
and P < 0.01, respectively. ns means no significance.

At the bacterial phylum level, all vegetation types were dominated by Acidobacteria (35% relative abundance), Proteobacteria (25%), and Actinobacteria (15%)
(Fig. 2a). The relative abundance of Acidobacteria was highest under CPD (40%) and lowest under TW (29%). Under CN, the relative abundance of
Proteobacteria decreased from 31% in summer to 22% in winter, while that of Actinobacteria increased from 10–18% over the same period. The relative
abundance of Proteobacteria and Actinobacteria under WN showed the same trend as under CN. However, under CPD, the relative abundance of
Proteobacteria increased from 19–26%, accompanied by a decrease in Actinobacteria from 35–30%. At the fungal phylum level, the most abundant phylum
was Ascomycota under CPD and CPS, WN, and TW (average: 56%), while Mortierellomycota was most abundant under CN (38%) (Fig. 2b). From summer to
winter, the relative abundance of Ascomycota decreased from 67–36%, while that of Mortierellomycota increased from 6–53% under DF. The relative
abundance of Mortierellomycota was more than 33% under CN and CPD, but lower than 4% under TW and CPS.

For both bacteria and fungi, the vegetation type led to significant differences in community composition (Fig. 3, P < 0.001), and there was a little overlap
among the six vegetation types in summer (Fig. 3a and c). The bacterial and fungal community structures changed from summer (Fig. 3a and c) to winter
(Fig. 3b and d), and the tighter clustering can be seen in the bar plots in Fig. 3. Due to their greater artificial disturbance, the Bray-Curtis distance between DF
and CN was closer than among the other vegetation types, especially in winter (Fig. 3b and d). Meanwhile, the distance between CPD and CPS was greater
than that between WN and CPS due to locational differences in Chinese pepper planting. Therefore, the effect of vegetation type on the composition of the
bacterial and fungal communities was greater in winter than in summer, based on the larger PERMANOVA R2 values (Fig. 3).

We then performed network analyses to assess the impact of vegetation type and season on microbial interactions. The soil microbial network patterns
differed among the six vegetation types and showed clear changes from summer to winter (Fig. 4a-l, Table S4). The microbial taxa showed higher network
connectivity (i.e. network degree) under CN and CPD (Fig. 4c-f) than in other vegetation types. Bacterial taxa had higher network degrees than fungal taxa,
especially under CN and CPD in winter (Fig. 4d, f, Table S4). In summer and winter, the average number of nodes under CN (641) was lower than under the
other vegetation types (DF 764, CPD 754, WN 746, CPS 734, TW 660), while the average number of links under CN (2333) was lower than under CPD (2764),
but higher than under the other vegetation types (Fig. 4, Table S4). The average path distances under CN (5.917) and CPD (5.809) were lower than under the
other vegetation types, with values > 7 (Table S4). Moreover, the proportion of negative network edges (mainly representing bacteria-fungi interkingdom
correlations) sharply declined from 39.2–8.6% under CPD (Fig. 4c, d) and from 40.3–8.8% under CN (Fig. 4e, f) from summer to winter, respectively.

3.4 Structural equation model (SEM) and Pearson’s correlation heatmap
The SEM model was a reasonable fit to our data (Fig. 5). The model showed that 63% and 84% of the variance in the first and second soil fertility NMDS axes
was explained by vegetation type, season, and soil moisture (Fig. 5). Soil moisture had significant and positive correlations with the SOC and TN levels (0.555
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and 0.598, P < 0.01) (Table S2). The model explained 83% and 71% of the variance in the first and second soil enzyme activity NMDS axes. Season, soil
fertility, soil moisture, soil pH and Ca2+, and microbial biomass directly affected soil enzyme activity. The effects of season and soil Ca2+ were positive,
whereas those of soil fertility, moisture, and soil pH had a negative effect on enzyme activity, which was also supported by the Pearson’s correlation (Table
S2). The model explained 56% and 75% of the variance of MBC and MBN, respectively, which were directed influenced by season, soil pH, and fertility.
Regarding soil fertility, the SOC and TN showed significant correlations with MBC (0.82 and 0.717, P < 0.01, respectively) (Table S2). Vegetation type exerted
only an indirect effect on soil microbial biomass and was mediated by soil fertility (NMDS1 0.511 and NMDS2 0.392, P < 0.001) (Fig. 5).

Thirty-five percent of the variance in the bacterial Shannon diversity index was explained by soil pH alone (Fig. 5a, path coefficient = 0.661***). The SEM
explained 46% and 58% of the variance in the first and second bacterial community NMDS axes. Soil pH and fertility showed direct positive effects, whereas
vegetation type and soil Ca2+ showed direct negative effects on bacterial community NMDS1. Vegetation type directly and positively influenced bacterial
community NMDS2. Due to direct and indirect effects mediated by soil fertility, vegetation type showed a stronger effect on bacterial community composition
than soil pH and Ca2+. The fungal Shannon diversity index was directly and negatively influenced by MBN (-0.659) and soil fertility NMDS2 (0.603) (Fig. 5b).
The SEM explained 59% and 42% of the variance of the first and second fungal community NMDS axes. Vegetation type and soil Ca2+ showed positive effects
while season and soil fertility negatively affected fungal community composition.

For bacterial phyla, the SOC and TN contents showed significant and positive correlations with the abundances of Entotheonellaeota, Armatimonadetes, and
Actinobacteria (P < 0.05), but were negatively correlated with the abundances of Nitrospirae and Proteobacteria (Fig. 6a, P < 0.05). The soil Ca2+, AP, AK, and
NO3

−-N contents were positively correlated with Nitrospirae and Gemmatimonadetes: in particular, the NO3
−-N content was strongly significantly correlated

with them (r = 0.69, P < 0.001). Meanwhile, the soil Ca2+ content was negatively correlated with the abundances of Actinobacteria, Entotheonellaeota, and
Firmicutes (r < -0.4, P < 0.001). The soil NH4

+-N content, and the AKP and NAG enzyme activities, were positively correlated with the abundance of
Actinobacteria and Chloroflexi, but negatively correlated with the abundance of Proteobacteria. CAT enzyme activity was negatively correlated with the
abundance of Rokubacteria and Verrucomicrobia, while the activity of glucosidase was negatively correlated with the abundance of Entotheonellaeota. For the
fungal phyla, the soil Ca2+, AP, AK, and NO3

−-N contents were positively correlated with the abundance of Mortierellomycota (Fig. 6b, P < 0.001). However, the

soil Ca2+, AK, and NO3
−-N contents showed significant and negative correlations with the abundance of Ascomycota (P < 0.01). The soil AP content was

positively correlated with the abundances of Chytridiomycota and Zoopagomycota. Glycosidase and NAG activities were positively correlated with the
abundance of Glomeromycota.

4. Discussion

4.1 Effects of vegetation type and season on soil physico-chemical properties
Our results showed that some vegetation types, including CPS, CPD, and WN, could alter the physico-chemical properties of soils (Table 2). In both summer
and winter, the higher water storage capacities under these vegetation types could prevent soil erosion and desertification (Jiang et al. 2014). The SOC is a
perfect proxy for judging improvements in soil quality due to vegetation restoration (Lal 2004). In this study, the SOC was higher under CPS, WN, and CPD,
unlike the Ca2+ content which did not follow this trend; correlation between SOC and Ca2+ was negative and not significant. These results do not agree with
other studies, which indicate that higher Ca2+ is responsible for SOC stability in karst areas (Li et al. 2018a; Li et al. 2018b). This inconsistency might be
explained by differences in management practices, for example the removal of litter and biomass from soils under DF and CN. However, while there was no
human intervention in the TW areas, severe water loss and soil erosion under TW did lead to lower SOC contents compared with CPS, WN, and CPD. The
significant differences in SOC content among the vegetation types was supported by Liu et al. (2015), who reported that SOC accumulation significantly
increased with vegetation succession; i.e., from 29.1 g kg−1 in grassland to 73.92 g kg−1 in primary forest. Furthermore, Xiao et al. (2017) showed that
plantations of economic tree species are probably effective in promoting restoration of soil C sequestration. Therefore, improved C sequestration due to
reductions in the progress of KRD can turn karst regions into considerable C sinks (Tong et al. 2018). In this study, the Pearson’s correlation between the SOC
and TN contents was significantly positive (r = 0.904, P < 0.01). Insufficient availability of soil N can easily lead to afforestation failures (Li et al. 2018b). Our
results showed that the NH4

+-N content was more affected by seasonal effects than vegetation type, while the higher observed NO3
−-N values under CN and

DF were due to the application of organic and mineral fertilizers. In terrestrial ecosystems, the biogeochemical C, N, and P cycles relate to a combination of
primary production, respiration, and decomposition (Delgado-Baquerizo et al. 2013). In this study, the higher AP content under CPD was mainly due to
compound fertilizer inputs. It is generally believed that karst farmland in southwest China is highly vulnerable to P loss, and Li et al. (2018b) suggested that
optimized combinations of applied inorganic/organic fertilizers could promote P availability. In sum, our results indicated that, compared with CN, the soil
properties had been improved under CPS, WN, and CPD but deteriorated under TW. Therefore, although a decrease in human disturbance improved soil
properties, some management practices (such as fertilization) could increase the soil nutrients available to economically valuable vegetation.

4.2 Effects of vegetation type and season on soil microbial biomass and enzyme activity
In this study, the contents of soil MBC and MBN were significantly impacted by the vegetation type and season (Table 3). The MBC contents showed a similar
trend to SOC, and those under WN, CPS, and CPD were higher than the other three vegetation types. The MBC showed a positive and significant correlation
with SOC (r = 0.820, P < 0.01, Table S2), a feature also observed by Feng et al. (2016). Liu et al. (2015) studied four vegetation types and found that microbial
biomass had a predominant effect on SOC. The MBC/SOC ratio (or MBN/TN) is generally used as an index of substrate quality and the proportion of C (or N)
immobilized by microbes (Wen et al. 2014). Therefore, the higher ratios of MBC/SOC (or MBN/TN) observed in this study under CN implied higher
mineralization rates of organic matter by the microbial community and higher nutrient utilization rates (Table S1). The MBC/MBN ratio represents the
structure and state of a soil microbial community (Joergensen and Brookes 2005). It is widely accepted that the C/N ratio in microbial biomass is about 6.5
for bacteria and 5–17 for fungi (Cleveland and Liptzin 2007). Our results showed that the dominant bacterial effect under CN is greater than under the other
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vegetation types in summer. This study also indicated that the soil microbial community is dominated by bacteria in summer (MBC/MBN < 6.5) but by fungi in
winter (MBC/MBN > 6.5) (Table S1). Our results also showed that organic inputs, especially high quality organic matter, could favor vegetation types which
restore soil microbial biomass.

Soil enzyme activity plays a key role in mineralization and transformation of organic matter, involving C, N, and P cycling in soil ecosystems (Chen et al. 2020;
Kumar and Maiti 2011; Liu et al. 2021). In this study, the activities of BG, NAG, AKP, and CAT showed significant differences among the vegetation types (P <
0.001, Table 3). The NAG and AKP activities also changed significantly from summer to winter and were significantly affected by the interactions between
vegetation type and season (P < 0.001). Compared with WN, CPD, and CPS, the activities of BG, NAG, and AKP were higher under CN, TW, and DF and had
lower SOC contents. This can be explained by the fact that enzyme activity is strongly affected by the root system when vegetation is intensively planted. Cui
et al. (2018) showed that inconsistencies between variations in microbial nutrient ratios and ecoenzyme ratios could be explained by the impacts of root
systems. Bell et al. (2014) indicated that the roots of gramineous plants produce more extracellular enzymes to meet their nutrient requirements. Moreover,
ecoenzymes produced by roots can enter the soil after root death (Rillig et al. 2007). In this study, soil enzyme activity was directly affected by MBN (P < 0.01,
Fig. 5). However, NAG activity showed a negative correlation with MBN (P < 0.01, Table S2), which was attributed to the fact that NAG decomposes microbial
residues to provide available N for soil microorganism and plant growth (Liu et al. 2021). We found that the increases in NAG and AKP activity were higher in
winter than in summer, perhaps because of the higher SOC content (Kumar and Maiti 2011). Overall, the enzyme activity responses implied that vegetation
restoration could result in different soil nutrient cycles among the six vegetation types.

4.3 Effects of vegetation type and season on the microbial community composition and
network
The numbers of bacterial and fungal OTUs differed, but not significantly so, among all vegetation types (Table S3). However, the distribution of bacterial and
fungal phyla was clearly different between vegetation types (Fig. 2). Our results showed that Acidobacteria, Proteobacteria and Actinobacteria were dominated
under all vegetation types in both seasons (Fig. 2a), as reported by Liao et al. (2018). Liao et al. (2018) also found that some members of the Actinobacteria
(e.g., Solirubrobacteraceae) significantly increased their relative abundances following land-use conversion in degraded karst ecosystems. The distribution of
bacterial phyla was also affected by the karst terrain. For example, the relative abundance of Acidobacteria on ridges and in depressions were higher than on
slopes, while the relative abundance of Proteobacteria showed the opposite trend (Wang et al. 2018). Regarding the fungi, the most abundant phylum under
corn was Mortierellomycota, while Ascomycota dominated under the other vegetation types (Fig. 2b). Vegetation restoration therefore clearly altered the
relative composition of the soil microbiota, compared with traditional CN planting.

Compared with traditional CN planting, other vegetation types, including WN, CPD, and CPS, significantly increased microbial biomass (Table 2) while showing
a similar α-diversity (Table 4). The bacterial Shannon diversity index under WN was higher than under the other vegetation types, perhaps due to lower
disturbance and no soil erosion. Liao et al. (2018) implied that the soil bacterial diversity remained unchanged after a 20-year conversion of cropland to
Chinese prickly ash orchards. Zhao et al. (2014) studied a progressive succession of secondary vegetation and found that microbial biomass and bacterial
biomass were higher during the shrubland phase than in the forest phase due to changes in soil conditions (i.e., reduced pH) and resource availability (i.e.,
reduced SOC). Hu et al. (2016a) showed that planting of Pepino (Solanum muricatum) increased the diversity and abundance of bacterial communities in
karst areas. In this study, the microbial diversity was not only affected by vegetation type, but also by substrate and environmental factors.

The vegetation type affected the microbial community composition in both summer and winter (Fig. 3). Avitia et al. (2021) also reported that differences in
microbial β-diversity were mainly driven by vegetation type in Arizona. Zheng et al. (2021) found that forest type drove latitudinal differences in AM fungal β-
diversity. Regardless of vegetation type, we observed greater variation and more overlap of microbial community composition in summer than in winter
(Fig. 3). This difference was perhaps due to the higher temperatures in summer (Fig. 3a and c). This result was consistent with the findings of Shen et al.
(2021), which indicated that differences in microbial community composition were greater under warm than cool conditions. Similarly, our results implied that
higher summer temperatures increase microbial richness and β-diversity (Table 3 and Fig. 5). In spite of the vegetation species being the same, soils under
CPS showed greater bacterial and fungal compositional dissimilarities compared with CPD, than did CPS compared with WN (Fig. 3). This difference appears
to be due to location: WN and CPS were found on slopes at similar elevation, while CPD growing in depressions occupied lower elevations. Therefore, in this
study in karst areas, microbial β-diversity is affected by spatial heterogeneity, including topography and elevation, as well as by vegetation type and season, a
finding supported by other studies (Berthrong et al. 2013; Shen et al. 2021) and which requires further research.

Microbial cooperative networks are critical for plant nutrient availability, growth, and colonization (Tang et al. 2019). Tang et al. (2019) inferred that increases
in soil Ca2+ content perhaps decrease microbial communication and motility, which can impair the microbial networks in karst areas. The present study of
karst rocky desertification areas indicated that bacterial-fungal interaction patterns were distinctly different between the six vegetation types in both summer
and winter (Fig. 4). The bacterial taxa present showed higher α-diversity (Table 4) and network connectivity (Fig. 4) than the fungal taxa, according to the
dominant vegetation type (Xiong et al. 2021). Our results indicated that the proportion of negative network edges decreased from summer to winter under CPD
(Fig. 4c, d) and CN (Fig. 4e,f), primarily due to changes in soil fertility (Table 2) and reduced competition between bacteria and fungi (Xiong et al. 2021).

4.5 Structural equation model and Pearson’s correlation under six vegetation types
In karst areas, the microbial community composition is affected by changes in soil properties following vegetation restoration (Li et al. 2018b). Our results
showed that some soil properties were significantly correlated with microbial community characteristics (Fig. 6). We found that SOC was positively and
significantly correlated with TN level (Table S2), and that the higher SOC and TN contents under WN, CPD, and CPS led to increased microbial biomass (Table
2 and 3). This effect was principally attributed to the coupling of the biogeochemical cycles of C, N, and P in terrestrial ecosystems (Delgado-Baquerizo et al.
2013). However, the higher SOC contents did not lead to higher F/B ratio as implied by other factors, such as root system changes, which may affect microbial
community structure (Li et al. 2018b). This study showed that the bacterial phyla Nitrospirae and Gemmatimonadetes were significantly correlated with NO3

−-
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N, AP, and AK levels. This result was supported by Wang et al. (2018), who found that variation in the abundance of Nitrospirae is affected by the soil N
content. Both N and P are limiting elements in karst areas (Zhang et al. 2015) and are the main factors affecting variations in N-cycling microorganisms (Li et
al. 2018c). In karst soils, the C and N contents significantly affected the phoD-harboring bacterial community structure under long-term fertilization (Chen et al.
2018). Therefore, vegetation restoration, including vegetation type and management practices, can alter the composition of microbial communities through
changes in soil properties.

In this study, our SEM showed that vegetation restoration and season directly and indirectly affect soil microbial biomass, diversity, and composition mainly
through alterations of plant type and soil properties (Fig. 5). Microbial characteristics can be directly affected by soil fertility, which was mainly explained by
season and by vegetation type and its cultivation and fertilization (Table 2, Fig. 6 and 5). Soil nutrient availability (e.g., AK, AP, and AN) indirectly affects soil
microbial growth, leading to temporal variations in microbial diversity and activity (Yang et al. 2017). We found that both vegetation type and season had a
negative effect on soil Ca2+ content (Table 2 and Fig. 3). Other studies have also indicated that soil Ca2+ content differs between different vegetation types in
karst ecosystems (Hu et al. 2021; Xue et al. 2017).

Soil properties significantly affect bacterial community composition during karst vegetation degradation and restoration (Tang et al. 2019). In this study, the
vegetation type and soil properties (soil fertility, pH, and Ca2+) directly affected bacterial community composition (Fig. 5). The bacterial community was more
responsive to soil pH than the fungal community, as also shown by some other studies (Bahram et al. 2018; Tedersoo et al. 2014; Teng et al. 2021). Rousk et
al. (2010) showed that the direct effect of soil pH on bacterial communities is probably due to the narrow pH range for optimal growth in bacteria, contrary to
the wider pH range for fungi. Delgado-Baquerizo et al. (2017) showed that soil pH mediates the positive effects of certain microbial taxa on multifunctional
resistance to global change. The present study showed a significant and negative effect of soil Ca2+ content on bacterial community composition (Fig. 5), in
agreement with Tang et al. (2019), indicating that increases in soil Ca2+ content alter bacterial community abundance and composition in karst areas.

In this study, vegetation type and soil Ca2+ had direct positive effects on fungal community composition, while season and soil fertility had negative effects
(Fig. 3). The seasonal effects on fungal communities were perhaps directly driven by temperature and precipitation. These climatic factors determine fungal
survival and colonization (Teng et al. 2021). The SEM explained 34.7% and 19.6% of the Shannon diversity index found in our study for bacteria and fungi,
respectively (Fig. 5). Soil pH was the only contributor to the bacterial Shannon diversity index (0.661***) (Fig. 5). However, bacterial and fungal β-diversity
showed significant differences among the six vegetation types, especially in winter (Fig. 3). Our results implied that microbial α-diversity may be improved by
increasing aboveground diversity using mixed planting of different vegetation types.

Conclusions
In this study, we investigated the impacts of four restored vegetation types in Guizhou province, southwest China, in 2019. The soils under the vegetation types
contained significantly different amounts of SOC, TN, soil exchangeable Ca2+, and available nutrients. The soil properties changed significantly from summer
to winter, except for soil pH and AP content. The microbial biomass under WN, CPS, and CPD was greater than under DF, TW, and traditional CN. Soil enzyme
activity, including BG, NAG, AKP, and CAT, were significantly different among the vegetation types (P < 0.001). The bacterial and fungal diversity indexes,
including the ACE, Chao, and Shannon indexes, showed no significant differences among all of the vegetation types. All vegetation types were dominated by
the bacterial phyla Acidobacteria, Proteobacteria, and Actinobacteria and the fungal phylum Ascomycota, except for soils under CN, which were dominated by
the fungal phylum Mucoromycota. The bacterial-fungal networks were distinctly different among the six vegetation types. Vegetation type, season, and soil
properties collectively explained 46% and 59% of the bacterial and fungal community compositions, respectively. Soil pH and fertility exerted the strongest
direct effects on bacterial communities. The SOC and TN contents were significantly positively correlated with the abundances of Entotheonellaeota,
Armatimonadetes, and Actinobacteria (P < 0.05). The soil exchangeable Ca2+ content exerted direct effects on both the bacterial and fungal communities.
Therefore, vegetation restoration partly reversed the effects of KRD by improving soil properties, increasing microbial biomass, and differentiating the
microbial community structures compared with traditional CN vegetation.
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Figure 1

The study sampled soils underneath dragon fruit (DF), walnut (WN), teak (TW), and Chinese pepper growing in depressions (CPD) and on sloping sites (CPS)
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Figure 2

At the bacterial phylum level, all vegetation types were dominated by Acidobacteria (35% relative abundance), Proteobacteria (25%), and Actinobacteria (15%)
(Fig. 2a). At the fungal phylum level, the most abundant phylum was Ascomycota under CPD and CPS, WN, and TW (average: 56%), while Mortierellomycota
was most abundant under CN (38%) (Fig. 2b).



Page 16/19

Figure 3

For both bacteria and fungi, the vegetation type led to significant differences in community composition (Fig. 3, P < 0.001), and there was a little overlap
among the six vegetation types in summer (Fig. 3a and c). The bacterial and fungal community structures changed from summer (Fig. 3a and c) to winter
(Fig. 3b and d), and the tighter clustering can be seen in the bar plots in Fig. 3. Due to their greater artificial disturbance, the Bray-Curtis distance between DF
and CN was closer than among the other vegetation types, especially in winter (Fig. 3b and d). Meanwhile, the distance between CPD and CPS was greater
than that between WN and CPS due to locational differences in Chinese pepper planting. Therefore, the effect of vegetation type on the composition of the
bacterial and fungal communities was greater in winter than in summer, based on the larger PERMANOVA R2 values (Fig. 3).
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Figure 4

The soil microbial network patterns differed among the six vegetation types and showed clear changes from summer to winter (Fig. 4a-l, Table S4). The
microbial taxa showed higher network connectivity (i.e. network degree) under CN and CPD (Fig. 4c-f) than in other vegetation types. Bacterial taxa had higher
network degrees than fungal taxa, especially under CN and CPD in winter (Fig. 4d, f, Table S4). In summer and winter, the average number of nodes under CN
(641) was lower than under the other vegetation types (DF 764, CPD 754, WN 746, CPS 734, TW 660), while the average number of links under CN (2333) was
lower than under CPD (2764), but higher than under the other vegetation types (Fig. 4, Table S4). The average path distances under CN (5.917) and CPD
(5.809) were lower than under the other vegetation types, with values > 7 (Table S4). Moreover, the proportion of negative network edges (mainly representing
bacteria-fungi interkingdom correlations) sharply declined from 39.2% to 8.6% under CPD (Fig. 4c, d) and from 40.3% to 8.8% under CN (Fig. 4e, f) from
summer to winter, respectively.
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Figure 5

Thirty-five percent of the variance in the bacterial Shannon diversity index was explained by soil pH alone (Fig. 5a, path coefficient = 0.661***). The SEM
explained 46% and 58% of the variance in the first and second bacterial community NMDS axes. Soil pH and fertility showed direct positive effects, whereas
vegetation type and soil Ca2+ showed direct negative effects on bacterial community NMDS1. Vegetation type directly and positively influenced bacterial
community NMDS2. Due to direct and indirect effects mediated by soil fertility, vegetation type showed a stronger effect on bacterial community composition
than soil pH and Ca2+. The fungal Shannon diversity index was directly and negatively influenced by MBN (-0.659) and soil fertility NMDS2 (0.603) (Fig. 5b).
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Figure 6

For bacterial phyla, the SOC and TN contents showed significant and positive correlations with the abundances of Entotheonellaeota, Armatimonadetes, and
Actinobacteria (P < 0.05), but were negatively correlated with the abundances of Nitrospirae and Proteobacteria (Fig. 6a, P < 0.05). The soil Ca2+, AP, AK, and
NO3--N contents were positively correlated with Nitrospirae and Gemmatimonadetes: in particular, the NO3--N content was strongly significantly correlated
with them (r = 0.69, P < 0.001). Meanwhile, the soil Ca2+ content was negatively correlated with the abundances of Actinobacteria, Entotheonellaeota, and
Firmicutes (r < -0.4, P < 0.001). The soil NH4+-N content, and the AKP and NAG enzyme activities, were positively correlated with the abundance of
Actinobacteria and Chloroflexi, but negatively correlated with the abundance of Proteobacteria. CAT enzyme activity was negatively correlated with the
abundance of Rokubacteria and Verrucomicrobia, while the activity of glucosidase was negatively correlated with the abundance of Entotheonellaeota. For the
fungal phyla, the soil Ca2+, AP, AK, and NO3--N contents were positively correlated with the abundance of Mortierellomycota (Fig. 6b, P < 0.001). However, the
soil Ca2+, AK, and NO3--N contents showed significant and negative correlations with the abundance of Ascomycota (P < 0.01). The soil AP content was
positively correlated with the abundances of Chytridiomycota and Zoopagomycota. Glycosidase and NAG activities were positively correlated with the
abundance of Glomeromycota.
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