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Abstract

Statistical methods are commonly used to monitor quality in manufacturing processes. We consider
a set of problems where the probability that a unit is defect, i.e., the defect probability, is influenced
by a large number of sub-processes, and where the overall aim is to monitor the defect probabil-
ity and link abnormalities in quality to observed production variables. We developed a simulation
framework for studying the performances of statistical methods used to solve the considered problem.
Fourteen prediction procedures were obtained by combining six prediction methods
(linear regression, logistic regression, LASSO, penalized logistic regression, support vec-
tor machines, gradient boosting decision trees) and two pre-processing procedures.
These prediction procedures were evaluated on four types of simulated datasets with
different relationships between the explanatory variables and the defect probabilities.
Additionally, two established methods for variable selection were compared to a novel method
called mixed moments selection (MMS). MMS was more robust than the other methods, per-
formed well on all dataset types, and can easily be combined with any type of prediction
method. Additionally, it was shown that it can be advantageous to complement the original
explanatory variables with their squared values prior to analyzing the data. Overall, a procedure
combining MMS, including additional quadratic terms and using PLR had the best performance.
The proposed framework can be applied to evaluate any type of prediction procedure
for the general problem we consider. This would increase the understanding of differ-
ent procedures and facilitate the selection of procedures for a specific problem.

Keywords: Process Control, Manufacturing, Quality Prediction, Simulation, Variable Selection

1 Introduction

Statistical learning and machine learning methods
are commonly used to analyze high-dimensional
datasets from manufacturing processes. A com-
mon objective is to use process data as explana-
tory variables to model the quality of the product,
either as a regression or classification problem
[5, 12, 19, 13, 11]. In recent years a large number
of algorithms that predict this quality with a high
accuracy has been developed, including support

vector machines [6], tree-based algorithms such as
random forests [2] and gradient boosting [8], as
well as numerous flavors of neural networks [15].
These algorithms share the property that they are
complex in the way the predictions are calculated,
in the sense that it is hard to understand how the
individual explanatory variables contribute to the
predictions. Besides prediction, statistical analy-
sis of these manufacturing datasets is used for
interpretation, i.e., to associate the quality with
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individual process variables [1]. It is generally
accepted that the predictive power of the afore-
mentioned complex methods come with a tradeoff
that is lower interpretability [10, Chp. 2.1.3].
This tradeoff has been addressed before, perhaps
most interestingly by model-independent methods
examplified by: LIME [18] learns an interpretable
model locally; Štrumbelj and Kononenko [22] sug-
gested perturbing all input features to account for
interactions; Shapley values [14] use game theory
to reduce the impact of collinearity among the
regressors; DeepLIFT [21] attempts to decompose
the predictions of neural networks. If a complex
model has a good model fit, these methods may
help to provide a useful interpretation. However,
if the fit is poor there will be little information on
why the model failed to describe the data.

Model fitting is usually preceeded by some sort
of preprocessing such as feature selection, trans-
formation, and extraction [5, 16]. One purpose of
this preprocessing is to make the model fitting
easier, e.g., by reducing the number of parame-
ters to estimate. However, this preprocessing may
exacerbate the problem of understanding the pre-
dictions of the fitted model. Feature extraction
methods such as principal component analysis
create new features from a high number of the
original explanatory variables, but these features
will have loadings on every single original variable.
Penalized matrix decomposition methods serve to
find a sweeter spot in the prediction/interpre-
tation tradeoff, but they do not eliminate the
tradeoff entirely [24]. Kernel methods make this
even worse by making these loadings vary in the
parameter space [20]. In conclusion, even though
the aforementioned methods have proven to be
quite powerful, there is still a need for simple
and robust algorithms that make both fitting and
interpretation easier.

If the purpose is to model the probability of a
quality problem with a binary response as a func-
tion of a set of process variables, the evaluation
may be difficult. In particular, it can be difficult to
conclude whether a bad fit is due to an improper
model or due to a low explanatory power of the
data. If the perfect model is fitted but the data
explain a small part of the probability, the model
will seem to have poor performance. On the other
hand, if the data explain the entire probability but
the model is a poor fit, the model will seem to
be just as in the previous case. In this study we

attempt to bridge this gap by simulating the pro-
cess data, and specifying a function that computes
the probability of a defect from the process data.
The computed probabilities are used to gener-
ate an observable binary outcome, i.e., defect/not
defect. Various regression and machine learning
methods are used to predict the computed prob-
abilities from the observed explanatory variables
and binary outcome. The simulations are based
on a visualization study from an actual manufac-
turing process, where the process variables were
illustrated using various plots which were studied
extensively. The aim of this approach is to provide
an understanding of how well one can expect the
statistical models to perform.

The manufacturing process which is the inspi-
ration for this study is the Volvo Trucks cab
factory in Ume̊a, Sweden. In this factory steel coil
is stamped and welded into cabs which are sur-
face treated and sent to other locations for vehicle
assembly. We are concerned with the quality of the
surface treatment, which consists of three steps:
pre-treatment and electrocoating, primer applica-
tion, and top coat application. Each of these steps
is followed by a quality control where defects are
logged and repaired. Example defects include par-
ticles, craters, and paint droplets. A large part of
the repair cost is associated with the transport
to and from the repair stations, which is why we
categorize the cabs into defect and not defect.

This paper is organized as follows: in
Section 2.1 we provide a description of the sim-
ulation framework and the simulated datasets,
in Section 2.2 we describe the variable selection
methods and experiment, and in Section 2.3 we
describe the prediction experiment and the evalu-
ated predictive methods. In Section 3.1 we present
the results of the variable selection experiment,
and in Section 3.2 we present the results of the
prediction experiment.

2 Method

2.1 Simulation framework

We consider a problem with m indepen-
dent stochastic explanatory variables X =
(X1, ..., Xm), and the corresponding observations
xi = (xi,1, ..., xi,m), i = 1, ..., n. Furthermore,
we have a vector of response variables Y =
(Y1, ..., Yn), and the corresponding observations
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y = (y1, ..., yn), where yi 2 {0, 1}, i = 1, ..., n.
Here a y-value of 0 and 1 would represent a
non-defect and defect observation, respectively.
Finally, let p = (p1, ..., pn) denote the defect prob-

abilities, i.e., pi = P (Yi = 1), i = 1, ..., n.
Here we assume that the defect probabilities p

can be expressed as a function of the observed
explanatory variables, i.e., pi = h(xi), i = 1, ..., n.

In order to simulate y-values, we need to
specify the function h. This would allow us to
draw y-values from the Bernoulli distribution with
parameters pi = h(xi), i = 1, ..., n. In the sim-
plest case, h can be derived from the standard
logit function, i.e.,

logit(pi) = ln

✓

pi

1� pi

◆

= g(xi), (1)

such that

pi = h(xi) = logit�1(g(xi)) =
1

1 + exp(�g(xi))
,

(2)
where

g(xi) = α+

m
X

j=1

βjxi,j , (3)

i = 1, ..., n, where α and {βj}j=1,...,m are param-
eters.

The linearity of Eqn. (3) is restrictive, and we
therefore consider a more general function, i.e.,

g(xi) = α+

m
X

j=1

βjsj(xi,j), (4)

where the shape functions sj can be non-linear.
For this study we consider three different shape
functions denoted s1, s2 and s3. First, we intro-
duce the raw shape functions s01 to s03, where

s01(x) = x, (5)

s02(x) = x2, (6)

s03(x) =

(

0, x  0

x, x > 0.
(7)

In order to facilitate comparisons between differ-
ent shape functions, we want the impact of each
variable to be of similar size regardless of the
choice of shape function used to transform that
variable. To this purpose, the raw shape functions

are standardized with respect to the transformed
X-variable, so that the transformed variable has
mean 0 and variance 1. Thus, we get the shape
functions used in the simulations by

sj(x) =
s0j(x)� E[s0j(Xj)]

q

V [s0j(Xj)]
, (8)

j = 1, ...,m. The standardized functions s1, s2 and
s3 will be referred to as the linear, quadratic and
ramp functions, respectively. The shape functions
for some distributions of X are shown in Fig. 1.

Next, we consider the β-parameters in (4),
which need to be chosen such that the influence of
each explanatory variable can be controlled. First,
we rewrite (4) as

g(xi) = α+ C

m
X

j=1

γjsj(xi,j), (9)

where
m
X

j=1

γ2
j = 1. (10)

Here the parameter C denotes the overall impor-

tance of the explanatory variables, i.e., to what
degree they explain the outcome of Y . The dis-
tribution of the defect probability P = h(X) for
different values of C are shown in Fig. 2. The vari-
ances of P , as well as the expected variances of
Y | P as functions of C are shown in Fig. 3. For
large values of C, the defect probabilities p are
close to 0 and 1, while for small values of C they
are close to the prior probability. In other words, a
low value of C defines a hard prediction problem.

The γ-parameters in (9) control the relative

importance of the explanatory variables. For real
world applications, we believe that it is reasonable
to assume that only a few variables have a large
influence on the outcome. Therefore we chose the
γ-parameters as described in Fig. 4, where 60%
of the explanatory variables were non-informative,
and for m = 1000 the remaining variables ranged
from having a small impact (γ = 0.026) to a large
impact (γ = 0.18).

If the distribution of X is specified, the
explanatory variables can be simulated. If in addi-
tion the parameters in (9) are specified, i.e., the
intercept α, the overall importance C, the shape
functions s, and the relative importances γ, the
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Fig. 1: The raw shape functions s01(x) to s03(x) (first row); the shape functions s1(x) to s3(x) where
X ⇠ N(0, 1) (second row) and whereX ⇠ N(1, 0.25) (third row), with the shape functions standardized so
that the transformed variables have mean value 0 and variance 1. The distributions N(0, 1) and N(1, 0.25)
are denoted with red lines in the second and third rows, respectively. Created using the TikZDevice R
package.

defect probabilities p can be calculated, and the
binary outcomes y can be simulated. For all sim-
ulations the following settings were fixed: m =
1000, Xj ⇠ N(0, 1), j = 1, ...,m, α = 0, C = 2,
and the γ-parameters as described in Fig. 4. The
number of observations n was varied with each
experiment.

By varying the distribution of the shape func-
tions, four dataset types were simulated, denoted
the linear, quadratic, ramp, and mixed datasets.
For the first three types, the shape functions were
the linear, quadratic, and ramp shape functions,
respectively. For the fourth type, the shape func-
tion for each x-variable was drawn from the linear,
ramp, and quadratic shape functions with equal
probability. For the experiments each dataset type
was realized several times, and each such realiza-
tion will be referred to as a dataset realization.

2.2 Variable selection

When analyzing the datasets in Section 2.1, vari-
able selection was performed prior to the pre-
diction of the defect probabilities. The selection
methods considered were the mean value selection

method (MVS), variance selection method (VS),
and the novel mixed moments selection method
(MMS).

MVS uses the two-sided Welch’s t-test [23] to
test the null hypotheses

H0,j : E[Xj | yi = 0] = E[Xj | yi = 1], (11)

i = 1, ..., n, j = 1, ...,m. x-variables with p-values
lower than the significance level α were included
in the downstream analysis. VS uses Levene’s test
of equal variances [3, pp. 278–292] to test the null

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Springer Nature 2021 LATEX template

atistical Methods for Quality Control in Manufacturing 5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

p

f
P
(p
)

C = 3

C = 2

C = 1

Fig. 2: The distributions of the defect probabil-
ity P = h(X) for different values of the overall
importance C. The distribution of defect probabil-
ity converges to these distributions for any set of
shape functions when the number of explanatory
variables increases, under the standard assump-
tions for the central limit theorem. Created using
the TikZDevice R package.

hypotheses

H0,j : V [Xj | yi = 0] = V [Xj | yi = 1], (12)

i = 1, ..., n, j = 1, ...,m, and selects variables with
p-values lower than α.

The novel MMS method uses the lower of
the p-values from the MVS and VS methods and
selects the variable if this p-value is lower than the
significance level. This method uses the Bonfer-
roni corrected [9] significance level α0 to preserve
the false positive rate:

α0 = 1�
p
1� α, (13)

Here, the results of the mean value and variance
tests are assumed to be independent.

The variable selection methods MVS, VS and
MMS were evaluated on four dataset types: lin-
ear, quadratic, ramp and mixed, each with 500,
5 000, 50 000 observations, see Section 2.1. For
each dataset type, the methods were evaluated
on 100 dataset realizations. For MVS and VS
a significance level of α = 0.1 was used, and
the corresponding significance level for MMS was
α0 = 1 �

p
1� α ⇡ 0.0513. Henceforth, only the

-2 -1 0 1 2

0
.0
0

0
.1
0

0
.2
0

log10(C)

Fig. 3: The variance of the defect probability P as
a function of the overall importance C (black solid
line), and the corresponding expected variance of
the conditional probability Y | P (red dashed
line). The vertical dashed lines for C 2 {1, 2, 3}
correspond to the distributions in Fig. 2. Created
using the TikZDevice R package.

unadjusted significance level α will be used in the
text.

Note that when predicting defect probabilities,
the true probabilities p cannot be observed, nor
can the root mean square error (RMSE), i.e.,

RMSE =

v

u

u

t

1

n

n
X

i=1

(p̂i � pi)2, (14)

where p̂ and p are the predicted and true defect
probabilities, respectively. However, in Fig. 9 we
showed that the Y-RMSE, i.e.,

Y-RMSE =

v

u

u

t

1

n

n
X

i=1

(p̂i � yi)2 (15)

can be a useful proxy, where y is the observ-
able binary outcome. Additionally, we showed that
α = 0.1 is an appropriate level for our simulations.
Also note that a lower α will result in more infor-
mative variables being excluded, while a higher α
will result in more uninformative variables being
included.
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Fig. 4: The distribution of the relative impor-
tances γ used in the simulations. Created using
the TikZDevice R package.

For each number of observations, dataset type,
and selection method, a vector of the total rel-
ative importance of the selected variables was
computed, with one value for each dataset real-
ization. For each number of observations, dataset
type, and pair of selection methods, the differences
between these vectors was computed. One-sample
t-tests were performed to test the null hypothe-
ses that these differences had expected value 0,
against two-sided alternative hypotheses, using a
5% significance level. The results of these tests are
presented in Section 3.1.

2.3 Prediction

For each of the dataset types described in
Section 2.1, the simulated explanatory variables xi

and the binary outcomes yi were used to predict
the defect probabilities pi, i = 1, ..., n, j = 1, ...,m,
where m = 1000. Each dataset type was realized
10 times each, and each dataset realization con-
sisted of a training, validation, and test part, each
of size n = 50 000. The predictive models were
adjusted to the training part, and any hyperpa-
rameters were tuned on the validation data. The
prediction performance was evaluated by com-
puting the RMSE for each dataset realization,
see (14). Since the defect probabilities in (14) are

not observable in real world problems, any hyper-
parameters were optimized with respect to the
Y-RMSE, see (15).

The defect probabilities were estimated using
six methods: linear regression (LinR), LASSO
regression (LASSO), logistic regression (LogR),
penalized logistic regression (PLR), support vec-
tor machine (SVM), and gradient boosting deci-
sion trees (GBDT). For LinR, an ordinary least
squares model was adjusted to the binary y-values,
and any predictions smaller than 0 or larger than
1 were set to 0 and 1, respectively. LinR is com-
monly not used when the outcome is a binary
variable, and the predicted values cannot formally
be regarded as estimates of the defect proba-
bilities. However, we chose to include LinR as
a negative control. Additionally, as the overall
importance of the model decreases, the logit func-
tion can be approximated as a linear function,
and the performance of LinR should be similar
to or better than that of LogR. LinR was per-
formed using the lm function in the R package
stats, version 4.0.2.

LASSO solves the problem

min
α,β

(

1

n

n
X

i=1

(yi � α� x0

iβ)
2 + λkβk1

)

, (16)

where α, β = {β1, ...,βm} and λ are the intercept,
slope coefficients, and penalty hyperparameter,
respectively. Similarly to LinR, LASSO is not
commonly used for predicting binary response
variables, and the predicted values cannot for-
mally be regarded as probabilities. However, it is a
well-established method, and is therefore included.

PLR solves the problem

max
α,β

l(α,β | X)� λkβkl1 , (17)

where l(α,β | X) is the log-likelihood function

l(α,β | X) =
1

n

n
X

i=1

yi(α+ xT
i β)

� log
�

1 + exp(α+ xT
i β)

 

,

(18)

X =

0

B

@

x1,1 . . . x1,m

...
...

xn,1 . . . xn,m

1

C

A
, (19)
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and α, β = {β1, ...,βm} and λ are the intercept,
slope coefficients, and penalty hyperparameter,
respectively. PLR is equivalent to LogR if λ = 0
[7]. LASSO and PLR were performed using the
glmnet function in the R package glmnet, version
4.0.2. Both methods were used with the default
parameters and the built-in hyperparameter tun-
ing. For LogR we used the function glm in the R
package stats, version 4.0.2.

SVMs use the kernel trick to map the obser-
vations into a higher dimensional space with the
aim of making them linearly separable. In this ker-
nel space a maximum margin classifier with the
slackness parameter C is used. For posterior prob-
abilities a logistic regression model is adjusted in
the kernel space [17]. We used the implementa-
tion in the R package kernlab 0.9.29, with the
self-tuning radial basis function kernel [4].

GBDT adjusts a set of regression trees, where
each tree is adjusted to compensate for the error of
the preceeding trees. GBDT uses gradient descent
and works for an arbitrary differentiable loss func-
tion, in this case the mean squared error. The
hyperparameters include the number of trees as
well as the learning rate, where a higher learn-
ing rate leads to a faster overfitting, and thus
a lower optimal number of trees [8]. We used
the implementation in the R package gbm version
2.1.8.

LASSO and PLR perform their own variable
selection, and there is no rationale for perform-
ing separate variable selection prior to the model
fitting. However, for LinR and LogR prediction
was done both with and without preceeding vari-
able selection using the MMS method. To reduce
the computation time, SVM and GBDT were only
evaluated using MMS. For MMS a significance
level of α = 0.1 was used, see Section 2.2.

Linear and generalized linear models such as
LinR, LASSO, LogR and PLR are not suited for
the prediction of non-monotone responses. On the
other hand, SVM and GBDT are designed to be
robust for this type of modelling. Thus, for LinR,
LASSO, LogR and PLR, these methods were eval-
uated only for the simulated x-variables, as well
as for both these variables and their squares. That
is, for the latter case the matrix X of explanatory

variables was replaced by the matrix

X 0 =

0

B

@

x1,1 . . . x1,m x2
1,1 . . . x2

1,m
...

...
...

...
xn,1 . . . xn,m x2

n,1 . . . x2
n,m

1

C

A
. (20)

Here, the x2-variables are treated in the same
way as the x-variables during prediction, and as
a result we consider a dataset with 2m explana-
tory variables. The addition of the squares of
the explanatory variables was done after variable
selection. In total, the six prediction methods in
combination with the aforementioned preprocess-
ing methods resulted in 14 prediction procedures,
see Table 1.

Table 1: The prediction methods considered in
the evaluation are shown in the first column. A
plus and minus sign in the second column indicates
that the method was used with or without variable
selection using the MMS method, respectively. A
plus and minus sign in the third column indi-
cates that the method was used with and without
squared explanatory variables, respectively. The
last column summarizes the number of prediction
procedures per method.

Method MMS x2

LinR +- +- 4
LASSO - +- 2
LogR +- +- 4
PLR - +- 2
SVM + - 1
GBDT + - 1
Total 14

All predictions were compared to a negative
and a positive control. The negative control used
the mean of the binary outcomes as the predicted
defect probabilities, i.e.,

p̂i =
1

n

n
X

k=1

yk, (21)

i = 1, ..., n. This predictor gets worse the larger
the variance of the true defect probabilities.

As a positive control, the defect probabilities
pi were estimated by

logit(p̂i) = α̂+
X

{j : γj>0}

β̂jsj(xi,j), (22)
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i = 1, ..., n, where γ = (γ1, ..., γm) and sj(·) are the
coefficients and shape functions used to compute
the true defect probabilities, respectively. Here the
α̂ and β̂-estimates were computed using maximum
likelihood estimation. This means that the true
shape functions were known, and that only the
variables with non-zero importance were selected.

Next, we investigated whether there were dif-
ferences in performance between prediction pro-
cedures. To compare two procedures, both proce-
dures were used to predict the defect probabilities
for each dataset realization, and the correspond-
ing RMSE-values were calculated. A two-sided
t-test was performed on the pairwise RMSE-
differences with a zero difference null hypothesis
and a significance level of 5%.

When evaluating the relative difference in per-
formance between two prediction procedures, the
difference in RMSE was divided by the RMSE
of the reference procedure. This was computed
separately for each dataset realization, and the
results were averaged. That is, the relative change
(RC) in RMSE when changing from procedure a

to procedure b was

RCa,b =
1

10

10
X

r=1

RMSEr,b �RMSEr,a

RMSEr,a

, (23)

where RMSEr,a and RMSEr,b is the RMSE of pro-
cedure a and procedure b for dataset realization r,
respectively. The results of the prediction experi-
ments are presented in Section 3.2. An overview of
the simulation, prediction and evaluation frame-
work is shown in Fig. 5.

3 Results

This section is organized as follows: The results of
the variable selection experiment from Section 2.2
are presented in Section 3.1. The results of the pre-
diction experiment from Section 2.3 are presented
in Section 3.2.

3.1 Variable selection results

For the selection of x-variables, three variable
selection methods were considered: MVS, VS and
MMS, see Section 2.2. The selection methods were
evaluated on four dataset types: linear, quadratic,
ramp and mixed, each with 500, 5 000, 50 000
observations, see Section 2.1. For each dataset

Explanatory variables
X = (X1, ..., Xm)

Parameters
α, C, {sj , γj}j=1,...,m

Observations
{xi = (xi,1, ..., xi,m)}i=1,...,n

Defect probabilities

pi = logit�1
⇣

α+
Pm

j=1 γjsj(xi,j)
⌘

Observable outcomes
Be(pi) ! yi

Evaluation

RMSE =

r

1

n

Pn

i=1(pi � p̂i)2
Predictions

p̂i

Fig. 5: The framework for the dataset simulation,
prediction and evaluation. The specified stochastic
X-variables were used to simulate explanatory x-
variables. The defect probabilities p = (p1, ..., pn)
were computed from the simulated x-values and
the parameters, i.e., the intercept α, overall impor-
tance C, shape functions s = (s1, ..., sm), and rel-
ative importances γ = (γ1, ..., γm). Note that the
shape functions s were standardized with respect
to the distributions of the X-variables, so that the
transformed variables had mean value 0 and vari-
ance 1. Observable binary outcomes y = (y1, .., yn)
were simulated from Bernoulli distributions with
probabilities p. The x-variables and y-values were
used by the prediction procedures to compute
predictions p̂ of the defect probabilities p. The
prediction procedures were evaluated using the
RMSE. Created using PGF/TikZ.

type 100 dataset realizations were simulated and
analyzed with all selection methods, and their
performances were measured by considering the
false positive rate and the true positive rate for
the non-informative and informative x-variables,
respectively. Additionally, the total amount of rel-
ative importance of the selected variables was
measured, i.e., the sum of the γ-values described
in Section 2.1.

For all dataset types and selection methods
the false positive rate was close to the signifi-
cance level 0.1, and the true positive rate increased
both with the number of observations, and with
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the relative importance of the x-variables. The
exceptions were that VS and MVS completely
failed to analyze the linear and quadratic datasets,
respectively, see Fig. 6, Fig. 7.

For the linear and quadratic datasets, the MVS
and VS methods performed the best, respectively.
For both these dataset types the MMS method
performed almost as well as the best method for
the respective dataset type. For the ramp datasets,
MVS and MMS performed the best. The perfor-
mance difference between the methods was small,
with a maximum difference of 1% in total selected
relative importance for n = 500, see Fig. 6, Fig. 7.

For the mixed datasets, MMS outperformed
both MVS and VS. For these datasets the true
positive rate approached 1 as γ increased, and the
selected importance approached 1 as n increased.
These results were not observed for the other selec-
tion methods. This can be explaind by the fact
that the defect probabilities in the mixed datasets
were derived using a mixture of shape functions,
see Fig. 6, Fig. 7. Here, all pairwise comparisons
between selections methods with respect to the
selected importance were significant at the 5%
level, see Fig. 7.

Overall, the evaluation suggests that MMS is
a robust variable selection method that is almost
as good or considerably better than the commonly
used MVS method, or the VS method.

3.2 Prediction results

The six prediction methods LinR, LASSO, LogR,
PLR, SVM and GBDT were combined with dif-
ferent preprocessing methods including variable
selection using the MMS method, see Section 2.2,
and the addition of squared x-variables, see (20).
This resulted in 14 prediction procedures, see
Table 1. These procedures were used to predict the
defect probabilities of 10 dataset realizations each
of the linear, quadratic, ramp and mixed dataset
types, see Section 2.1. The procedures were eval-
uated by looking at the RMSE of the predictions,
see Section 2.3. The hyperparameters for SVM
and GBDT for respective dataset type are shown
in Table 2.

Here, we consider only the regression meth-
ods, i.e., LinR, LASSO, LogR and PLR. As

Table 2: The hyperparameter values for SVM and
GBDT for the different dataset types.

Method SVM GBDT
Parameter log10(C) Shrinkage Trees
Linear 0.1 0.03 12 000
Quadratic 0.5 0.03 12 000
Ramp 0.1 0.04 7 500
Mixed -0.1 0.04 9 000

expected, adding squared x-variables when ana-
lyzing the linear datasets reduced the perfor-
mance independently of which prediction proce-
dure was used, with RMSE increasing between
11 and 44 percents, see Table 3. For the remain-
ing dataset types, improved performances were
observed when squared x-variables were included.
For the quadratic, ramp and mixed dataset types
the RMSE was reduced by between 70 and 79,
38 and 46, and 53 and 64 percents, respectively.
Notably, for the quadratic dataset type not adding
squared x-variables resulted in performances as
bad as that of the negative control, see Table 3,
Fig. 8. Hence, adding squared x-variables may be
a good idea if nonlinear relationships are expected
and if the number of observations is sufficiently
large for estimating the parameters of the model.

Henceforth, we considered only the best choice
with respect to adding squared x-variables, i.e.,
not adding squared x-variables for the linear
dataset type, and adding squared x-variables for
the other dataset types. Next, we investigated the
effect of variable selection, i.e., we compared LinR,
LinR with MMS, and LASSO, and we compared
LogR, LogR with MMS, and PLR. For both LinR
and LogR the performance was improved with
MMS, with a reduction in RMSE of between 4
and 9 percents for LinR, and between 12 and 18
percents for LogR. Similarly, the intrinsic vari-
able selection of LASSO and PLR reduced the
RMSE by between 0 and 8 percents, and between
11 and 29 percents, respectively. Finally, we com-
pared the MMS method to the intrinsic variable
selection of LASSO and PLR. Here, LASSO was
outperformed by LinR with MMS for all dataset
types, with an increase in RMSE between 1 and
5 percents. In contrast, PLR outperformed LogR
with MMS for the quadratic and mixed dataset
types, with a reduction in RMSE of 13 and 6
percents, respectively. Notably, no significant dif-
ference in performance between LinR with MMS
and PLR was observed for the linear and ramp
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Fig. 6: The ratio of variables selected for each level of relative importance γ (horizontal axes). Each
row represents a number of observations n, and each column a dataset type, from left to right: linear,
quadratic, ramp, mixed. The black circles/solid lines, red triangles/long dashes and blue crosses/short
dashes indicate the mean value, variance, and mixed moments variable selection methods, respectively.
Each data point is the average over 100 repetitions. The horizontal dashed lines is the significance level
used in the variable selection. Created using the TikZDevice R package.

dataset types. This is most likely due to MMS
being performed before the addition of squared x-
variables. This reduces the performance in case of
quadratic shape functions, for which the inclusion
of the original x-variables confer no advantage, see
Table 3 and Fig. 8.

Next, we investigated the effect of the link
function, i.e., the identity function for LinR and
LASSO, and the logit function for LogR and PLR.
Here, we only compared the best methods from
the previous comparison, i.e., LinR-MMS and
PLR. Unsurprisingly, PLR outperformed LinR
with MMS for all dataset types, with a decrease in
RMSE of between 9 and 31 percents. The small-
est difference was observed for the ramp dataset
type. The relatively high RMSE of PLR for this
dataset type is probably a result of the fact that

the ramp shape function is the only shape func-
tion that cannot be perfectly modeled by PLR.
This suggests that LinR and LASSO are relatively
robust for less well-behaved datasets, see Table 3
and Fig. 8.

Finally, we compared SVM and GBDT to the
best regression method, i.e., PLR. Note that SVM
and GBDT were only evaluated using MMS, which
has been shown to perform worse than the intrin-
sic selection of PLR for the quadratic and mixed
dataset types. Both SVM and GBDT performed
worse than PLR for all dataset types, which is
to be expected since PLR yields close to the cor-
rect model with variable selection and the correct
link function. For the linear, quadratic, ramp and
mixed dataset types, SVM increased the RMSE by
72, 209, 35 and 123 percents, respectively, while
GBDT increased the RMSE by 149, 175, 37 and 89
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Fig. 7: The ratio of total relative importance of the selected variables as in Fig. 6. The black solid lines,
red long dashes, and blue short dashes indicate the mean value, variance and mixed moments selection
methods, respectively. The lines are the average ratio for each parameter combination, and the error
bars indicate the 5th and 95th percentiles. The horizontal dashed line is the significance level used in the
variable selection. Created using the TikZDevice R package.

percents, respectively. The relatively good perfor-
mance of SVM for the linear datasets is most likely
a result of the posterior probabilities being com-
puted by logistic regression in the kernel space,
which should be similar to the observation space
for an optimally tuned kernel function. Again,
the relatively low increase in RMSE of SVM and
GBDT for the ramp datasets when compared to
PLR can be explained by the inability of PLR to
model the ramp shape function. Similarly to LinR
and LASSO, SVM and GBDT seem to be rela-
tively robust for less well-behaved datasets, see
Table 3 and Fig. 8.

4 Discussion

In this paper we have introduced a framework
for simulating datasets similar to those collected
from real world manufacturing processes. The
simulated datasets consist of simulated explana-
tory x-variables, unobservable defect probabilities

computed from the x-variables, and observable
binary y-variables, where a value of 0 and 1
would represent a non-defect or defect observa-
tion, respectively. The framework allows us to
evaluate methods for predicting the defect proba-
bilities from the x-variables and y-variables, and
allows us to evaluate methods for interpreting the
predictive models. We believe that this approach
is useful when the collected explanatory data
explain a small part of the variation in the defect
probability. This would facilitate the evaluation

of the predictive models by giving an indica-
tion of whether the remaining variation should be
attributed to the missing explanatory data, or to
poor model fitting.

When using the framework to simulate
datasets, various parameters can be modified. This
includes the distributions of the x-variables, the
prior probability of a defect distribution, the dis-
tribution of the importances of the x-variables,
the overall explanatory power of the x-variables,
and the relationships between the x-variables and
the defect probability. For our simulated datasets,
we have chosen our parameters both with the aim
of making the datasets similar to our real world
application, as well as making the results eas-
ily interpretable. The linear, quadratic and ramp
shape functions used in our simulations could rep-
resent a negative control as well as a misspecified
control limit, a correct control limit, and a one-
sided control limit, respectively. We suggest a
data-driven approach based on visualizations of
the collected data when choosing parameters for
the proposed framework.

The proposed framework allows for large vari-
ations in simulation parameters. The x-variables
can be simulated i.i.d. as in our case, the distri-
butions can be estimated from real data including
correlations and autocorrelations, or real data can
be used as is. The relationships between the x-
variables can be varied, and interaction terms can
be added through simple extensions. Additionally,
noise can be added to the observable x-variables,
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Table 3: A comparison of the 14 prediction procedures when predicting the defect probabilities of the
linear, quadratic, ramp and mixed datasets. The procedures were obtained by combining the prediction
methods linear regression (LinR), LASSO, logistic regression (LogR), penalized logistic regression (PLR),
support vector machines (SVM), gradient boosting decision trees (GBDT) with variable selection using
the mixed moments selection method (MMS) and the addition of the squares of the explanatory variables
as separate explanatory variables (x2). The table shows the results of pair-wise comparison between
different procedures, where the reference procedure is compared to the alternative procedure, using the
one-sample t-test based on the differences in RMSE for 10 dataset realizations. For each comparison the
relative change (RC) was observed together with the corresponding p-value: ⇤: p < 0.05; ⇤⇤: p < 0.01;
⇤ ⇤ ⇤: p < 0.001. Investigated in the five blocks from top to bottom: the effect of adding squared x-
variables; the effect of adding variable selection; a comparison between the variable selection methods;
the choice of link function, i.e., linear for LinR, and logistic for PLR; a comparison between the best
regression method, i.e., PLR and the classification methods, i.e., SVM and GBDT. †: squared x-variables
were added for the quadratic, ramp and mixed dataset types.

Procedures Linear Quadratic Ramp Mixed
Reference Alternative RC p RC p RC p RC p
LinR LinR-x2 0.260 ⇤ ⇤ ⇤ -1.715 ⇤ ⇤ ⇤ -0.689 ⇤ ⇤ ⇤ -1.076 ⇤ ⇤ ⇤
LinR-MMS LinR-MMS-x2 0.160 ⇤ ⇤ ⇤ -1.827 ⇤ ⇤ ⇤ -0.766 ⇤ ⇤ ⇤ -1.172 ⇤ ⇤ ⇤
LASSO LASSO-x2 0.150 ⇤ ⇤ ⇤ -1.791 ⇤ ⇤ ⇤ -0.704 ⇤ ⇤ ⇤ -1.133 ⇤ ⇤ ⇤
LogR LogR-x2 0.525 ⇤ ⇤ ⇤ -1.823 ⇤ ⇤ ⇤ -0.735 ⇤ ⇤ ⇤ -1.152 ⇤ ⇤ ⇤
LogR-MMS LogR-MMS-x2 0.380 ⇤ ⇤ ⇤ -2.099 ⇤ ⇤ ⇤ -0.894 ⇤ ⇤ ⇤ -1.378 ⇤ ⇤ ⇤
PLR PLR-x2 0.236 ⇤ ⇤ ⇤ -2.283 ⇤ ⇤ ⇤ -0.875 ⇤ ⇤ ⇤ -1.463 ⇤ ⇤ ⇤
LinR† LinR-MMS† -0.057 ⇤ ⇤ ⇤ -0.128 ⇤ ⇤ ⇤ -0.092 ⇤ ⇤ ⇤ -0.115 ⇤ ⇤ ⇤
LinR† LASSO† -0.006 ⇤ ⇤ ⇤ -0.113 ⇤ ⇤ ⇤ -0.026 ⇤ ⇤ ⇤ -0.073 ⇤ ⇤ ⇤
LogR† LogR-MMS† -0.194 ⇤ ⇤ ⇤ -0.293 ⇤ ⇤ ⇤ -0.181 ⇤ ⇤ ⇤ -0.249 ⇤ ⇤ ⇤
LogR† PLR† -0.211 ⇤ ⇤ ⇤ -0.498 ⇤ ⇤ ⇤ -0.170 ⇤ ⇤ ⇤ -0.338 ⇤ ⇤ ⇤
LinR-MMS† LASSO† 0.051 ⇤ ⇤ ⇤ 0.015 ⇤ 0.066 ⇤ ⇤ ⇤ 0.042 ⇤ ⇤ ⇤
LogR-MMS† PLR† -0.017 -0.205 ⇤ ⇤ ⇤ 0.012 -0.089 ⇤ ⇤ ⇤
LinR-MMS† PLR† -0.527 ⇤ ⇤ ⇤ -0.477 ⇤ ⇤ ⇤ -0.134 ⇤ ⇤ ⇤ -0.300 ⇤ ⇤ ⇤
PLR† SVM-MMS 0.779 ⇤ ⇤ ⇤ 1.627 ⇤ ⇤ ⇤ 0.429 ⇤ ⇤ ⇤ 1.157 ⇤ ⇤ ⇤
PLR† GBDT-MMS 1.316 ⇤ ⇤ ⇤ 1.458 ⇤ ⇤ ⇤ 0.451 ⇤ ⇤ ⇤ 0.920 ⇤ ⇤ ⇤

or some can be excluded intentionally when pre-
dicting the defect probabilities. Through simple
variations in the simulations a more thorough
understanding of a given dataset can be devel-
oped. Moreover, if no model with a good fit can be
obtained when analyzing a real world dataset, the
cost of utilizing our framework for investigating
why is low.

In this study we have proposed two preprocess-
ing methods: the mixed moments selection (MMS)
method for variable selection, and the addition of
squared explanatory x-variables before prediction.
MMS uses both the sample mean and variance
for its inclusion criterion, and we compared this
method to the established mean value selection

and variance selection methods, that use only the
sample mean and sample variance, respectively.

We utilized the proposed framework to show that
MMS can be as good or better than the other
selection methods, and is robust with respect to
varying relationships between the x-variables and
the defect probabilities. Note that we had a large
number of observations, and a similar number of
non-defect and defect observations. If this was
not the case, the p-value threshold criterion of
the MMS method might have to be reevaluated.
Furthermore, the addition of squared x-variables
seemed to be a cheap and effective approach for
alleviating the effect of non-linear relationships
between the x-variables and the defect probabili-
ties. Finally, it is worth noting that MMS followed
by the addition of squared x-variables respects the
hierarchy principle, i.e., that if higher order terms
are included in a model, the corresponding lower
order terms should be included as well.
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When predicting the defect probabilities, we
have showed that it is possible to successfully
predict the defect probabilities even though a
minority of the variance in the binary y-variables
can be explained by the explanatory data. We
have also showed that the Y-RMSE (14) can be a
useful proxy for the RMSE (15) when predicting
probabilities both when tuning hyperparameters,
and when evaluating a model fit. For our simulated
datasets, when predicting the defect probabili-
ties the regression methods, i.e., linear regression,
logistic regression, LASSO and penalized logistic
regression, outperformed the classification meth-
ods, i.e., support vector machines and gradient
boosting decision trees by a large margin. This is
most likely due to the almost ideal conditions for
the regression methods, especially with respect to
the distributions of the explanatory x-variables.
We expect the performances of the regression
methods to deteriorate faster for less ideal con-
ditions, such as replacing the x-variables with
real world data. This hypothesis is supported by
the relatively good performances of the classifica-
tion methods for the ramp and mixed datasets,
which cannot be perfectly modeled by any of the
regression methods.

We have proposed a general simulation frame-
work that can be used to evaluate and develop
methods for monitoring quality in a feature-rich
manufacturing process. Arguably, monitoring and
optimizing this type processes is crucial for com-
bining high quality with low cost. The framework
enables strategic development rather than reactive
actions, which is likely to result in better mod-
eling approaches, reduction in development time,
and the facilitation of the understanding of the
utilized approaches. The proposed framework can
be used to develop methods for root-cause analysis
and real-time quality surveillance systems, which
makes it an attractive tool when facing some of the
current challenges in intelligent manufacturing.
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Fig. 8: Boxplots of the out-of-sample performances of the 14 prediction procedures when used to predict
the defect probabilities for the linear, quadratic, ramp, and mixed dataset types. The top dashed lines
are the performances of the negative control, i.e., the constant model. The bottom dashed lines are the
performances of the positive control, i.e., the correct model with perfect variable selection and correct
contribution shapes. The prediction methods are linear regression (LinR), LASSO, logistic regression
(LogR), penalized logistic regression (PLR), support vector machines (SVM), and gradient boosting
decision trees (GBDT). The suffix ”MMS” indicates that variable selection was performed using the mixed

moments selection method. The suffix ”x2” indicates that the squares of the explanatory variables were
added as separate explanatory variables. Created using the TikZDevice R package.
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Fig. 9: Left: The out-of-sample RMSEs for the mixed moments variable selection method with varying
significance level thresholds α, see (14), Section 2.2, and logistic regression predictor, see Section 2.3.
The α values shown are those before the Bonferroni correction. The black squares, red circles, blue
triangles, and green crosses are the RMSE-values for the linear, quadratic, ramp, and mixed dataset
types, respectively, see Section 2.1. Squared x-variables were included except for the linear dataset type.
Squared explanatory variables were included for all datasets except for the linear type, see (20). Right:
the Y-RMSE-values for the same predictors, see (15). For all datasets the number of observations for the
training and test parts were 50 000 each, and the number of explanatory variables were 1000. Created
using the TikZDevice R package.
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