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Abstract
Background: Hepatocellular carcinoma (HCC) is one of the series malignant aggressive disease which
shows elusive biological behavior and terrible prognosis. It is inadequate for the single evaluation system
such as tumor-node-metastasis (TNM) staging system to predict the overall survival (OS) in HCC
patients. Here, we conducted this study to identify prognosis-related genes, so as to form a reliable
prognostic assessment model.

Results: From three datasets in the GEO database, we identified two hub genes cytoskeleton associated
protein 2 (CKAP2) and forkhead box M1 (FOXM1) among 348 differentially expressed genes (DGEs) that
were differentially expressed between HCC and normal samples. The function analysis of those DEGs are
enriched in cell division process (e.g., mitotic nuclear division, nuclear chromosome segregation) and
metabolic process (e.g., organic acid catabolic process). Then, we established a two-gene model, that
extremely distinguished the population at risk of liver cancer to high-risk and low-risk and was even viable
in the TNM stage i-ii and iii-iv, vascular invasion and non-invasion subgroups (all P<0.05). Next, a
nomogram was set out combined with the two hub genes and clinical risk factors, and the predictive
power of the nomogram performed more outstanding than the gene expression or clinical parameters
alone.

Conclusions: Our two-gene-based evaluation system effectively filtered out the high-risk HCC patients,
and could potentially be used for clinical decision-making and individualized management of particular
HCC patients.

1. Background
Hepatocellular carcinoma (HCC), one of the most common gastrointestinal malignant cancers, holds high
morbidity and mortality, which has been reviewed as a notable healthcare issue for human beings in the
whole world for many years(1). Although a variety of therapies including resection, chemotherapy,
immunotherapy and transcatheter arterial chemoembolization have been widely performed clinically, the
prognosis of those methods is still not satisfactory. The most common reason of the poor prognosis is
that the patients have lost the opportunity for radical resection because of the advanced stage at the
moment of the diagnosis. Thus, it’s imperative for HCC populations to execute the early assessment of
prognosis. In the past decades, numerous genes and signaling pathways participating in the initiation
and evolution of HCC have been extensively discovered, but lacking of effective biomarkers for early
detection and prediction of prognosis still troubles clinicians. Recently, with the rapid advancement of
bioinformatics technology, various public databases such as the Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) could be served as Early detection powerful tools to filter differentially
expressed genes (DEGs) in the carcinogenesis and progression of HCC for the genetic research(2, 3).
These DEGs might become crucial targets in the diagnosis, treatment and prognosis of HCC, which can
provide other researchers more predictable and accurate direction for further study in the laboratory.



Page 3/29

In our study, we downloaded 3 microarray datasets [GSE46408, GSE62232, GSE74656] from GEO
database, calculated the differential expression multiples between HCC and non-cancerous liver tissues
of each gene with GEO2R online tools, then obtained the DEGs in those datasets. Next, GO and KEGG
enrichment analysis were conducted to display an overview of the function of those screened DEGs. With
the STRING online website and the Cytoscape software, protein-protein interaction (PPI) network was
established for further analysis and filtering of the crucial genes. Last, combining some
clinicopathological factors in the TCGA database, we established a two-genes clinical-related signature
for assessing patients’ risk. Based on the two-genes clinical-related signature and other
clinicopathological factors (i.e, TNM stage and vascular invasion), a two-gene-based nomogram to
evaluate the overall survival of patients with HCC was created.

2. Materials And Methods
The overall ideal and design route of this article was presented in the Figure 1.

2.1. The sources of microarray data and clinical information
GEO (http://www.ncbi.nlm.nih.gov/geo) is a public database, containing high throughout gene expression
data, chips and microarrays of Hepatocellular Carcinomas (HCC). We chose three gene microarray
expression datasets [GSE46408, GSE62232, GSE74656] from GEO database, respectively including 6
tumor liver tissues and 6 paired nontumourous liver tissues, 81 tumor liver tissues and 10 nontumourous
liver tissues, 5 tumor liver tissues and 5 paired nontumourous liver tissues.

469 clinical features and 425 expression profile of HCC patients were downloaded from UCSC
Xena(http://xena.ucsc.edu/) and TCGA (https://portal.gdc.cancer.gov/). After filtering out the patients
with incomplete data, 363 patients were obtained in this research.

2.2. Data processing of clinicopathological characteristics
Some clinical factors have missing values in the 363 patients, so 14 clinicopathological characteristics
(Age, Gender, Family history of cancer, Residual, Histologic grade, TNM stage, Vascular invasion, M stage,
N stage, T stage, Hepatitis, Alcohol, Smoking and BMI) were selected as the clinical risk factor after
removing those factors whose missing values percentages were more than 15% (Fig S1). Next, we
selected 1 as the random number used multiple imputation in mice package, based on 5 replications and
a chained equation approach method in the RMI procedure, to account for missing data so as to obtain a
new complete dataset (entire dataset) (table 1). The clinical characteristics did not differ significantly
between the two datasets (all P>0.05) (Table S1).

2.3. Selection of differentially expressed genes (DEGs)
GEO2R(http://www.ncbi.nlm.nih.gov/geo/geo2r), an online analysis tools in GEO website, was used to
identify the DGEs between the tumor tissue and the nontumourous tissue in the three GEO datasets. The
adjusted P-values (adj. P) and Benjamini and Hochberg false discovery rate were applied to provide a
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balance between discovery of statistically significant genes and limitations of false-positives. Probe sets
without corresponding gene symbols or genes with more than one probe set were removed or chose the
maximum, respectively. We set adj. P≤0.05 and | logFC (fold change) |≥1 as the criterion of statistically
significant, then selected the common DEGs conforming the criterion in the three datasets.

2.4. KEGG and GO enrichment analyses of DEGs.
Kyoto Encyclopedia of Genes and Genomes(KEGG) is a database resource for understanding high-level
functions and biological systems from large-scale molecular datasets generated by high-throughput
experimental technologies. Gene ontology (GO) is a major bioinformatics tool to annotate genes and
analyze biological process of these genes.

The selected DEGs can be divided into two groups, up-regulated and down-regulated. To analyze the
function of DEGs, biological analyses were performed using Cytoscape(4) plug-in ClueGO(version 2.5.7)
(5) and Gluepedia(version 1.5.7)(6). P<0.05 was considered statistically significant.

2.5. PPI network construction and module analysis.
Search Tool for Recurring Instances of Neighbouring Genes (STRING; http://string-db.org) (version 11.0)
(7) is an online database implementing experimental and predicted PPI information. All the selected
DEGs including up-regulated and down-regulated were input the online tool to establish a complicated
protein to protein interaction (PPI) network. Basic setting and advanced setting of STRING database were
default. After filtering out the disconnected nodes, the new PPI network was import into the Cytoscape,
with Up-regulated DEGs and down-regulated DEGs respectively marked in red and blue.

We use the plug-in MCODE(8) in the Cytoscape to identify the most significant module from this PPI
network. The criteria for selection were as follows: degree cut-off=2, node score cut-off=0.2, Max
depth=100 and k-score=2. Module with the highest score was considered as the candidate module for the
next analysis.

Biological Networks Gene Ontology (BiNGO, version 3.0.4)(9) plug-in can calculate overrepresented GO
terms in the selected module and display them as a network of a significant GO terms. The setting of
biological process analysis in the candidate module is as follows: Hypergeometric test as the statistical
test, Benjamini & Hochberg False Discovery Rate (FDR) correction as the multiple testing correction,
overrepresented categories after correction to be visualized, the whole annotation as reference set, P<0.01
as the significance level.

2.6. Identification and analysis of hub genes
The candidate genes of the most significant module from the PPI network were evaluated by the plugin
cytoHubba (version 0.1)(10). The plugin cytoHubba in the Cytoscape can predict and explore important
genes and subnetworks in a given PPI network with different topological algorithms. In this study, we
calculated the scores of all genes in the module by the algorithms of ClusteringCoefficient. Consequently,
the top 10 genes with the highest scores of the algorithm was selected as the candidate genes. For the
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preliminary exploration of the prognostic potential, overall survival (OS) of the 10 candidate genes was
performed with the Kaplan–Meier test in 363 HCC patients.

Then, 182 patients in the whole population were randomly sampled and established as the ‘primary
dataset’ (Table S2), while the ‘entire dataset’ included the complete 363 patients. Importantly, there were
no significant differences in clinical characteristics between the two datasets. These two datasets were
used for the subsequent model establishment and verification. During the process of grouping, we set the
sample size of primary dataset as 50% in the entire dataset, while 1 was selected as the random number.

To further explore the best-fit clinical-related hub genes, we filtered the 10 candidate genes through the
univariate (screening criteria: P < 0.2) and multivariate (screening criteria: P <=0.05) Cox proportional
hazards regression (CPHR) analysis in the primary dataset. The hub genes with P <=0.05 in the primary
dataset was chosen for assessment of the clinical-related gene signature and the development of OS-
related gene signature-based prognostic nomogram.

2.8. Establish of clinical-related gene signature and clinical-
related gene signature-based prognostic nomogram
During performing the multivariate CPHR in the above, we also calculated the coefficient of each gene.
Therefore, a risk score formula, with the linear combination weighting of the OS-related genes’ expression
values and the corresponding regression coefficients, can be established. The score formula is shown as
follow:

RiskScore =
n

∑
i=1

(Ki × Ei)

As shown above, Ei represents the expression value of each OS-related genes, while the regression
coefficient of the above genes is defined as Ki. Next, the corresponding risk score of every patient in the
two datasets can be calculated, and cut-off value of the high/low-risk group in 2 datasets was set as the
median score calculated from the primary dataset. All datasets were performed Kaplan-Meier method to
explore the prognosis differences in the high-risk subgroup and low-risk subgroup. Additionally, to further
evaluate the predictive ability of the OS-related genes-based classifier, time-dependent ROC curves of
different datasets and correspondent AUC values were conducted with one-year, three-year and five-year.

Moreover, in order to identify independent predictors of OS, we conducted 14 typical clinical
characteristics and the OS-related genes signature with univariate (screening criteria: P < 0.2) and
multivariate (screening criteria: P <= 0.05) CPHR analyses in the primary dataset. Furthermore, we
performed a stratified analysis so as to verify whether the association of the OS-related genes signature
with OS was independent of the TNM stage and vascular invasion. Using the selected clinical
characteristics, we developed a prognostic nomogram with the ‘rms’ package. The predictive abilities of
the established model were assessed with a C-index (non-events vs. events) and calibration curves
(nomogram-predicted OS vs. actual probabilities OS) in all datasets. A bootstrap validation with 1000
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resamplings was used for these activities. As for evaluating the predictive performance of our nomogram,
the time-dependent ROC curves and AUC values of the nomogram based on the OS-related genes and
other risk factors were the indicators considered in each dataset.

2.9. Verification of expression level and survival analysis in
the public databases
First of all, two databases including GEPIA2 database (http://gepia.cancer-pku.cn/index.html)(11) and
UALCAN database(http://ualcan.path.uab.edu/index.html)(12) were conducted for the 2 OS-related
genes’ expression difference in carcinomatous and normal samples. Meanwhile, in order to verify the
expression level of CKAP2 and FOXM1 between tumor and normal tissues, we downloaded 424 sample
data from HCC patient in TCGA database and analyze those data with R (version 4.0.2). After removing 5
unqualified samples(formalin-fixed paraffin-embedded tissues and recurring tumor tissues) and TMM
normalization of edgeR package(13), a total of 419 samples containing 369 tumor tissues and 50
adjacent tumor tissues were taken to analyses. Then, with the aim of exploring the role of the 2 selected
genes during HCC formation and progression, the mRNA expression of hub genes in different stages was
compared between HCC and normal tissues by using UALCAN database.

Kaplan-Meier plotter (http://kmplot.com/analysis)(14) is an online survive analysis tool whose sources
mainly coming from TCGA database. Overall survival (OS) was performed in our study to evaluate the
prognostic potential of CKAP2 and FOXM1. OS analysis was also conducted in GEPIA2 database.

3. Result

3.1. Selection of DEGs in HCC
We comprised 92 Hepatocellular Carcinoma tissues and 21 normal liver tissues in the 3 databases.
According to the cut-off criteria of |log2 FC| ≥ 1.0 and adj P-value ≤ 0.05, we identified 2160 DEGs in
GSE46408 database, 1444 DEGs in GSE62232 database and 1018 DEGs in GSE74656 database with the
GEO2R online analysis tool. 348 overlapping DEGs in the 3 databases containing 194 up-regulated genes
and 154 down-regulated genes was shown by a venn diagram (Fig. 2). The results of the expression level
analysis of 3 the databases are presented in a volcano plot (Fig. 2).

3.2. GO and KEGG enrichment analysis of DEGs
To explore the biological classification of DEGs, functional and pathway enrichment analyses were
performed using Cytoscape plug-in ClueGO. The GO function annotation can be divided into three
functional groups, cell component (CC), molecular function (MF), and biological process (BP). 194 up-
regulated genes were main enriched in BP (mitotic nuclear division, nuclear chromosome segregation,
nuclear chromosome segregation, microtubule cytoskeleton organization involved in mitosis and mitotic
sister chromatid segregation) and CC (centromeric region) (Fig. 3A and B). Changes in KEGG pathway
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analysis of these gene significantly enriched cell cycle, focal adhesion, ECM-receptor interaction and
cellular senescence (Fig. 3C and D).

The GO function analysis of 154 down-regulated genes revealed that those biological processes
including organic acid catabolic process, alpha-amino acid metabolic process, cellular amino acid
catabolic process, cellular response to xenobiotic stimulus, lipid oxidation may play a critical role in the
progress of HCC (Fig. 4A and B). While, the changes in KEGG pathway analysis were main enriched in
fatty acid degradation, complement and coagulation cascades, chemical carcinogenesis and retinol
metabolism (Fig. 4C and D).

3.3. PPI network construction and module analysis.
348 DEGs were input the STRING online website to establish a PPI network with 297 nodes and 2453
edges after removing the disconnected nodes. This network was imported into the Cytosacpe software
for the visualization (Fig S2) and the next module analysis. The MCODE plug-in in Cytoscape software
was used to grab the most significant module in the network. 12 clusters obtained from the MCODE plug-
in were shown in the Table 2. The first cluster with the scores 50.423 was identified as the most
significant module (Fig. 5A). The biological processes of the candidate module were carried out using the
BiNGO plug-in (Fig. 5B).

3.4. Identification and analysis of hub genes
We implemented the ClusteringCoefficient method of cytoHubba plug-in to evaluate the significance of
the genes in the module. Thereafter, 10 top genes (CDC7, CKAP2, MND1, FANCD2, EZH2, DEPDC1, ECT2,
FOXM1, UBE2T and CKS2) with the highest scores were considered as the candidate genes. With the
Kaplan-Meier analysis in 363 HCC patients, high expression group of every gene performed significantly
worse survival event than the low-expression group (P < 0.05) (Fig S3).

We filtered these candidate genes through a univariate and multivariate CPHR analysis. As shown in the
table (Table 3), CKAP2(HR = 1.2, CI95 = 1.02~1.41, P Value = 0.028) and FOXM1(HR = 0.88, CI95 = 
0.79~0.98, P Value = 0.02) were figured out and chosen as the clinical-related genes.

3.5. Establishment and assessment of OS-related genes
signature
Based on the above multivariate CPHR analysis, we got CKAP2 and FOXM1’s risk-coefficients, 1.21 and
0.98 respectively. Next, we established a risk score formula:

Risk Score = (1.21  × ExpressionCKAP2)+(0.98 × ExpressionFOXM1) 

Then, we calculated the two-genes-based risk score for each HCC patient in the primary dataset and entire
database. Because of the non-normal distribution of risk score, we set the median risk score as the cut-off
value to classify all patients to ‘High-score’ group and ‘Low-score’ group. Primary database contains 91
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High-score patients and 91 Low-score patients, while 181 High-score patients and 182 Low-score patients
in entire database.

In primary dataset, Kaplan-Meier curve analysis clearly demonstrated that the high-risk group (n=91) had
a poorer prognosis than the low-risk group(n=91) (P= 0.0062, log-rank test) (Fig. 6A). Subsequently, we
constructed a time-dependent receiver operating characteristic (ROC) curve with the primary dataset. As
shown in the figure, the area under the time-dependent ROC curve (AUC) of the OS-related genes signature
reached 0.68 (95% confidence interval [CI]=59.89−75.97) at one years, 0.64 (95% CI=55.2−73.61) at three
years and 0.62 (95% CI=50.09−73.91). (Fig. 6B)

The performance of the OS-related genes signature for predicting survival was then validated in the entire
dataset. Similar to the results of the primary dataset, a Kaplan-Meier curve analysis indicated that the
survival time of HCC patients was significantly shorter in the high-risk group (n=181) than in the low-risk
group (n=182) (P=0.00073, log-rank test) (Fig. 6C). The AUC of the clinical-related gene signature was 0.7
(95% CI=64.3−76.27) at one years, 0.62 (95% CI=54.97−68.99) at three years and 0.57(95%
CI=48.12−65.78) in the entire dataset (Fig. 6D). Thus, the predictive performance of the clinical-related
gene signature for HCC patients was great in both the primary dataset and the entire dataset.

3.6. The prognostic value of the clinical-related gene
signature was independent from those of conventional
clinical risk factors
Clinical risk factors such as the TNM stage and age are still vital predictors of OS in HCC patients.
Therefore, we integrated these traditional risk factors with our clinical-related gene signature to develop
an efficient quantitative method of predicting OS. We first evaluated the prognostic value of several
clinical risk factors in univariate and multivariate CPHR analyses of the primary dataset. We found that,
in addition to the clinical-related gene signature, TMN stage (iii-vi vs. i-ii) and vascular invasion (yes vs.
no) were significantly associated with OS (all P<0.05) (Table 4).

Considering the number of HCC patients, we performed a risk-stratified analysis with the entire dataset.
The 363 HCC patients were stratified into a stage i-ii subgroup (n=270), stage iii-iv subgroup (n=93) based
on their TNM stage. Each subgroup was divided into a high-risk group and a low-risk group based on the
risk scores proposed above. We found that the classification efficiency of the clinical-related gene
signature was limited when it was applied to certain subgroups. As shown in the Kaplan-Meier curves, for
the two subgroups, patients in the high-risk group had significantly poorer survival than those in the low-
risk group (stage i-ii subgroup, P=0.049; stage iii-iv subgroup, P=0.03, log-rank test) (Fig. 7A and B).
Similarly, when a stratified analysis was carried out based on vascular invasion, prognosis was worse in
the high-risk group both in invasion subgroup(n=133) and non-invasion subgroup(n=230) (Fig. 7C and D).
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3.7. Establishment of a nomogram containing the clinical-
related gene signature with clinical risk factors
we integrated these traditional risk factors (TNM stage and vascular invasion) with our clinical-related
gene signature to develop an efficient quantitative method of predicting OS. Ultimately, on the basis of
clinical judgment and statistical significance, we developed a clinical-related gene signature-based
nomogram, which integrated the clinical-related gene signature and two clinical risk factors (vascular
invasion and TNM stage). We then used this nomogram to predict the one-year, three-year and five-year
survival of HCC patients (Fig. 8A).

In the nomogram, the TNM stage contributed the most to the one-, three- and five-year OS, closely
followed by the OS-related genes signature and vascular invasion. This user-friendly graphical tool
allowed us to determine the one-, three- and five-year OS probability for each HCC patient easily.

We then evaluated the discrimination and calibration abilities of the prognostic nomogram by using a
concordance index (C-index) and calibration plots. An internal validation using a bootstrap with 1000
resamplings revealed that the nomogram performed well for discrimination: the C-index was 0.658 (95%
CI=0.633-0.683) for the entire dataset and 0.659 (95% CI=0.628-0.69) for the primary dataset. The one-
year, three-year and five-year OS probabilities generated by the nomogram were plotted against the
observed outcomes, as shown in Fig. 8B–G. The probabilities determined by the nomogram closely
approximated the actual probabilities, especially the predicted ability of the three-year OS.

We further assessed the prognostic performance of the nomogram in a time-dependent ROC curve
analysis. The AUC of the nomogram was 0.71 (95% CI=61.24-8.-0.15) at one year, 0.75(95% CI=66.05-
83.8) at three years and 0.74 (95% CI=62.06-85.08) at five years in the primary dataset (Fig. 9A), while in
the entire dataset (Fig. 9B), the AUC was 0.75 (95% CI=67.22-81.25) at one year, 0.7 (95% CI=62.22-76.99)
at three years and 0.63 (95% CI=53.72-72.72) at five years. Combining the results of the two time-
dependent ROC curves and the calibration plots, we thought the diagnostic power of the nomogram at
three-yeas was more excellent than one-year and five-years. More importantly, the discrimination
performance of the double-genes-based nomogram (AUC=0.7, 95% CI=62.22-76.99) at three years was
superior to the performance of the TNM stage (AUC=0.63, 95% CI=57.04-69.55) and vascular invasion
(AUC=0.56, 95% CI=49.29-62.77) (Fig. 9C).

3.8. Verification of expression level and survival analysis in
the public databases
We next explore those genes’ expression difference in the public database. Pan-cancer research of the
GEPIA database has prompted us the up-regulated of CKAP2 and FOXM1 in the HCC tissue (Fig. 10E). In
GEPIA database and UALCAN database, as shown in Fig. 10A and D, the bar chart demonstrated that the
expression levels of CKAP2 and FOXM1 in tumor samples are higher than those in the normal tissues.
With 419 sample from TCGA database, CKAP2 and FOXM1 were overexpressed in the HCC tissues (Fig.
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10C). Furthermore, according to the nomogram, we inferred that the expression level might be associated
with disease progression, which was consist with our inference in the UALCAN database (Fig. 10B). All
the results have significant statistical differences.

After examining the mRNA expression levels of the 2 genes in HCC, we verified the prognostic potential in
the public databases. The survival significance map of Pan-cancer analysis in the GEPIA database
preliminary revealed that the overexpression of those 2 genes were significant in the HCC patients (Fig.
11A). Consequently, as shown in Fig. 11B and C, high expression of CKAP2 and FOXM1 both performed
poorer prognosis in the OS analysis of GEPIA database and ULACAN database.

4. Discussion
Hepatocellular Carcinomas is one of the most commonly diagnosed cancers and the fourth most
common cause of cancer-related death in the world. Although the treatment of hepatocellular carcinomas
has improved, the prognosis of patients is generally poor due to the lack of precise molecular targets.
Therefore, better biomarkers for specific prognosis and progression of HCC are demanded. In the present
experiments, bioinformatics analysis was performed to identify the potential key genes correlated with
HCC and develop a reliable prognostic model for HCC patients for helping the clinical decision-making.

In our study, we compared three gene microarray expression datasets from GEO database containing
tumor tissues and normal tissues. 194 up-regulated and 154 down-regulated DEGs were successfully
identified, respectively enriched in cell division process (e.g., mitotic nuclear division, nuclear
chromosome segregation) and metabolic process (e.g., organic acid catabolic process). Based on the
degree of connectivity in PPIN, 10 selected genes from ClusteringCoefficient algorithms were identified,
including CDC7, CKAP2, MND1, FANCD2, EZH2, DEPDC1, ECT2, FOXM1, UBE2T and CKS2. Through
Kaplan-Meier analysis and CPHR analysis, CKAP2 and FOXM1 were considered as the crucial genes in
the progress of HCC.

CKAP2 is a cytoskeleton-associated protein which was reported to colocalize with microtubules and
centrosomes during interphase and with mitotic spindles during mitosis(15). The function of CKAP2
protein can stabalize microtubules and plays a role in the regulation of cell division. However, Tsuchihara
et al disclosed that the overexpression of CKAP2 in the absence of p53 can induce tetraploidy and
aberrant centrosome numbers(16). The CKAP2-induced cytokinesis failure may play a crucial role during
the process of tumorigenesis and development. Furthermore, the overexpression of CKAP2 has been
reported in cervical carcinoma(17), osteosarcoma(18), ovarian cancer(19) and prostate cancer(20). With
the hepatocellular carcinomas, Hayashi et al also proved the potential predictive ability of CKAP2 in early
and extensive recurrence after operative resection and the expression of CKAP2 may be associated with
multiple tumors or microscopic vascular invasion(15). In our nomogram based on CKAP2 and FOXM1,
high-expression of genes and vascular invasion were related with the poorer prognosis, whose results
supported the present findings.
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FOXM1 is one of the members of the Fork head family proteins that contains a 100 amino acid long DNA
binding domain, functioning in the regulation of G1/S and G2/M transitions of cell cycle, maintenance of
mitotic spindle integrity, angiogenesis, DNA damage repair, and tissue regeneration(21). On the other
hand, overexpression of FOXM1 has been detected in a broad range of cancer types such as AML(22),
prostate cancer(23), breast cancer(24) and lung carcinoma(25), suggesting that FOXM1 is also essential
for tumorigenesis. Similar to the other cancers, up-regulated FOXM1 in hepatocellular carcinomas
performed an indicator of poor survival and metastasis(26–28). Wei et al demonstrated that the elevation
of P53 and down-regulation of FoxM1 in the sorafenib-treatment tissues(29), so the mechanism of P53
negative regulation might explain the overexpression of FOXM1 in HCC(30, 31).

Based on the 2 hub genes, we established a risk score system which can divided the HCC patients to
high-risk subgroup and low-risk subgroup. These high-risk patients exhibited significantly shorter survival
than those in the low-risk group. The present studies have indicated that TNM stage and vascular
invasion are both simple but useful predicators of survival in HCC. Consequently, we combined these
traditional clinical factors with molecular profiling. A two-genes clinical-related nomogram was
established to quantify the individual’s probability of OS. The predictive performance of our nomogram
was more accurate than those of the traditional TNM stage or vascular invasion alone. And the
nomogram's predictive ability was high both in the primary and entire validation, which suggests its high
application potential in clinical practice.

Meanwhile, our predicted model in the present study still has some potential limitations: First of all, we
excluded participants with incomplete records for complete-case analysis to build the model, which may
introduce selection bias and small sample cohorts. However, we used multiple imputations to replace
missing values, and the results proved that our study participants after multiple imputations could well
represent the overall population. Therefore, in the future, we can consider designing our studies or
cooperating with other researchers to collect as many variables as possible to reduce missing values.
Secondly, the database of TCGA lacks enough tumor recurrence information, so the accuracy of
predicting the prognosis and survival possible in the HCC recurrence patients need further verification.
thirdly, our used data came from an open-access published database, so our study design was
retrospective. Therefore, prospective clinical studies are needed to validate our findings and to determine
whether our nomogram improves patients’ satisfaction and outcomes.

5. Conclusion
In summary, the genes of CKAP2 and FOXM1 were identified as the clinical-related genes in the
progression of HCC by bioinformatics analysis. We determined the altered RNA expression patterns of
HCC patients and identified a clinical-related genes signature that could efficiently divide patients into
different risk groups. Importantly, by combining this signature with conventional clinical risk factors
(TNM stage and vascular invasion), we developed a clinical-related genes signature-based nomogram
that could accurately predict the one-year, three-year and five-year OS of HCC patients. Furthermore, the
prognostic performance of the nomogram was superior to those of the conventional TNM stage or
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vascular invasion. Therefore, we have provided a reliable, user-friendly prognostic nomogram to aid the
individualized management of HCC patients.
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Tables
Table I:Baseline clinical characteristics of entire dataset(N=363) involved in this study
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Characteristic Freq Characteristic Freq

Age (%) M stage (%)

≤65 227 (63%) M1-X 101 (28%)

>65 136 (37%) M0 262 (72%)

Gender (%) N stage (%)

male 245 (67%) N1-X 116 (32%)

female 118 (33%) N0 247 (68%)

Family history of cancer (%) T stage (%)

YES 133 (37%) T1-2 273 (75%)

NO 230 (63%) T3-4 89 (25%)

Residual (%) Hepatitis (%)

R0 326 (90%) YES 159 (44%)

R1-X 37 (10%) NO 204 (56%)

Histologic grade (%) Alcohol (%)

G1–G2 234 (64%) YES 122 (34%)

G3–G4 129 (36%) NO 241 (66%)

TNM stage (%) Smoking (%)

stage i-ii 270 (74%) YES 14 (4%)

stage iii-iv 93 (26%) NO 349 (96%)

Vascular invasion (%) BMI (%)

YES 133 (37%) ≤24 186 (51%)

None 230 (63%) <24 177 (49%)

Table II: 12 gene clusters calculated by MCODE plug-in from the PPI network
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Cluster
id

Score Nodes Edges genes in the cluster

1 50.423 53 1311 MCM4, CKS2, RAD51AP1, CCNA2, NUF2, CDC7, PRC1, ECT2,
DEPDC1, CKAP2, NDC80, SMC2, CENPE, KIAA0101, KIF20A,
RACGAP1, BUB1B, ASPM, MAD2L1, NCAPG, SMC4, CEP55,
MCM6, MCM7, AURKA, DLGAP5, CDKN3, KIF4A, FEN1, CCNB2,
CCNB1, CDK1, TOP2A, BUB1, ZWINT, PBK, HMMR, NUSAP1,
FOXM1, KIF2C, RFC4, MND1, UBE2T, DTL, BIRC5, RRM2,
TPX2, KNTC1, FANCD2, FANCI, KIF11, CENPF, EZH2

2 8.235 18 70 HGFAC, KMO, HAAO, COLEC11, ALDH8A1, MASP1, ACSM3,
CFP, MASP2, FTCD, FCN3, COLEC10, C8B, FCN2, MBL2, HAO2,
KLKB1, F11

3 7 7 21 LAMA4, ITGA6, LAMC1, ITGA2, COL1A1, COL4A2, COL4A1

4 5.6 6 14 CYP2B6, CYP1A2, CYP2C9, CYP2C19, CYP4A11, NAT2

5 5.529 18 47 MT1X, FABP5, GCDH, GLA, GM2A, MT1F, SLC39A5, MT1H,
MT1G, MT1E, ACADS, ACAA2, MT2A, ECHDC2, LPL, MT1M,
ACLY, ANXA2

6 3.6 6 9 GLS2, BCKDHB, SDS, BCAT1, AGXT2, PHGDH

7 3.333 4 5 APOF, LCAT, LPA, NPC1L1

8 3.333 4 5 IGFBP3, IGFALS, GHR, PLG

9 3.2 6 8 CLIC1, PCK1, ALDOB, GCGR, GYS2, PPARGC1A

10 3 3 3 HAMP, STEAP3, FLVCR1

11 3 3 3 GPSM2, CCL20, CXCL2

12 2.889 10 13 ETFDH, ILF2, NEU1, ALDH6A1, ACADL, GNMT, PEMT, MAT1A,
ACSL4, ACAA1

Table III: univariate and multivariate Cox proportional hazards regression analysis in the primary dataset
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　 univariate multivariate

Genes HR CI95 P Value HR CI95 P Value

CDC7 1.29 1.12-1.49 <0.001 1.09 0.8-1.47 0.588

CKAP2 1.17 1.07-1.28 <0.001 1.2 1.02-1.41 0.028*

CKS2 1.01 1-1.02 0.001 1.01 0.99-1.02 0.331

DEPDC1 1.36 1.16-1.58 <0.001 1.03 0.72-1.48 0.856

ECT2 1.12 1.06-1.2 <0.001 1.13 0.99-1.3 0.076

EZH2 1.17 1.09-1.26 <0.001 1.13 0.97-1.31 0.117

FANCD2 1.35 1.1-1.65 0.004 0.72 0.41-1.27 0.261

FOXM1 1.05 1.01-1.09 0.012 0.88 0.79-0.98 0.02*

MND1 1.09 0.99-1.19 0.085

UBE2T 1.05 1.03-1.08 <0.001 1 0.94-1.06 0.991

Abbreviations：HR, Hazard Ratio; CI95, 95% confidence interval; * P<0.05

Table IV:Univariate and multivariate CPHR analysis of clinical-related gene signature and other risk
factors in the primary dataset.
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Characteristic Univariate analysis Multivariate analysis

HR (95%CI) P-Value HR (95%CI) P-Value

Age (≥65 vs. <65) 1.04(0.67-1.6) 0.866

Alcohol (no vs. yes) 0.74(0.47-1.16) 0.185 0.88(0.55-1.4) 0.582

BMI (<25 vs. ≥25) 0.82(0.53-1.26) 0.368

Family history of cancer (no vs. yes) 0.95(0.61-1.47) 0.821

Gender (male vs. female) 1.04(0.67-1.61) 0.863

Hepatitis (YES vs. NO) 1.53(0.97-2.43) 0.068 1(0.6-1.67) 0.994

Histologic grade (G3-4 vs. G1-2) 1.14(0.73-1.77) 0.57

M stage (M0 vs. M1-X) 0.68(0.44-1.06) 0.09 0.66(0.34-1.3) 0.231

N stage (N0 vs. N1-X) 0.74(0.47-1.15) 0.179 1.04(0.53-2.02) 0.914

Residual (R1-X vs. R0) 1.68(0.86-3.27) 0.13 1.39(0.68-2.82) 0.362

Signature (high-score vs. low-score) 1.82(1.18-2.82) 0.007 1.6(1.01-2.52) 0.045*

Smoking (YES vs. NO) 1.15(0.46-2.84) 0.767

T stage (T3-4 vs. T1-2) 2.78(1.78-4.35) <0.001

TNM stage (iii-iv vs. i-ii) 2.78(1.78-4.35) <0.001 2.44(1.49-4) <0.001*

Vascular invasion (no vs. yes) 0.46(0.3-0.71) 0.001 0.54(0.33-0.87) 0.012*

Abbreviations: HR, hazard ratio; CI, confidence interval; * P<0.05

Figures
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Figure 1

Overview of article design ideas and operating procedures
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Figure 2

Distribution of DEGs in the three datasets. The volcano plot of GSE62232 (A), GSE46408 (B) and
GSE74656 (C) dataset. Y axis of the volcano represents adjusted P-Value, X axis represents the fold
change of those genes after log2 process. Red dots were set as up-regulated genes, while blue and grey
dots were down-regulated and Insignificant genes respectively. (D) The venn plot of those three
dastasets. DEGs: differentially expressed genes.
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Figure 3

GO and KEGG enrichment analysis of 194 up-regulated genes in the Cytoscape software. (A) Bubble plot
of top 10 enriched GO analysis. Color represents the degree of significant difference, red is defined as
highly significant, while blue is low significant. Size of bubble represents the percentage of enriched
genes in GO term. (B) Visualization of enriched GO results. (C) Bubble plot of top 10 enriched KEGG
pathway analysis. (D) Visualization of enriched KEGG results.
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Figure 4

GO and KEGG enrichment analysis of 154 down-regulated genes in the Cytoscape software. (A) Bubble
plot of top 10 enriched GO analysis. Color represents the degree of significant difference, red is defined as
highly significant, while blue is low significant. Size of bubble represents the percentage of enriched
genes in GO term. (B) Visualization of enriched GO results. (C) Bubble plot of top 10 enriched KEGG
pathway analysis. (D) Visualization of enriched KEGG results.
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Figure 5

Module analysis of 53 most closely connected genes in the PPI network. (A) Overview of cluster with the
highest score. Each dot represents a kind of protein, the shade of color represents the expression of the
protein, and the edges indicate the relationship between the 2 gene that are linked. (B) the biological
processes of this cluster. The size of node is positively related with the number of the enriched genes in
the GO terms; while the color scale shows the change of P-value, the more prominent, the darker the color.
PPI: Protein to Protein Interaction.



Page 24/29

Figure 6

Predicting performance of the OS-related genes signature in the two datasets. Kaplan-Meier curves (A)
and time-dependent ROC curve (B) for overall survival based on the OS-related genes signature in the
primary dataset. Kaplan-Meier curves (C) and time-dependent ROC curve (D) of OS-related genes
signature was also performed in the entire dataset. The number of patients at risk is listed below the KM
curve. ROC curve: Receiver Operating Characteristic curve, KM: Kaplan-Meier.



Page 25/29

Figure 7

Risk-stratified analysis of the OS-related genes signature for HCC patients. Kaplan-Meier analysis were
performed in HCC patients of TNM stage i-ii subgroup (A), TNM stage iii-iv subgroup (B), vascular non-
invasion subgroup (C) and vascular invasion subgroup (D). The digital below the KM curve represents the
number of under risking patients.
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Figure 8

Nomogram based on the OS-related genes signature and TNM stage and vascular invasion. (A)
Nomogram used for predicting overall survival in HCC patients. Explanation: the scale of signature, TNM
stage and vascular invasion vertical upward correspond to their respective scores. Then, taking the total
points after summing the three scores, and the scale of the total points vertical downward to the one-,
three- or five-year OS for a specific liver cancer patient. Calibration plots of the nomogram for predicting
OS at one years (B) and three years (D) and five years (F) in the primary dataset, and at one years (C),
three years (E) and five years (G) in the entire dataset. X axis of the calibration plot represents the
predictive probability, while Y axis of the plot indicates the actual survival probability. The 45-degree
dotted line represents a perfect prediction, and the solid line represents the predictive performance of the
nomogram.
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Figure 9

The predictive ability of nomogram in comparison with other traditional clinical factors. The time-
dependent ROC curves of the nomogram for predicting OS in the entire dataset (A) and the primary
dataset (B). (C) The prognostic accuracy of the two-genes-based nomogram compared with those of the
TNM stage and vascular invasion.
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Figure 10

The gene of CKAP2 and FOXM1’s transcriptional expression was validated in the public database. The
expression level of CKAP2 and FOXM1 in the UALCAN database (A) and GEPIA database (D). The
expression change of CKAP2 and FOXM1 between the normal tissues and tumor tissues was also
manifested with R (C). The relationship between tumor stage and CKAP2 and FOXM1’s expression
change in the UALCAN database (B). Pan-cancer analysis of CKAP2 and FOXM1 in the GEPIA database
(E). * P<0.05, ** P<0.01, *** P<10-3, **** p<10-4, ***** p<10-5.

Figure 11

Pan-cancer survival analysis and Kaplan-Meier plot of CKAP2 and FOXM1 were validated in the public
database. (A) the pan-cancer survival heatmap of CKAP2 and FOXM1 in the GEPIA database. Risk factor
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(HR>1) was colored as red, while protective factor (HR<1) as blue. Red frame represents the statistically
difference. Kaplan-Meier plot of CKAP2 and FOXM1 between the high/low expression subgroup in the
GEPIA database (B) and UALCAN database (C). LIHC: Liver hepatocellular carcinoma.
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