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ABSTRACT 20 

 21 

To anticipate critical events, clinicians intuitively rely on multidimensional time-22 

series data. It is, however, difficult to model such decision process using machine 23 

learning (ML), since real-world medical records often have irregular missing and data 24 

sparsity in both feature and longitudinal dimensions. Here we propose a 25 

nonparametric approach that updates risk score in real time and can accommodate 26 

sampling heterogeneity, using forecasting of severe acute graft-versus-host disease 27 

(aGVHD) as the study case. The area under the receiver operator characteristic curve 28 

(AUC) rose steadily after transplantation and peaked at >0.7 in both adult and 29 

pediatric cohorts. Various numerical experiments provided guidelines for future 30 

applications.  31 
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MAIN TEXT 32 

 33 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a last-resort 34 

treatment for many hematological malignancies. Severe aGVHD (grade III–IV) – 35 

extensive attack of the skin (Figure 1a), gut, and liver of the transplant recipient by 36 

the donor’s immune cells– remains to this day a leading cause of death after allo-37 

HSCT, with a transplant-related mortality rate as high as ≈30% within 100 days and 38 

≈50% within 3 years.1 It is desirable to accurately predict severe aGVHD, enabling 39 

the medical team to deliver prophylactic immunosuppression specifically to those 40 

deemed most likely to benefit from such treatment.2 41 

 42 

Previously published algorithms for severe aGVHD prognosis were usually based on 43 

peri-HSCT ‘stationary’ (i.e., not time-varying) parameters (including recipient, 44 

donor, and transplantation procedural characteristics) or ‘landmark’ analysis 45 

(designating a specific time point post-transplant for biomarker analysis) without 46 

modeling multidimensional time-series after HSCT.3-15 These methods’ discrimination 47 

capability was limited, especially for patients who develop severe aGVHD later; 48 

sizable dynamic clinical data have already accumulated for these patients, and yet 49 

much of this new information remains unused. AUCs of models using only stationary 50 

parameters were reported to be ≈0.62, even when data from > 20,000 patients were 51 

available.9,12 For landmark analysis, progress has been made on the identification of 52 

novel biomarkers.2-8,14 No biomarker for severe aGVHD, however, is widely adopted 53 
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in clinical practice today.16 Previous studies often relied on biomarkers measured at 54 

aGVHD onset for prognosis.4-6,8 Attempts that tried to use biomarkers measured prior 55 

to the appearance of aGVHD signs to forecast severe aGVHD gave conflicting 56 

results.7,10,11,13,14 57 

  58 

ML research on dynamic risk monitoring has been active in intensive care, where 59 

blood samples and expert-rated scores are taken frequently and a plethora of devices 60 

are connected to the patient.17,18 HSCT patients, however, have much lower data 61 

density and also higher heterogeneity in data collection than patients in intensive care. 62 

Limited data capture, non-uniform sampling rates, and data integration issues have all 63 

been cited as primary challenges in applying ML in HSCT.19 One recent study applied 64 

penalized logistic regression to vital signs (temperature, heart rate, etc.) that were 65 

consistently and frequently recorded within the first 10 days after HSCT20, and we 66 

would like to investigate if we could utilize additional evidence from other dynamic 67 

features that were more irregularly measured. 68 

 69 

Unlike intensive care21, currently there is no publicly available multidimensional 70 

time-series dataset for HSCT. The Center for International Blood and Marrow 71 

Transplant Research and the European Society for Blood and Marrow Transplantation 72 

databases collect primarily peri-HSCT stationary parameters, treatment regimes, and 73 

treatment outcomes. To close this gap, we compiled and curated post-transplant 74 

multidimensional time-series data of HLA- mismatched allo-HSCT patients treated at 75 
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the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of 76 

Medical Sciences & Peking Union Medical College (IHCAMS) (Tianjin, China) 77 

between 1 April 2012 to 31 April 2021—hereafter referred to as the ‘aGOAT’ 78 

(aGVHD Onset Anticipation Tianjin) dataset.  79 

 80 

aGOAT contained 599 adult and 82 pediatric HLA- mismatched allo-HSCT cases. 12.4% 81 

of the adult cohort and 22.0% of the pediatric cohort suffered from severe aGVHD 82 

within the first 40 days after transplantation (Figure 1b and Supplementary Table 1). 83 

aGOAT encompassed a total of 194 dynamic variables for the adult cohort and 159 84 

dynamic variables for the pediatric cohort collected during the first 30 days after 85 

transplantation (Supplementary Table 2), including vital signs, daily fluid loss (due to 86 

diarrhea, vomiting, etc.), complete blood counts (CBC), blood chemistry and 87 

electrolytes, blood immune cell profiles (measured by flow cytometry), plasma 88 

inflammatory factor levels, etc. The dynamic variables were not measured uniformly 89 

across all the patients (Figure 1b). Some dynamic variables such as vital signs were 90 

available nearly daily, while the others such as blood immune cell profiles and plasma 91 

inflammatory factor levels were measured less frequently and not in all patients. In 92 

addition, 11 peri-HSCT stationary (i.e., not time-varying) variables were also included 93 

in aGOAT (Supplementary Table 3); they included information related to primary 94 

disease, blood type, stem cell source, conditioning regimen before transplantation, etc. 95 

 96 

We then devised a dynamic probabilistic model – ‘daGOAT’ (dynamic aGVHD Onset 97 
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Anticipation Tianjin) – that integrated multidimensional time-series data to calculate 98 

risk for severe aGVHD after HLA- mismatched allo-HSCT. Our model updated the 99 

risk score φ𝑖(𝑡) daily according to 100 

 101 𝜑𝑖(𝑡) = ∑ (𝐼𝑖𝑘𝑡 ∙ 𝜃𝑘(𝑥𝑖𝑘(𝑡), 𝑡))𝑘,𝑡 ,                                       (1) 102 

 103 

where 𝜃𝑘(𝑥𝑖𝑘(𝑡), 𝑡) was the contribution of ‘dynamic’ variable 𝑥𝑖𝑘(𝑡) to the relative 104 

risk of the i-th patient developing severe aGVHD. To borrow strength across 105 

neighboring time points, the function 𝜃𝑘(∙) was constrained to be ‘smooth’ with 106 

respect to time t. 107 

 108 

daGOAT aimed to leverage information from a wide spectrum of clinical variables, 109 

even if some of them might be ‘spotty’. For instance, even if plasma cytokine data 110 

were not available for some patients, the model would still try to infer risk based on 111 

other clinical variables. Furthermore, the model updated calculated risk for each 112 

patient dynamically, adjusting its assessment whenever new data became available.  113 

 114 

To validate our methodology, we compared its performance to the performance of 115 

stationary features-only models (‘StationaryFeatures’), landmark-specific plasma 116 

biomarker levels, and landmark-specific random survival forests models22 117 

(‘LandmarkRSF’) using the aGOAT dataset. 118 

 119 
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daGOAT, StationaryFeatures, and LandmarkRSF were trained and evaluated by 5-fold 120 

cross validation (with identical randomization) using all available variables without 121 

variable selection. This cross-validation procedure was performed three times for the 122 

adult and pediatric cohorts separately and independently to assess the robustness of 123 

each modeling approach. In both the adult and pediatric cohorts, daGOAT’s 124 

discriminative capability reached its peak around the Q1 (25th-percentile) time of 125 

severe aGVHD onset, i.e., when ≈75% of the severe aGVHD patients had not yet 126 

shown signs of aGVHD. For the adult cohort, AUC increased steadily from 0.65 on 127 

day 15 to 0.72 on day 23 (Fig. 1c). Performance for the much smaller-sized pediatric 128 

cohort was similar, with AUC steadily rising to 0.71 on day 14 (Fig. 1d). In both 129 

cohorts, daGOAT’s peak performance surpassed StationaryFeatures by >16 130 

percentage points. daGOAT outperformed LandmarkRSF by >12 percentage points in 131 

the adult cohort (Fig. 1c), and its performance was more sustained in time than 132 

LandmarkRSF in the pediatric cohort (Fig. 1d). We failed to identify statistically 133 

significant relationships between severe aGVHD occurrence and plasma levels of 134 

suppression of tumorigenicity 2 (ST2), regenerating islet-derived 3-alpha (Reg-3), 135 

and soluble TNF-receptor 1 (sTNFR1) at around day 7 (Fig. 1e).  136 

 137 

daGOAT was tested for its usage in risk stratification of post-transplant patients: At 138 

around the Q1 time of severe aGVHD onset, hazard ratio (HR) between high-risk and 139 

low-risk patients identified by the model was 2.045 (95% confidence interval (C.I.): 140 

1.172−3.566) and 2.893 (95% C.I.: 1.057−7.915) for the adult and pediatric cohorts, 141 
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respectively, as can be seen by their diverging Kaplan-Meier curves (Figs. 1f and 1g).  142 

 143 

daGOAT also allowed us to visualize how high-dimensional post-transplant dynamic 144 

profile of a patient translated to severe aGVHD risk (Figs. 2a and 2b). daGOAT’s 145 

performance depended on both ‘data diversity’ (variety) and ‘data richness’ (quantity). 146 

For the adult cohort, it took >100 dynamic variables for the peak AUC (on day 23) to 147 

be sustained at >0.7 (Fig. 2c), and at least 300 cases’ data were needed to train the 148 

model properly (Fig. 2d). Results of these numerical analysis and experiments shed 149 

light on how data should be collected for training and applying the proposed model. In 150 

addition, we found that techniques employed in daGOAT such as ‘smoothing’ and 151 

being ‘engraftment-aware’ (Methods) were crucial to the model’s stable performance 152 

in both the adult and pediatric cohorts (Fig. 2e).  153 

 154 

Discussion 155 

The comparatively good performance of our modeling approach suggests that it is 156 

feasible to reliably and cost-effectively predict severe aGVHD when taking a 157 

panoramic and dynamic view of a patient’s clinical profile. The average daily cost 158 

(charged to the patient) for data collection from day 1 to day 30 post-transplant to 159 

support daGOAT was ¥307 per day for one pediatric patient (covering 159 dynamic 160 

variables) and ¥425 per day for one adult patient (covering 194 dynamic variables). 161 

Despite the large number of dynamic variables included in our model, most of the 162 

data were collected in routine clinical care after transplantation and did not incur 163 
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additional cost. In contrast, testing a panel of 5-6 plasma biomarkers would cost 164 

¥1000 to ¥1600 extra per sample in China. 165 

 166 

Regrettably, due to difficulty in compiling multidimensional post-transplant data from 167 

medical records, this study was limited to data from one national hematological center 168 

in China, and additional validation at other hospitals will be needed. Deep learning-169 

based risk scoring has been applied to longitudinal data in scenarios where available 170 

datasets were orders of magnitude larger than aGOAT (such as predicting respiratory 171 

failure in cystic fibrosis23 and estimating pan-cancer patient survival curves24), and it 172 

remains to be seen if deep learning can be used to predict severe aGVHD when 173 

disparity in data sizes is eventually removed. Regardless of algorithm, the ultimate 174 

litmus test of any model would be testing whether we can reduce early mortality after 175 

transplantation by applying the model prospectively to administer prophylactic 176 

immunosuppression to a targeted subset of HLA-mismatched allo-HSCT patients who 177 

are predicted to have high risk for developing severe aGVHD. 178 

 179 

As a final note, although this study focused on HSCT, our proposed approach can be 180 

generalized to other situations where there is need to integrate non-uniform 181 

multidimensional time-series data for dynamic forecasting of adverse events. 182 

183 
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METHODS 184 

 185 

The aGOAT dataset. We focused on modeling severe aGVHD in HLA-mismatched 186 

allo-HSCT, because HLA mismatch is the most important factor associated with 187 

aGVHD.25 Post-transplant multidimensional time-series clinical data of 614 adult 188 

patients (age >16) who received HLA-mismatched allo-HSCT between 1 April 2012 189 

and 30 April 2021 and 98 pediatric patients (age ≤16) who received HLA- 190 

mismatched allo-HSCT between 1 December 2017 and 31 March 2021 at the 191 

IHCAMS were able to be electronically retrieved and curated. The adult cohort and 192 

the pediatric cohort were treated at different divisions of the IHCAMS.  193 

 194 

Outlier values in vital signs (e.g., exorbitant values for body temperature) were made 195 

blank. Whenever a dynamic variable was measured more than once on one particular 196 

day for one patient, average measurement value of that day was used for that day for 197 

that patient. Medical record for each of the cases was reviewed by 2-3 physicians to 198 

confirm aGVHD diagnosis and grading (according to the MAGIC criteria26). To avoid 199 

ambiguity, onset of aGVHD was uniformly defined as the day of initiating aGVHD 200 

treatment. After the physicians’ review, 20 cases (10 adults and 10 children) were 201 

eliminated due to failure of neutrophil engraftment within 30 days of transplantation. 202 

Additional 10 cases (4 adults and 6 children) were eliminated, because the recorded 203 

date of neutrophil engraftment (defined as ‘the date of the first of three consecutive 204 

measurements spanning ≥3 days of achieving a sustained peripheral blood neutrophil 205 

count of >500×106/L’) did not precede the recorded onset of aGVHD. One additional 206 
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adult patient, who had no sign of aGVHD, was also eliminated, because the patient 207 

died on day 29 after transplantation, and it was impossible to determine whether the 208 

patient would have developed severe aGVHD or not if the patient had survived.  209 

 210 

The final dataset, aGOAT, contained 599 adult patients and 82 pediatric patients 211 

(Supplementary Fig. 1 and Supplementary Table 1). 74 (12.4%) of the adult cohort 212 

and 18 (22.0%) of the pediatric cohort suffered from severe aGVHD (grade III–IV) 213 

within the first 40 days after transplantation. Eventually 10 (13.5%) of these adult 214 

severe aGVHD patients and 2 (11.1%) of these pediatric severe aGVHD patients died 215 

within 2 months after aGVHD onset. There was significant difference in 3-year all-216 

cause mortality between the severe aGVHD patients and the other patients in the adult 217 

cohort (HR 2.929 (95% C.I.: 1.486–5.774) (p < 0.0001, log-rank test)); similar trend 218 

appeared to exist in the pediatric cohort also, although it did not pass statistical 219 

significance (HR 3.293 (95% C.I.: 0.490–22.140) (p = 0.096, log-rank test)) 220 

(Supplementary Fig. 2). The aGOAT dataset comprised a total of 194 dynamic 221 

variables for the adult cohort and 159 dynamic variables for the pediatric cohort 222 

(Supplementary Table 2). In addition, 11 stationary (i.e., not time-varying) variables 223 

were also included in the dataset (Supplementary Table 3).  224 

 225 

We applied the ‘time-limited sample-and-hold’ approach commonly used in intensive 226 

care unit data analysis18 to augment the aGOAT dataset (holding time set to 3 days 227 

after sampling), based on the hypothesis that most measurements were valid for 3 228 
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additional days. This augmented dataset was still very sparse in multiple categories of 229 

dynamic variables (Fig. 1b). When fitting daGOAT, no other missing-data imputation 230 

procedure was conducted to address the problem of non-uniform data measurement. 231 

When testing the LandmarkRSF model (using all dynamic variables at one designated 232 

time point to fit a random survival forests model22), missing data were imputed using 233 

the random forest algorithm implemented in the R package ‘randomForestSRC’. 234 

 235 

The daGOAT model. Our Bayesian-inspired model integrated multidimensional 236 

time-series data to calculate risk for severe aGVHD after HLA- mismatched allo-237 

HSCT according to: 238 

 239 𝜑𝑖(𝑡) = ∑ (𝐼𝑖𝑘𝑡 ∙ 𝜃𝑘(𝑥𝑖𝑘(𝑡), 𝑡))𝑘,𝑡 , 240 

 241 

where 𝑥𝑖𝑘(𝑡) was the value of the k-th “dynamic” variable for the i-th patient at time 242 

t; 𝐼𝑖𝑘𝑡 = 0 when 𝑥𝑖𝑘(𝑡) was missing value for the i-th patient or (when the model 243 

was run in the ‘engraftment-aware’ mode) before neutrophil engraftment), and 𝐼𝑖𝑘𝑡 =244 1 otherwise; 𝜃𝑘(𝑥𝑖𝑘(𝑡), 𝑡) was the contribution of 𝑥𝑖𝑘(𝑡) to the log-odds ratio of 245 

the i-th patient developing severe aGVHD. 𝜃𝑘(∙) was constrained to be ‘smooth’27 246 

with respect to time t.  247 

 248 

We fit daGOAT as follows: First, for every k and t, we computed the cutoff value 𝑐𝑘𝑡 249 

that maximized Shannon’s mutual information between the k-th dynamic variable at 250 
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time t and severe aGVHD occurrence; then we set 𝑙𝑘(𝑡) and 𝑢𝑘(𝑡) to be the 25th 251 

and 75th percentile value among 𝑐𝑘,max{𝑡0, t−∆𝜏}, …, 𝑐𝑘,min{𝑇, t+∆𝜏}, respectively. (We 252 

set ∆𝜏 to be ∞.) This step computed the optimal cutoff values {𝑙𝑘(𝑡), 𝑢𝑘(𝑡)} to 253 

discretize the k-th dynamic variable at time t. Second, for every k and t, we computed 254 𝜌1𝑘𝑡(𝐿) = 𝑃(𝑥𝑖𝑘(𝑡) < 𝑙𝑘(𝑡) | i-th patient developed severe aGVHD ≤ 40 days), 255 𝜌1𝑘𝑡(𝐻) = 𝑃(𝑥𝑖𝑘(𝑡) > 𝑢𝑘(𝑡) | i-th patient developed severe aGVHD ≤ 40 days), 256 𝜌0𝑘𝑡(𝐿) = 𝑃(𝑥𝑖𝑘(𝑡) < 𝑙𝑘(𝑡) | i-th patient did not develop severe aGVHD ≤ 40 days), 257 

and 258 𝜌0𝑘𝑡(𝐻) = 𝑃(𝑥𝑖𝑘(𝑡) > 𝑢𝑘(𝑡) | i-th patient did not develop severe aGVHD ≤ 40 days); 259 

then, we computed 𝜌̂1𝑘(𝐿)(𝑡), 𝜌̂1𝑘(𝐻)(𝑡), 𝜌̂0𝑘(𝐿)(𝑡), and 𝜌̂0𝑘(𝐻)(𝑡) as ‘smoothed’ versions of 260 𝜌1𝑘𝑡(𝐿) , 𝜌1𝑘𝑡(𝐻), 𝜌0𝑘𝑡(𝐿) , and 𝜌0𝑘𝑡(𝐻), respectively, through smoothing-spline fitting (smooth 261 

with respect to t). This step computed the discretized probability distribution of the k-262 

th dynamic variable that was smooth along the time axis. Finally, we defined 263 

 𝜃𝑘(𝑥, 𝑡) =
{  
   
 log (max{0,𝜌̂1𝑘(𝐿)(𝑡)}+𝛾

max{0, 𝜌̂0𝑘(𝐿)(𝑡)}+𝛾) if 𝑥 < 𝑙𝑘(𝑡)log (max{0, 1−𝜌̂1𝑘(𝐿)(𝑡)−𝜌̂1𝑘(𝐻)(𝑡)}+𝛾
max{0, 1−𝜌̂0𝑘(𝐿)(𝑡)−𝜌̂0𝑘(𝐻)(𝑡)}+𝛾) if 𝑙𝑘(𝑡) ≤  𝑥 ≤ 𝑢𝑘(𝑡)log (max{0, 𝜌̂1𝑘(𝐻)(𝑡)}+𝛾

max{0, 𝜌̂0𝑘(𝐻)(𝑡)}+𝛾) if 𝑢𝑘(𝑡) < 𝑥
, 264 

where 𝛾 ≥ 0 was a hyperparameter which we set to be 0.1. (When the model was 265 

run in the ‘no smoothing’ mode, 𝜌̂1𝑘(𝐿)(𝑡), 𝜌̂1𝑘(𝐻)(𝑡), 𝜌̂0𝑘(𝐿)(𝑡), and 𝜌̂0𝑘(𝐻)(𝑡) were not 266 

calculated, and 𝜌1𝑘𝑡(𝐿) , 𝜌1𝑘𝑡(𝐻), 𝜌0𝑘𝑡(𝐿) , and 𝜌0𝑘𝑡(𝐻) were used instead for calculating 267 𝜃𝑘(𝑥, 𝑡).) We set the date 𝑡0 at which log-odds ratio terms started to be cumulated to 268 

be day 15 and day 1 post-transplant for adult and pediatric cases, respectively, as the 269 

children in the aGOAT dataset tended to have much earlier aGVHD onset than the 270 
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adult cases. In addition, when the model was run in the ‘engraftment-aware’ mode, a 271 

patient in the validation set did not enter cross-validation until after the patient’s 272 

neutrophil engraftment. The pediatric cohort’s data size was too small to support the 273 

‘engraftment-aware’ mode; therefore, daGOAT was set to be not ‘engraftment-aware’ 274 

for the children cases. 275 

  276 
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Fig. 1: Dynamic forecasting of severe aGVHD using the proposed algorithm, 389 

daGOAT. 390 

a, Skin manifestations of severe aGVHD, a life-threatening complication after 391 

transplantation. b, Data density and event distributions in the aGOAT dataset. Top: 392 

Data density of dynamic variables after transplantation in the adult and pediatric 393 

cohorts in the aGOAT dataset (after ‘time-limited sample-and-hold’ data imputations 394 

(Methods)). Bottom: Temporal distributions of neutrophil engraftment and severe 395 

aGVHD onset. Median onset time of severe aGVHD was day 27 post-transplant (Q1: 396 

day 23; Q3: day 31) for the adult cohort and day 21 post-transplant (Q1: day 15; Q3: 397 

day 24) for the pediatric cohort, respectively. (Brighter colors in the heat maps 398 

indicate higher densities.) c,d, Performance of daGOAT in the adult (c) and pediatric 399 

(d) cohorts and comparisons with benchmarks. All models were evaluated by 5-fold 400 

cross-validation (with identical randomization for all the models). This procedure was 401 

performed three times for the adult and pediatric cohorts separately and 402 

independently. In both cohorts, daGOAT was run with ‘smoothing’. In the adult 403 

cohort, daGOAT was set to be ‘engraftment-aware’ in addition. The pediatric cohort’s 404 

data size was too small to run daGOAT in the ‘engraftment-aware’ mode. Black: 405 

daGOAT; Orange and Red: StationaryFeatures, fitted with Naïve Bayes and Random 406 

Forest, respectively; Green: LandmarkRSF, fitted using the R package 407 

‘randomForestSRC’. (*: daGOAT outperformed all three benchmarks at p <0.05 408 

(paired one-sided t-test). †: daGOAT outperformed both StationaryFeatures models at 409 

p <0.05 (paired one-sided t-test).) e, Distributions of plasma biomarker levels during 410 
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days 6–8 post-transplant in the adult cohort. ‘+’ denotes those patients who later 411 

developed severe aGVHD, and ‘–’ denotes those who did not. p-values were 412 

calculated according to Wald test in Cox regression (formula: ‘outcome ~ 413 

biomarker’). This analysis was not performed in the pediatric cohort due to the very 414 

small size of its biomarker data. f,g, Risk stratification of adult (f) and pediatric (g) 415 

patients using daGOAT. High-risk: top 1/3 of the patients according to model output 416 

at the time of risk stratification (day 23 and day 14 for the adult and pediatric cohorts, 417 

respective); Low-risk: bottom 2/3. (Dotted lines: standard errors.)  418 
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Fig. 2. Interpretation and characteristics of the daGOAT model. 421 

a,b, Temporal patterns of feature importance identified by daGOAT for the adult (a) 422 

and pediatric (b) cohorts. For each category C of dynamic variables (listed in 423 

Supplementary Table 2), its importance at time t was calculated as 424 max𝑘∈𝐶 (max𝑥 (𝜃𝑘(𝑥, 𝑡)) − min𝑥 (𝜃𝑘(𝑥, 𝑡))). The brighter a cell is in the heat maps, the 425 

more important the corresponding category of dynamic variables at the corresponding 426 

time point was for predicting severe aGVHD in the aGOAT dataset. c, Relationship 427 

between daGOAT’s performance and ‘data diversity’ (variety). Data diversity was 428 

measured in the number of variables (randomly selected here) included in model-429 

fitting. d, Relationship between daGOAT’s performance and ‘data richness’ 430 

(quantity). Data richness was measured in the number of patients (randomly selected 431 

here) included in the training set. e, Ablation study of the daGOAT model. daGOAT’s 432 

performance was compared with itself after either ‘smoothing’ or ‘engraftment-aware’ 433 

was turned off. (*: p <0.05 (paired one-sided t-test).) The pediatric cohort was too 434 

small to run daGOAT in the ‘engraftment-aware’ mode.  435 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

code.txt

supplementaryinfo.pdf

https://assets.researchsquare.com/files/rs-1037964/v1/354efeb0dc6cead405323b24.txt
https://assets.researchsquare.com/files/rs-1037964/v1/30edb84a32b51f5d9c0ced43.pdf

