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Abstract
Background To develop and validate a survival model with clinico-biological features and 18F- FDG
PET/CT radiomic features via machine learning, and for predicting the prognosis from the primary tumor
of colorectal cancer.

Methods A total of 196 pathologically con�rmed colorectal cancer patients (stage I to stage IV) were
included. Preoperative clinical factors, serum tumor markers, and PET/CT radiomic features were
included for the recurrence-free survival analysis. For the modeling and validation, patients were
randomly divided into the training (n=137) and validation (n=59) set, while the 78 stage III patients
[training (n=55), and validation (n=23)] was divided for the further experiment. After selecting features by
the log-rank test and variable-hunting methods, random survival forest (RSF) models were built on the
training set to analyze the prognostic value of selected features. The performance of models was
measured by C-index and was tested on the validation set with bootstrapping. Feature importance and
the Pearson correlation were also analyzed.

Results Radiomics signature with four PET/CT features and four clinical factors achieved the best result
for prognostic prediction of 196 patients (C-index 0.780, 95% CI 0.634 - 0.877). Moreover, four features
(including two clinical features and two radiomics features) were selected in the 78 stage III patients (C-
index was 0.820, 95% CI 0.676-0.900). K-M curves of both models signi�cantly strati�ed low-risk and
high-risk groups (P < 0.0001). Pearson correlation analysis demonstrated that selected radiomics
features were correlated with tumor metabolic factors, such as SUVmean, SUVmax.

Conclusion This study presents integrated clinico-biological-radiological models that can accurately
predict the prognosis from the preoperative 18F-FDG PET/CT radiomics in colorectal cancer. It is of
potential value in assisting the management and decision making for precision treatment in colorectal
cancer.

Trial registration The retrospectively registered study was approved by the Ethics Committee of Fudan
University Shanghai Cancer Center (No. 1909207-14-1910) and the data were analyzed anonymously.

Introduction
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers all over the world, though its
epidemiology is different in various regions [1]. It is also one of the leading causes of cancer-related
mortality despite the advancement in treatment strategies [2, 3]. The prognosis of CRC is one of the
essential factors in patient management and selection of treatment strategies [4]. Tumor Node
Metastasis (TNM) staging classi�cation system plays an important role in colorectal cancer
prognostication [4–6]. But TNM staging system cannot accurately differentiate the prognosis of patients
with stage II and III colon cancer. In addition, disease characteristics known to affect the survival of colon
cancer, including age, gender, location of primary disease, tumor grade, the number of positive lymph
nodes (LNs), the number of LNs examined, lymphatic vessel and peripheral nerve in�ltration, intestinal



Page 3/21

obstruction or perforation, were not directly included in the TNM staging system. Blood and stool protein
markers have also been investigated to identify patients with favorable and poor prognosis [7, 8]. Several
studies were dedicated to other prognostic factors in patients with MSI status and chromosome 18q loss
of heterozygosity in the coding place [9, 10]. Several studies have attempted to provide clinical assistance
in the management strategies of colorectal cancer by utilizing important imaging prognostic features,
such as depth of tumor spread, presence of malignant lymph nodes, tumor deposits, extramural vascular
invasion, and differentiation of mucinous from nonmucinous tumors [11].

For staging primary colon cancer, contrast-enhanced computed tomography (CT) scans achieved
accuracies ranging from 60–80% [12–15]. MRI features are useful in diagnosing locally advanced rectal
tumors and also are helpful to assess regional nodal involvement and treatment response [16, 17].
However, the above imaging is based on morphology, cannot provide the metabolic characteristics of the
tumor lesion. 18F-�uoro-2-deoxy-D-glucose Positron emission tomography/computed tomography (18F-
FDG PET/CT) can sensitively provide the molecular and functional information of not only the primary
tumor, but also distant metastasis lesion and the recurrent disease by one-time imaging [18].

Radiomics is a promising translational research �eld that can provide quanti�ed tumor heterogeneity
information from medical images in a non-invasive manner. Studies have shown that radiomic features
based on CT or MRI images are related to the prognosis of colorectal cancers [19–21]. Some studies
reported the metabolic phenotype could predict genetic alterations of colorectal cancer by 18F-FDG
PET/CT radiomics [22]. However, the prognostic value of PET/CT radiomics has not been reported yet,
especially in patients with stage III, which accounts for the largest proportion of CRC. In this study, we
investigated the prognostic value of 18F-FDG PET/CT-based radiomics features using machine learning
for CRC patients of all stages and then applied the same method on CRC patients with stage III to analyze
the differences.

Materials And Methods

Patients collection
The study was approved by Fudan University Shanghai Cancer Centre Ethics Committee and Institutional
Review Board for clinical investigation. In our study, 196 patients diagnosed with colorectal cancer
between January 2010 and July 2018 were retrospectively identi�ed from an electronic database in
Fudan University Shanghai Cancer Centre. Patients were followed up until July 2020. All patients who
met the following criteria were enrolled: 1) Patients received surgery at the primary colorectal lesion and
the �nal pathology was colorectal adenocarcinoma or mucinous adenocarcinoma; 2)
Immunohistochemical results also was received; 3) Patients received no preoperative treatment and
underwent preoperative 18F-FDG PET/CT. Thus, the difference in tumor metabolism after adjuvant
therapy was avoided; 4) Patients did not receive any chemotherapy, radiation therapy, or molecular
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targeted therapy before 18F-FDG PET/CT scans yet; 5) Patients were not lost to follow-up. We reviewed
243 patients diagnosed with colorectal cancer in total and �nally enrolled 196 patients for this study.

18F-FDG PET/CT protocol and imaging interpretation
18F-FDG PET/CT scans were performed using a PET/CT scanner (Siemens Medical Systems, Biograph 16
HR). All patients fasted for at least 6 h before 18F-FDG administration and glucose levels in the peripheral
blood were con�rmed to be 10 mmol/L or less before the 18F-FDG injection (7.4 MBq/kg (0.2 mCi/kg) of
body weight) in this study. The scanning included the area from the upper thigh to the skull. Data
acquisition started approximately 1h after the injection and the low-dose CT scans were obtained with the
following parameters: 40-60 mA, 120 kV, 0.6-s tube rotation, and 3.75-mm section thickness. The spatial
resolution of PET images was 168 x 168 x 172 with voxel size 4.06 x 4.06 x 5 mm3 , while the resolution
of CT images was 512 x 512 x 172 with voxel size 1.37 x 1.37 x 5 mm3. For quantitative analysis, 18F-
FDG accumulation on a workstation was assessed by two experienced nuclear medicine physicians
through calculating the standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion
glycolysis (TLG) in the regions of interest placed over the suspected lesions and the normal liver. SUV
was calculated in a pixel as (radioactivity) / (injected dose/body weight). TLG was calculated as (mean
SUV)×(MTV), in which MTV was measured with setting a margin threshold as SUV of 2.5. All values of
SUVmax, MTV, and mean SUV were automatically measured by analysis software for each lesion. For
evaluating metastatic CRC, the highest SUV in a metastatic tumor was taken as SUVmax and the mean
SUV was taken as SUVmean.

Medical Image Delineation
The Volume of Interest (VOIs) in the tumor was segmented slice by slice by two attending nuclear
medicine physicians respectively. The open-source software ITK-Snap [23] was used for segmentation. If
the two opinions were different, they discussed and made the �nal decision together. The physicians
segmented tumors only on the basis of imaging �ndings and did not consider pathological �ndings.
Since the PET/CT images were co-registered, only the VOIs of PET images were manually segmented,
and then resampled to CT images through coordinate transformation and interpolation. The resulting
VOIs for CT images were validated by a radiologist.

Radiomics Feature Extraction
Radiomics Work�ow is illustrated in Fig. 1 including three main modules: Feature Engineering, Random
Survival Forest (RSF) Models, Statistical analysis. In feature extraction, we applied different settings for
PET and CT images to adapt to different image characteristics of these two modalities, as illustrated in
Supplementary Fig. S1. For PET images, we �rstly applied SUV normalization based on patients’ body
weight and injection doze. Then, we used a �xed bin-size of 0.25 SUV in intensity discretization to reduce
the effect of the image noise [24]. The common parameter for bin size [25, 26] was used to ensure the
reproducibility of our model. On the other hand, for CT images, we �rstly shifted +1000 HU on image
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values to prevent the pixel value from being negative when squared, as the minimum value of HU was
-1000. For CT image discretization, we used a �xed bin size of 25 HU, as suggested in previous reports
[27–29].

1246 radiomic features were extracted from ROIs delineated by clinicians on PET and CT images
respectively, resulting in 2492 radiomic features per patient. Radiomic features include three major types:
�rst-order features, shape features and texture features. First-order features describe the intensity
distribution of voxels. Shape features describe the tumor shape characteristics such as volumes and
surface areas. Texture features describe the second-order intensity distribution of voxels via Gray Level
Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix
(GLRLM), and Gray Level Dependence Matrix (GLDM). Wavelet features and Laplacian of Gaussian (LoG)
features are texture features extracted from �ltered images using wavelet �lters and LoG �lters. The
radiomic feature extraction was implemented with open-source PyRadiomics library [30]
(https://github.com/Radiomics/pyradiomics), which is in compliant with Imaging Biomarker
Standardization Initiative [31].

Feature Selection
Before implementing feature selection, 24 clinico-biological features and 2492 radiomic features were
fused to form a feature pool. The feature selection strategy was designed to be outcome-driven, aiming to
mine features that capture the prognostic patterns. As illustrated in Fig. 2A, we applied a sequential
combination of univariate and multivariate selection on the PET, CT radiomic features and clinico-
biological features extracted from training data. In univariate selection, log-rank test was used to select
statistically signi�cant features with high prognostic value (p < 0.05). Based on the selected features,
multivariate selection was deployed to select the �nal discriminative feature set using RSF-based variable
hunting algorithm [32]. To prevent the risk of over�tting, we applied 50 times of �ve-fold cross-validation
in multivariate feature selection to boost the generalizability of selected feature subsets. As the selected
features were based on the performance of rotating training sets instead of a single �xed training set, the
selected feature subset was more generalizable, thus properly avoiding the risk of over�tting.

Modeling and Validation
The patients were split into training and validation sets (7:3 ratio) using the strati�ed method. A random
survival forest (RSF) model, which captures non-linear effects, was �tted to predict the recurrence-free
survival (RFS) on the training set. To select the best performing RSF model with optimized
hyperparameter, we used grid search strategy based on the average C-index on the training set with 1000
times of bootstrap. The model performance was evaluated by C-index on the validation set with the 1000
times bootstrap method to reduce model over�tting. Furthermore, the predicted risks of the validation set
yielded by the �tted RSF model were dichotomized into low-risk and high-risk groups. Then two groups
were compared using the log-rank test to examine whether the model could stratify patients with different
RFS.

Statistical Analysis
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Statistical analysis was implemented using R package version 3.6.3 (R Foundation for Statistical
Computing) and p-value<0.05 was considered statistically signi�cant. The optimal cutoff point for the
log-rank test was performed by ‘surv_cutpoint’ function in the ‘survminer’ R package. The random survival
forest and variable-hunting algorithm were implemented using the “randomForestSRC” R package.

Results

Demographics of patients
There are 196 patients with colorectal cancer involved in the dataset. Table 1 summarizes the detailed
demographics of patients. In the original experiment, 196 patients (ranging from stage I to stage IV) were
randomly split into 138 training samples and 58 validation samples with a ratio of 7:3. The dataset used
in the primary experiment is denoted as D-1~4. There were 29.6% of patients from D-1~4 who
experienced recurrence. In the further experiment, we conducted the prognostic analysis on patients with
stage III only, which was split into training and testing sets with a ratio of 7:3. The dataset containing only
stage III patients is denoted as D-3. There were 33.3% of patients from D-3 who experienced recurrence.
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Table 1
Patients characteristics of the training and validation sets.

Characteristics Training set(n=138) Validation set(n=58) P value*

CEA 18.022±41.604 25.928±51.872 0.090

CA199     0.535

High 36 12  

Normal 102 46  

Lymph nodes 2.326±3.560 2.172±3.320 0.804

Stage     0.486

I 13 3  

II 42 23  

III 55 23  

IV 28 9  

Location     0.331

Ascending 13 4  

Descending 19 8  

Ileocecum 11 1  

Rectum 54 21  

Sigmoid 34 22  

Transverse 7 2  

Follow up time 19 20 0.751

NOTE: Continuous data except follow-up time (which was shown with median) were demonstrated
with means ± standard deviations while categorical data were demonstrated with the number of each
category and percentage. *p-value was calculated by using 𝜒2 test for categorical variable and
Wilcoxon test for continuous variable.

 

Result of feature selection
As illustrated in Fig. 2B, feature selection was applied on 2492 radiomics features extracted from PET
and CT images and 24 clinico-biological features. For patients with stage I-IV, 12 CT and 48 PET
radiomics features and nine clinico-biological features, were selected during univariate selection, while
the �nal feature set composed of two CT, two PET and two clinical features was selected in multivariate
selection for model building. For patients with stage III, 27 CT and 22 PET radiomics features and �ve
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clinico-biological features were selected during univariate selection, while one CT, one PET and two
clinical features were selected in multivariate selection.

Performance of radiomics signature
The performance of selected radiomic signatures is described in Fig. 3A and 3B for primary experiment D-
1~4 and secondary experiment D3, respectively. Fig. 3A and 3B show RSF models built with clinical, CT
and PET features outperforms models with solely clinical, PET or CT features, peaking at C-index 0.780
[95% CI 0.634-0.877] and 0.820 [95% CI 0.676-0.900] respectively. The detailed performance of signatures
was attached in the supplementary Table S2. K-M curves of radiomics signatures for D-1~4 and D3 are
demonstrated in Fig. 3C and 3D respectively (P < 0.0001). To evaluate the risk of over�tting, we
summarized training and testing C-index during the independent validation in Supplementary Table S1.
The table shows the differences between training and testing C-index were less than 0.03 in both
experiments, which suggests the risk of over�tting was properly alleviated.

Feature analysis and interpretation
There were eight features identi�ed by the feature selection process from D-1~4 including four clinical
features (CA199, lymph nodes, stage, and CEA), two PET features (PET-wavelet-LLH-gldm-DV and PET-
wavelet-LLL-glcm-imc2) and two CT features (CT-Log-sigma-5.0-3D-glszm-SAE, CT-Log-sigma-4.0-3D-
glszm-SALGLE). The RSF model built on these eight features is denoted as M1. There were four features
identi�ed for the secondary experiment D-3 including two clinical features (CA199 and lymph nodes) and
one PET feature (PET-Wavelet-LLH-glszm-ZV) and one CT feature (CT-Log-sigma-5.0-3D-glszm-SAE). The
RSF model built on these four features for the secondary experiment is denoted as M2. Detailed feature
explanation was attached in the supplementary Table S3.

We further reveal the contribution of each feature for model M1 and M2 in Fig. 4A and 4B. Bar graphs in
Fig. 4A and 4B show the normalized importance of each feature, in which CA199 contributed most in M1
and PET-Wavelet-LLH-glszm-ZV contributed most in M2. Pie graphs in Fig. 4A and 4B illustrate the
percentage of contribution of PET, CT and clinical features. PET and CT features contributed 13.3% in M1
while contributed 83.5% in M2. In addition to feature contribution, we compared the features in M1 and
M2 then found two common clinical features (CA199 and lymph nodes) and one common CT feature (CT-
Log-sigma-5.0-3D-glszm-SAE).

Figure 4C summarizes Pearson correlation between selected radiomic features and clinical features. It
shows that radiomic features were signi�cantly correlated to metabolic tumor activity features such as
SUVmean, SUVmax, TLG, and 40%MTV.

Case study
We chose two stage III samples from the validation set of the Data-3 to showcase the predictive
performance of M2 model built on the radiomics signature. Fig. 5A shows the individualized predictive
results for these two samples summarized with survival curves. It shows that the curve of patient 1 was
lower than patient 2, which means the recurrence time of patient 1 could be shorter. This was in
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accordance with their real recurrence time, eight months for patient 1 and 13 months for patient 2. Values
of radiomic features for these two patients were shown in Fig. 5B. The Zone variance (ZV) of PET-
Wavelet-LLH image measures the variance in gray level zone size. The larger ZV, the greater
heterogeneity. The SAE (Small Area Emphasis) of CT-Log-5.0-3D image measures the distribution of
small size gray level zones and the large value indicated �ne textures. Detailed clinical information of two
patients was included in the supplementary Table S4. The visualization of radiomic features was
demonstrated in Fig. 5C. In terms of univariable analysis, patient 1 with CA199 normal tends to have a
better prognosis but was in fact associated with shorter recurrence time. In contrast, our model M2 still
made the correct prediction dominantly contributed by PET/CT radiomics features (83.5%) while the
importance of CA199 is only 14% in M2.

Discussion
Previous studies have shown that 18F-FDG PET/CT radiomics performed well in predicting the prognosis
of various malignancies. The newly developed PET/CT radiomic signature was a powerful predictor of
gastric cancer survival [33]. Radiomics features of baseline PET/CT images provide complementary
prognostic information for nasopharyngeal carcinoma compared with the use of clinical parameters
alone [34]. This method was also advantageous to predict the prognosis of lung cancer, breast cancer
and other tumors [35–37]. As for colorectal cancer, a few studies demonstrated that FDG PET radiomic
held potential towards the improved prediction of clinical outcome in stage IV patients of colorectal
cancer and locally-advanced rectal cancer [38, 39]. The explosive researches on the prognostic value of
PET/CT-based radiomics methods for the total colorectal cancer were rare, especially for stage III. A study
on the National Cancer Data Base (NCDB) showed that CRC patients with stage III accounted for
approximately one-third of all stages [40]. Moreover, the 5-year survival rate of this largest proportion of
patients was subjected to a large difference in the survival outcomes [41, 42]. Therefore, evaluating the
prognosis of stage III colorectal cancer separately and intervening as early as possible according to
different individual patients to reduce the risk of recurrence and metastasis is necessary. In this study, we
developed an original model to predict the prognosis of CRC patients and further experimented on stage
III patients by 18F-FDG PET/CT radiomics.

We originally investigated prognosis models for patients ranging from stage I to IV in the primary
experiment. The model M1 trained by a combination of features of all three modalities outperformed
other models with a C-index of 0.780 [95% CI 0.634-0.877]. The K-M curves indicated that high-risk and
low-risk patient groups could be separated by our model effectively (P < 0.0001). For model M1, CA199
was the most important feature. It means that this cancer antigen marker CA199 contributed most to the
outcome of the prognostic prediction in model M1. The result is consistent with previous studies [43] that
CA199 is a key prognostic biomarker. It should also be noted that the contribution of imaging features
was irreplaceable, although they only accounted for 13.3% of the contribution. Both PET and CT features
were important and irreplicable in radiomics analysis because they both had positive importance scores,
which suggests these features positively contributed to the model accuracy. Experimental results in
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Manuscript Fig. 3A veri�ed that the model constructed with multimodalities (C-index 0.780) outperformed
the models built with PET (C-index 0.592) or CT (C-index 0.755) alone on D-1~4. Similar trend can be
identi�ed on D-3 with Fig. 3B.

We also focused on analyzing models for patients with stage III, because the 5-year survival rate is
unsatisfactory, though radical surgery and adjuvant chemotherapy were routinely performed. The
prediction of prognosis is valuable for supporting individualized treatment. The C-index of M2 was 0.820
[95% CI 0.676-0.900], which means it holds a great potential value of prognostic prediction in colorectal
cancer. Its performance was also superior to single modality or double modality models. K-M curves of
M2 illustrate the model could signi�cantly separate high-risk and low-risk patient group. For model M2,
PET-Wavelet-LLH-glszm-ZV was the most important feature in the predictive model, which means the
texture information quanti�ed by this PET feature successfully captured the heterogeneity of colorectal
tumour towards prognostic prediction. It was because PET images could provide information not only
about the metabolism of the tumor, but also about the total load of the tumor. For further interpretation of
this PET feature, we conducted correlation analysis, and found that this PET features positively correlated
with 40% MTV and TLG (p<0.05). CA199 which contributes most in M1 only made up 14% of all feature
contributions.

Moreover, CA199, lymph nodes and CT-Log-sigma-5.0-3D-glszm-SAE were three features identi�ed both in
M1 and M2. The feature importance analysis showed that clinical features played the most vital roles in
the prognosis of CRC patients of all stages while radiomics features made more contribution when
predicting the prognosis of CRC patients with stage III. The case study also demonstrated that features
with greater contribution could help the model to overcome the negative impact caused by single features
then rectify the prediction. Thereby, it is reasonable to believe that the combination of clinical
characteristics and imaging characteristics of 18F-FDG metabolism is more convincing than any single
modality model.

We reduced the risk of over�tting through reducing the number of features and employed cross-validation
in feature selection. Firstly, we reduced the risk of over�tting by strictly controlling the number of features,
as the reduced number of features leaded to the decrease of the number of required parameters inside
machine learning models, thus minimizing the risk of over�tting [43]. According to the guideline for
radiomics studies [44], we reduced the number of features to less than 1/10 of sample sizes. Secondly,
50 times �ve-fold cross-validation was deployed during the feature selection on the training dataset to
reduce the risk of over�tting [43]. By selecting features on the rotating training instead of a �xed training
set, we effectively minimize the risk of over�tting on a �xed proportion of data. Thirdly, we evaluated the
risk of over�tting by comparing the performance of the model on training and testing datasets in
independent validation. Supplementary Table S1 shows the difference between training and testing C-
index was less than 0.03 in both experiments, which suggests the risk of over�tting was properly handled.

This study was partly limited by its retrospective design and relatively modest sample sizes. We will
continue to collect more patients who meet the criteria and attempt to conduct prospective studies to
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further validate our models. We look forward to further randomized controlled trials in the future on the
signi�cance and importance of 18F-FDG PET/CT imaging omics in the diagnosis and treatment of
colorectal cancer. We will investigate the effect of spatial resolution of PET/CT images on the parameters
of radiomic feature extraction.

Conclusion
We designed and investigate the prognostic value of 18F-FDG PET/CT radiomics for colorectal cancer in
this study. 18F-FDG PET/CT radiomics combined with clinical features could be instructive in the
predictive prognosis of colorectal cancer, especially in stage III. The proper application of 18F-FDG
PET/CT radiomics could optimize the individual treatment strategy by avoiding ineffective or excessive
management.

List Of Abbreviations
CRC Colorectal Cancer

18F-FDG 18F-�uoro-2-deoxy-D-glucose

PET/CT Positron emission tomography/computed tomography

SUV Standardized Uptake Value

MTV Metabolic Tumor Volume

TLG Total Lesion Glycolysis

VOI the Volume of Interest

RSF Random Survival Forest
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Figure 1

Radiomics work�ow.
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Figure 2

Methodology and result of feature selection. (A) Feature selection pipeline; (B) the number of selected
features in the feature selection process.
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Figure 3

The performance of prognostic models. Figure A and B showed the comparison of the prognostic
performance of different feature types on D-1~4 and D-3 respectively. Figure C and D were K-M Curves for
different feature types on D-1~4 and D-3 respectively.
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Figure 4

Feature importance and Pearson correlation of M1 and M2. Figure A was the importance of features in
models M1 and M2. Clinical, PET, and CT features were represented by using blue, gray, and red bar,
respectively. Figure B demonstrated Pearson correlation between selected radiomic features and clinical
features in model M1 and M2. Only signi�cant correlation coe�cients under Pearson correlation test
(p<0.05) were shown and others were masked by gray color (Figure C).



Page 20/21

Figure 5

Case study for individualized result interpretation. Figure A showed the predicted survival curves of
individual patients yielded by the model M2. Figure B showed the values of radiomic features of patients
in the case study. Figure C was the visualization of radiomic features.
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