Host Landing And Diel Activity of Potent Vectors of Bluetongue Disease, Culicoides Oxystoma and Culicoides Peregrinus

Shuddhasattwa Maitra Mazumdar
The University of Burdwan
Biswajit Mandal
The University of Burdwan
Surajit Kar
University of Burdwan
Abhijit Mazumdar (\sim abhijitbu02@gmail.com)
The University of Burdwan https://orcid.org/0000-0002-2606-9888
\section*{Research}
Keywords: Culicoides, preferential landing, diel activity, biting activity, cattle
Posted Date: November 11th, 2021
DOI: https://doi.org/10.21203/rs.3.rs-1038977/v1
License: © (i) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

Background The spread of bluetongue virus depends on the vectorial ability of Culicoides affecting the susceptible host. Animal farms in West Bengal have reported prevalence of potent vectors of BTV (C. oxystoma, C. peregrinus and C. fulvus). Besides, high seroprevalence of BTV was also reported from this cattle dense region. Henceforth host-seeking activity of two important potent vectors, C. oxystoma and C. peregrinus on cattle were studied in two farm sites of West Bengal, India.

Methods The study was done in 2018-19 comprising of total 297 hours of collection over 27 nights. A comparison was made between the catches obtained by mouth aspirator and light trap. Hourly collections of Culicoides were done directly from cattle (oral aspirator) as well as light trap was operated in close vicinity of cattle at a different shed.

Results A total of 11,462 Culicoides belonging to C. oxystoma, C. peregrinus and C. fulvus were collected in light trap and aspirator. In aspirator 4764 midges were collected whereas 6698 individuals were collected in light trap. The following species were aspirated: C. peregrinus and C. oxystoma; however the light trap catches consisted of C. fulvus, C. oxystoma and C. peregrinus. Light trap collection exhibited crepuscular activity whereas aspirator collection was maximum between 4.00 am and 5.00 am . Likewise maximum landing of midges was observed in neck and hump region of cattle.

Conclusion It was observed that the preferred time of feeding of C. peregrinus and C. oxystoma on cattle were early morning hours though midges were ubiquitous from dusk to dawn. Surprisingly the preferential landing of the two vectors were mostly restricted to the neck and hump region of the cattle. The results obtained during the study warrants further insight into the factors influencing the landing site by the vectors which may be useful biological data in disease management and draw effective deterrent strategies.

Background

Among the hematophagous genera, Culicoides have assumed significance and notoriety worldwide due to its ability to transmit a wide range of pathogens of public and veterinary importance [1]. Presently India records 535.78 million as major farm animals i.e cattle, buffalo, poultry, sheep and goat including indigenous and exotic breeds, with a total bovine population of 302.79 million (buffalo, cattle, mithun, yak) [2]. Such presence of large numbers and variety of livestock and density of livestock is at risk in transmission of an orbivirus bluetongue (BT) by Culicoides midges and which may lead to outbreak of BTD. Besides, This virus causes bluetongue disease (BTD) in goats, sheep, cattle and other small and wild ruminants [3]. Although the disease was dominant in temperate zones, introduction of non-native breeds in virus endemic tropical and subtropical zones also caused BT outbreak [4]. The spread of range of BT in the temperate was also attributed to global warming [5]. Presently seroprevalence of bluetongue virus (BTV) has been reported across all the Indian states [6]. The BTD outbreak has been witnessed frequently owing to the significant density of livestock, high prevalence of the Culicoides along with conducive climatic conditions helping in propagation of vectors and the virus [7, 8]. BTV was first recorded from the state of Maharashtra [9] and also occurrences of BTV from Indian states covering western, northern and southern regions followed [10, 11]. Although eastern and north eastern India is yet to witness an outbreak, high seroprevalence in livestock has appeared in several scientific articles [11, 12]. Presently 22 of the 28 serotypes (worldwide) have been recorded from India [13]. Moreover BT seropositivity in different animals depicts 34% in buffalo, 16% in camel, 38% in cattle, 43% in goat, 39% in sheep and 66% in mithun [13]. According to [2] state of West Bengal shares 6.9% of total livestock population comprising 8.25% cattle, 0.8% of sheep and 10.93% goats' population. The economy of West Bengal, especially in Burdwan district is agriculture based (mixed farming) in which livestock and animal husbandry plays a pivotal role. The villagers form a cluster of self help groups (SHG) which market livestock products to generate revenue [14]. The seroprevalence in goat (66.95\%), sheep (57.66%) and cattle (52%) has been reported across 7 districts of West Bengal [15, 16]. Despite such high seroprevalence, BTD outbreak remains unreported from West Bengal [17]. BTD outbreak and its economic implications has been well documented from the southern Indian states, however, there remains critical knowledge gaps and understanding of biology of the potent vector species prevalent in this tropical region. Few studies on biology, ecology and taxonomy of the Culicoides spp were carried out [8, 17]. Besides, [18] has reported prevalence of 7 putative vectors C.oxystoma, C. fulvus, C. orientalis, C. dumdumi, C. imicola, C. peregrinus and C. brevitarsis from southern India. In the eastern state of West Bengal, C. fulvus, C. peregrinus and C. oxystoma were the prevalent species in mixed farms and cattle sheds [8, 17] thereby posing considerable risk in the spread of disease. Further a coloured LED light trap based extensive surveillance program was also conducted in the same site to ascertain the prevalence of the aforesaid species in the cattle sheds [8].

Information available on host seeking activity, ecology and biology of Culicoides are limited across the globe [19, 20]. The aforesaid information was imperative for implementation of control measures in disease epidemiology [20]. Although the disease causing pathogens vectored by Culicoides were a matter of concern, relatively scant information on its bionomics exists in India [18] and Europe [20, 21, and 22]. In the light of forecasting disease transmission, limited information on the host-vector association has led to assumptions that all the Culicoides species prevalent in the cattle sheds fed on host with equal facility on which various predictions were based [21]. Besides difficulty in aspirating Culicoides from the host body also limits studies on host seeking activity of the Culicoides [19].

In this study the catch data obtained by two different methods (light trap and aspirator) were evaluated and compared in order to separate two adult activity of Culicoides spp. in real time: flight activity and biting activity. The two study sites were selected at Burdwan district of West Bengal due to report of seroprevalence of BTV from this region [12] as well as high seasonal abundance of potent vector species of Culicoides associated with livestock from this district [17]. Moreover, the evaluation enables validation of the time and preferential landing of Culicoides on cattle body parts which is critical at farmer's level to reduce the host-vector contact.

Materials And Methods

Study site

This investigation was carried out in two rural villages of West Bengal 51 km apart i) Dharan (DH; $23^{\circ} 02^{\prime} 57.7^{\prime \prime} \mathrm{N}, 87^{\circ} 51^{\prime} 47.5^{\prime \prime E}$), ii) Sahibganj-Tantipara (ST; $23^{\circ} 44^{\prime} 29.14^{\prime \prime N}, 87^{\circ} 82^{\prime} 76.56^{\prime \prime E}$). The biting midges were trapped throughout the seasons in DH during May to October, 2018 and in April to June, 2019; and in ST from May to October, 2018. In India, Indian Meteorological Department (IMD) recognizes the occurrences of four seasons: winter, December to February; summer or pre-monsoon season, lasting from March to May; monsoon or rainy season, lasting from June to September; Post-monsoon or autumn season, lasting from October to November. At ST village site, 12 night collections were made i.e., two catches/month, whereas in DH village site, monthly three collections were done (excepting for the months of October, April and June where single collections/every month). A total of 27 night catch data (297 hrs of collection) were considered for both the sites. In both the sites, the sheds housing the cattle were made of mud-brick adjoining to household. Geographically the villages are situated amidst agricultural fields in which extensive rice cultivation is practiced throughout the year, water logging even during dry seasons predominantly rice growing areas of West Bengal. Most households maintain livestock animals for their economic sustenance. It experiences tropical climate with annual rainfall of 1496 mm . The hygiene conditions are compromised within and outside the perimeter of the animal sheds as dung heaps and paddy straws were garbaged. In ST, the cattle sheds were located on the embankment of a pond. Moreover, the drainage system of the village was found to empty into the pond. For this study one cattle shed at DH and two cattle sheds at ST were chosen.

Description of collection

The adults that landed on the host body surface was retrieved by aspirators (oral \& mechanical) and flying adults were trapped by LED based light traps installed at close vicinity of cattle within the shed. Adults were aspirated covering various parts of the body surface of a white coloured adult cow. For our convenience the entire body surface of the cattle was subdivided [23] following the studies of [20] and [21]. Catches made were labeled as follows: head (H1), neck (H 2), hump $(\mathrm{H} 3)$, back $(\mathrm{H} 4)$, leg (H5), belly (H 6), hip (H7) (Figure 1). Each catch duration was restricted to 10 minutes/hour the entire process of aspiration initiated on 18.00 hrs in the evening that continued up to 6.00 hr in the morning (12 hours per diem). The catch period (designated as T 1 hr to T 11 hr) was followed: T1: 18.00-19.00, T2: 19.00-20.00, T3: 20.00-21.00, T4: 21.00-22.00, T5: 23.00-00.00, T6: 00.00-01.00, T7: 01.00-02.00, T8: 02.00-03.00, T9: $03.00-04.00, \mathrm{~T} 10: 04.00-05.00, \mathrm{~T} 11: 05.00-06.00$. During the process of aspiration all other cattle stationed within the sheds were evacuated at least half an hour prior to collection. 4 W dim white light was used during the process of collection of the Culicoides from cattle. The LED light trap was operated within the cattle shed (ST), 200 m apart from the shed where aspiration based collections were done. Although a mechanical aspirator was also used for the purpose; however, the mouth aspirator was tedious but proved handy in aspirating the adults tucked within the fur.

Statistical Analysis

A logistic regression was done on the proportion of engorged and non engorged females to justify the effects of time and site on host landing. The logistic regression was carried following the binomial GLM with logit link, using time and site as the explanatory variables on the assumptions of generalized linear model (GLM). The logistic regression equation form: $(y)=1 /\left(1+\exp \left(-\left(a+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)\right)\right.$; where the explanatory variables, x_{1}, x_{2} and x_{3}, represented the time of landing of Culicoides on host, site of landing on host and interaction between the two components respectively and y was the response variable. The regression analysis was performed on the assumptions that the landing of non-engorged and engorged Culicoides follow binomial distribution (n, p) with n replicates for each set of independent variables (time of landing, site of landing on host and interaction between host landing and time). Maximum likelihood method has been used as a measure to estimate the logit linked parameters through statistical software. Using the value of Wald's Chi square, the parameter of the models were tested for the significance at $\mathrm{P}=0.05$ level.

Results

In this investigation, the trapped number of C. oxystoma females caught were 1924 individuals further categorized as 1315 non-engorged, 609 engorged and C. peregrinus females consisted of 2070 individuals of which 1192 non-engorged and 878 engorged (Table 1a). In ST, a total catch of C. oxystoma were 2119 individuals (899 engorged, 1220 non-engorged) and C. peregrinus were 2645 individuals (1630 engorged and 1015 non-engorged) respectively (Table 1b). In ST collections, the following species were aspirated: C. peregrinus and C. oxystoma; however the light trap catches consisted of C. fulvus, C. oxystoma and C. peregrinus. The total Culicoides caught through aspiration were 4764 compared to light trap catch of 6698 individuals (Figure 2a; 2b). Significant numbers of Culicoides individuals landed on the upper portion of the cow, while very few individuals landed on the belly and legs. Landing of Culicoides was limited to hip due to continuous tail whipping, licking and kicking reflexes of the cattle. It appeared that a period of $30-40$ min i.e. between 4 am and 5 am (dawn) was the actual feeding window of the C. oxystoma and C. peregrinus attacking the cattle (Table 2). During the feeding interval usually the Culicoides females swarm on to the host althoughboth the species attacked the cattle with equal intensity, the proportion of engorged C. peregrinus aspirated were more (42.42%) compared to C. oxystoma (31.65\%) (Figure 3). The results highlighted variation in abundance of the Culicoides analyzed through ANOVA with post hoc Tukey test considering the time of host-seeking activity and different body parts of cattle as the source of variations (Table 3a; Table 3b).

Dharan

GLM with logit link was done after aligning the data in binomial order to interpret the relation between specific age groups preferring particular landing sites on cattle bodies. In C.oxystoma, engorged (y) $=1 /\left(1+\exp \left(-\left(-1.96+0.13 * t i m e-0.59 *\right.\right.\right.$ host landing $\left.\left.+0.025^{* t i m e * h o s t ~ l a n d i n g)}\right)\right)$. The parameters significantly were at $p<0.05$ (intercept $=-1.961 \pm 0.59$; Wald $\chi^{2}=11.44$; host landing $=-0.599 \pm 0.2$; WIdx ${ }^{2}=9.3$). For non-engorged $(y)=1 /(1+\exp (-(-0.99+0.11 * t i m e-0.49 *$ host landing $+1.75-02 *$ time*host landing))). Significance at level of $p<0.05$ has been observed for the following parameters (intercept $=-0.991 \pm 0.4$; Wald $\chi^{2}=6.2$; time $=-0.110 \pm 0.05$; Wald $\chi^{2}=4.2$; host landing $=-0.498 \pm 0.12$; Wald $\chi^{2}=17.15$). Similarly in C. peregrinus, the equation of the models for input variables, engorged $(y)=1 /\left(1+\exp \left(--1.78+0.17 * t i m e-0.37 *\right.\right.$ host landing $\left.\left.-3.48-03^{* t i m e * h o s t ~ l a n d i n g)}\right)\right)$. The parameters significant at $p<0.01$ (intercept $=-1.78 \pm 0.46$; Wald $\chi^{2}=14.75 ;$ time $=0.17 \pm 0.06 ;$ Wald $\chi^{2}=7.3$; host landing $=-0.37 \pm 0.14 ;$ Wald $\chi^{2}=7.08$)
non-engorged $\left.(y)=1 /\left(1+\exp \left(--2.07+0.18^{* t i m e}-0.26 * h o s t ~ l a n d i n g-1.32-02^{* t i m e * h o s t ~ l a n d i n g ~}\right)\right)\right)$. The model parameters considered significant at $p<0.05$ (intercept $=-2.073 \pm 0.47 ;$ Wald $\chi^{2}=19.2 ;$ time $=-0.184 \pm 0.06 ;$ Wald $\chi^{2}=8.6 ;$ host landing $=-0.264 \pm 0.13 ;$ Wald $\chi^{2}=3.9$).

For Culicoides oxystoma, the binomial GLM with logit link was done after conversion of the data to binary (presence of the Culicoides has been considered 1 or else 0$)$. The equation obtained was engorged $(y)=1 /(1+\exp (-(-0.985+0.069 * t i m e-0.59 * h o s t ~ l a n d i n g+0.02 * t i m e * h o s t ~ l a n d i n g)))$. The following model parameters were significant at $p<0.05$ level (intercept $=-0.985 \pm 0.5$; Wald $\chi^{2}=3.976$; host landing $=-0.585 \pm 0.2 ;$ Wald $\chi^{2}=12.8$). It was observed that the pattern of engorged Culicoides oxystoma landing on cattle was a time-dependent variable. The following equation has been noted for non-engorged $(y)=1 /(1+\exp (-$ $(-0.76+8.49-02 * t i m e-0.51 * h o s t ~ l a n d i n g+1.76-0.02 * t i m e * h o s t ~ l a n d i n g))$). The parameters significant at $p<0.05$ (host landing $=-0.509 \pm 0.13$; Wald $\chi^{2}=15.31$). Likewise in C. peregrinus, engorged $(y)=1 /(1+\exp (-(-1.69+0.183 * t i m e-0.463 *$ host landing+9.387-0.3*time*host landing $))$). The parameters observed were significant at $p<0.05$ (intercept $=-1.690 \pm 0.5$; Wald $\chi^{2}=10.81$; host landing $=-0.463 \pm 0.16$; Wald $\left.\chi^{2}=8.58\right)$. For non-engorged $(y)=1 /(1+\exp (-(-1.87+0.18 * t i m e-$ $0.23 *$ host landing $-0.02 *$ time*host landing))). The parameters observed significant were (intercept $=-1.868 \pm 0.49 ;$ Wald $\chi^{2}=14.61 ;$ time $=0.182 \pm 0.07 ;$ Wald $\chi^{2}=$ 7.59; host landing $=-0.234 \pm 0.14 ;$ Wald $\chi^{2}=2.96$).

Discussion

The Culicoides species investigated in this study was reported to be vectors of important diseases associated with farm animals' worldwide [17]. Shielding of animals from attack of female Culicoides may be adopted as a measure to interrupt disease transmission hence information on peak activity of Culicoides from this region of world will be useful in disease management strategies [17]. The landing time and site of females belonging to C. oxystoma and C. peregrinus on the cattle in the early morning for the purpose of obtaining blood meal was observed. However, C. fulvus has been reported only in a light trap from one of the study sites thereby raising doubts on the host preference of the species. The aspirator based study validated the diel activity of the C. oxystoma and C. peregrinus. Significant proportion of engorged females in the study justified the usage of aspirator to intercept the host-seeking females. Moreover the present study ascertained that cattle not only attracted Culicoides but constituted one of the significant hosts. C. oxystoma and C. peregrinus were known to be one of the most prevalent species across India, from which the BTV serotypes have been isolated [24, 25] and also were enlisted as potent vectors of BTV from the subcontinent [18]. Moreover both the species were reported to be most abundant in cattle sheds of West Bengal [17] thereby contributing to the significance of the study. High proportion of engorged C. peregrinus and C. oxystoma feeding on the cattle suggests active blood-seeking behaviour of the species, which agrees with the opinion regarding fierceness of C. peregrinus [26]. C. oxystoma has been recognized as potential vectors of BTV from India [24] and Indonesia [27]. Japan has reported C. oxystoma as potent vector of Akbane virus [28,29] and of epizootic hemmorhagic disease virus from Israel [30]. Moreover [31] has reported involvement of C. oxystoma in transmission of African horse sickness virus (AHSV) from Senegal.

The proportion of engorged to non-engorged females aspirated ascertains landing of Culicoides on host but does not warrant feeding. It was noted that 30$40 \%$ of the total midges landing actually fed on the cattle; the finding substantiated the conclusion drawn on activity of Culicoides midges from Ireland [32].

A bimodal distribution of C. oxystoma, C. peregrinus and C. fulvus was observed in light trap based collections within the animal shed. The plausible explanation was that the resting adults within the cattle shed after completion of blood meal were also attracted towards the light traps. However, Culicoides were observed to be prevalent in resting conditions in the cracks, crevices, walls, and roof within the shed housing cattle throughout the 24 hour period. Mere prevalence of Culicoides within cattle sheds does not warrant their blood feeding activity.

Amongst the different portions of cattle body, the desired landing site of the C. oxystoma and C. peregrinus were neck, hump followed by the head of the cattle (mostly in and around the ear). Although various studies suggested temperature to be a significant factor influencing the landing of Culicoides [33], our observation suggests that the thickness of epidermis and degree of vascularization might be two of the most important criteria influencing the landing of female Culicoides. Likewise [32] reported on the preference of C. obsoletus, C. dewulfi, C. pulicaris, C. punctatus and C. nebeculosus for mane and lower legs of horse. [33] remarked that 72% of the total collections were from the belly whereas 28% from the dorsal surface. C. puncticollis and C. schultzei preferred the belly region whereas C. imicola preferred the dorsal surface. A comparative preferential landing study of Culicoides on dairy cows, Shetland pony and sheep has been done [21]. It was observed that C. chiopterus favoured legs, C. punctatus, C. achrayi landed on the belly. C. obsoletus, C. dewulfi and C. pulicaris landed on head, back and flanks respectively. Moreover C. chiopterus, C. punctatus, C. obsoletus/scoticus favoured the belly region of horses [35]. Anatomically, vascularization has been complex in the neck and hump region [23], henceforth correlating to the preferred landing of the Culicoides at these sites. Likewise the thickness of epidermis was found to be less in the aforesaid body parts. The difference in preference could not be attributed to body surface temperature as there was not much difference in temperature except belly and hip, where the difference was $1^{\circ} \mathrm{C}$. However in the present study Culicoides on belly was less compared to that of neck and hump.

This investigation recorded diel activity and host-seeking activity of the potent vector species associated with cattle in the state of West Bengal. Most of the cattle sheds in West Bengal were open type and cattle were either herded in this shed or in open yard at night. In such a setup there exists a high risk of cattle being exposed to Culicoides bite during the early morning. The present study argues that in order to minimize the contact between Culicoides and cattle, the cattle should be housed in a closed shed for at least 1 hour (i.e., between 4.00 am and 05.00 am). In closed sheds the activity of Culicoides has been observed to be reduced by 14 fold (unpublished). Owing to absence of proper closed sheds in most of the rural areas, an alternative approach could also be adopted by farmers. Blankets, badges or jute bags could be placed over the hump and neck region of the cattle during the peak activity time (between 4 am and 5 am) of midges thereby interfering with the preferred landing and subsequent feeding of the Culicoides midges.

Declarations

ETHICS STATEMENT

No animals were harmed during the study

AUTHORS CONTRIBUTION: First author: The entire work from data collection to data analysis and writing of manuscript. Corresponding author: Ensuring that entire process was accurate. Second and third author: Aided in insect sampling

ACKNOWLEDGEMENTS

The authors acknowledge Head, Department of Zoology, The University of Burdwan for providing the facility to conduct the study.

FINANCIAL STATEMENT

No financial grant was received for the study

CONFLICTS OF INTEREST

The authors declare no conflict of interest

References

1. Carpenter S, Mellor PS, Torr SJ. Control techniques for Culicoides biting midges and their application in the UK and northwestern Palaearctic. Med Vet Entomol. 2008; 22(3):175-187.
2. 20th Livestock Census. All India Report. Department of Animal Husbandry, Dairying and Fisheries. Government of India. 2019;https://epashuhaat.gov.in/documents/ProvisionalKeyResultsof20thLivestockCensus.pdf
3. Foxi C, Satta G, Puggioni G, Ligios C. Biting Midges(Ceratopogonidae, Culicoides). Reference Module in Biomedical Sciences. 2020; doi:10.1016/b978-0-12-818731-9.00005-7.
4. Walton TE. The history of bluetongue and a current global overview. Vet Ita. 2004; 40(3):31-38.
5. Purse BV, Carpenter S, Venter GJ, Bellis G, Mullens BA. Bionomics of temperate and tropical Culicoides midges: knowledge gaps and consequences for transmission of Culicoides-borne viruses. Annu Rev Entomol. 2015; 60:373-392.
6. Chanda MM. Understanding the epidemiology of Bluetongue virus in South India using statistical models. Ph.D Thesis, University of Oxford. 2017.
7. Chanda MM, Carpenter S, Prasad G, Sedda L, Henrys PA, Gajendragad MR, Purse BV. Livestock host composition rather than land use or climate explains spatial patterns in bluetongue disease in South India. Sci rep. 2019; 9(1): 1-15.
8. Mazumdar SM and Mazumdar A (2020) Preferential attraction of different colours of light emitting diodes for Culicoides species in West Bengal, India. Med Vet Entomol. 2020; https://doi.org/10.1111/mve. 12452
9. Sapre SN. An outbreak of bluetongue in goats and sheep. Indian Vet Rev. 1964; 15:69-71.
10. Ilango K. Bluetongue virus outbreak in Tamil Nadu southern India: Need to study the Indian biting midge vectors, Culicoides Latreille (Diptera:Ceratopogonidae). Current Sci. 2006; 90(2):163-167.
11. Prasad G, Sreenivasulu D, Singh KP, Mertens PPC, Maan S. Bluetongue in the Indian subcontinent. Bluetongue (ed. by P.S. Mellor, M. Baylis and P.P.C. Mertens). Academic Press, Elsevier, Paris. 2009; p. 167-195.
12. Joardar SN, Barkataki B, Halder A, Lodh C, Sarma D. Seroprevalence of bluetongue in north eastern Indian state-Assam. Vet World. 2013;6(4):196-199.
13. Rupner RN, VinodhKumar OR, Karthikeyan R, Sinha DK, Singh KP, Dubal ZB, Shikha Tamta BS, Gupta VK, Singh BR, Malik YS, Dhama K. Bluetongue in India: a systematic review and meta-analysis with emphasis on diagnosis and seroprevalence. Veterinary Q. 2020;40(1):229-242.
14. Aurabh S, Neelam S, Sikka BK. Marketing practices of livestock products by self help groups in Burdwan District of West Bengal. Pantnagar J Res. 2010;8(1):89-96.
15. Mandal N, Mondal A, Joardar SN. Indigenous diagnostic approach for detection of bluetongue disease in West Bengal, India. Global Vet. 2011;7(3):230233.
16. Panda M, Mondal A, Joardar SN. Seroprevalence of bluetongue virus in sheep, goat and cattle in West Bengal, India. Animal Sci Rep. 2011;5(3):105-110.
17. Harsha R, Mazumdar SM, Mazumdar A. Abundance, diversity and temporal activity of adult Culicoides spp. associated with cattle in West Bengal, India. Med Vet Entomol. 2020; doi.org/10.1111/mve. 12446
18. Harrup LE, Laban S, Purse BV, Reddy YK, Reddy YN, Byregowda SM, Kumar N, Purushotham KM, Kowalli S, Prasad M, Prasad G, Bettis AA, Keyser RD, Logan J, Garros C, Gopurenko D, Bellis G, Labuschagne K, Mathieu B, Carpenter S. DNA barcoding and surveillance sampling strategies for Culicoides biting midges (Diptera: Ceratopogonidae) in southern India. Parasit Vectors. 2016;9:461.
19. Viennet E, Garros C, Rakotoarivony I, Allene X, Gardes L, Lhoir J, Fuentes I, Venail R, Crochet D, Lancelot R, Riou M, Moulia C, Baldet T, Balenghien T. Hostseeking activity of Bluetongue virus vectors: endo/exophagy and circadian rhythm of Culicoides in Western Europe. PLoS One. 2012;7(10):1-10.
20. Ayllón T, Nijhof AM, Weiher W, Bauer B, Allène X, Clausen PH. Feeding behaviour of Culicoides spp. (Diptera: Ceratopogonidae) on cattle and sheep in northeast Germany. Parasit Vectors. 2014;7(1):1-9.
21. Elbers ARW, Meiswinkel R. Culicoides (Diptera: Ceratopogonidae) and livestock in the Netherlands: comparing host preference and attack rates on a Shetland pony, a dairy cow, and a sheep. J Vector Ecol. 2015;40(2):308-317.
22. Thompson GM, Jess S, Murchie AK. Differential emergence of Culicoides (Diptera: Ceratopogonidae) from on-farm breeding substrates in Northern Ireland. Parasitology. 2013;140(6):699-708.
23. Banerjee GC. A textbook of animal husbandry, 7th edition. Oxford and IBH publishing, New Delhi. 2018; p. 104.
24. Dadawala AI, Biswas SK, Rehman W, Chand K, De A, Mathapati BS, Mondal B. Isolation of Bluetongue Virus Serotype 1 from Culicoides vector Captured in Livestock Farms and Sequence Analysis of the Viral Genome Segment-2. Transbound Emerg Dis. 2012;59(4):361-368.
25. Ranjan K, Prasad M, Brar B, Prasad G. First Report of Isolation of Bluetongue Virus 23 from Culicoides peregrinus Vector from India. Indian J Comp Microbiol Immunol Infect Dis. 2017;38(1):16-21.
26. Sukarsih SE, Sendow I, Bahari S, Pearce M, Daniels PW. Culicoides survey in Indonesia. Bluetongue Disease in Southeast Asia and the Pacific (ed. By T.D. St George, K. Peng, 1st edn). Australian Centre for International Agricultural Research, Canberra. 1996; p. 123-128.
27. Mellor PS, Carpenter S, White DM. Bluetongue virus in the insect host. Bluetongue (ed. by P.S. Mellor, M. Baylis and P.P.C. Mertens). Elsevier, Paris. 2009; p. 295-320.
28. Kurogi H, Akiba K, Inaba Y, Matumoto M. Isolation of Akabane virus from the biting midge Culicoides oxystoma in Japan. Vet Microbiol. 1987;15:243248.
29. Yanase T, Kato T, Kubo T, Yoshida K, Ohashi S, Yamakawa M, Miura Y, Tsuda T. Isolation of bovine arboviruses from Culicoides biting midges (Diptera: Ceratopogonidae) in Southern Japan: 1985-2002. J Med Entomol. 2005;42:63-67.
30. Bakhoum MT, Fall M, Fall AG, Bellis GA, Gottlieb Y, Labuschagne K, Venter GJ, Diop M, Mall I, Seck MT, Allene X. First record of Culicoides oxystoma Kieffer and diversity of species within the Schultzei group of Culicoides Latreille (Diptera: Ceratopogonidae) biting midges in Senegal. PLoS One. 2013;8(12):e84316.
31. Fall M, Diarra M, Fall A, Balenghien T, Seck MT, Bouyer J, Garros G, Gimonneau G, Allene X, Mall I, Delecolle J, Rakotoarivony I, Bakoum MT, Dusom AM, Ndao M, Konate L, Faye O and Baldet T. Culicoides (Diptera: Ceratopogonidae) midges, the vectors of African horse sickness virus - A host/vector contact study in the Niayes area of Senegal. Parasit Vectors. 2015;8:39.
32. Townley P, Baker KP, Quinn PJ. Preferential landing and engorging sites of Culicoides species landing on a horse in Ireland. Equine Vet J. 1984;16(2):117120.
33. Braverman Y. Preferred landing sites of Culicoides species (Diptera: Ceratopogonidae) on a horse in Israel and its relevance to summer seasonal recurrent dermatitis (sweet itch). Equine Vet. J. 2008;20(6):426-429.
34. Elbers ARW, van den Heuvel SJ, Meiswinkel R. Diel activity and preferred landing sites in Culicoides biting midges attacking Fjord horses. Entomol Exp Appl. 2016;160(3):272-280.

Tables

Table 1
a. Mean and S.E. of female C. oxystoma and C. peregrinus aspirated hourly from cattle (cow) body surface at Dharan (DH), West Bengal. Body part of cattle al

			$\begin{aligned} & 18.00- \\ & 19.00 \end{aligned}$	$\begin{aligned} & 19.00- \\ & 20.00 \end{aligned}$	$\begin{aligned} & 20.00- \\ & 21.00 \end{aligned}$	$\begin{aligned} & 21.00- \\ & 22.00 \end{aligned}$	$\begin{aligned} & 23.00- \\ & 00.00 \end{aligned}$	$\begin{aligned} & 00.00- \\ & 01.00 \end{aligned}$	1.00-2.00	2.00-3.00	3.00-4.00	4.00-5.0
C. oxystoma	Non engorged	H1	0.0-7.0	0.0-2.0	0.0-2.0	0.0-1.0	0.0-1.0	0.0-2.0	0.0-0.0	0.0-1.0	0.0-4.0	0.0-31.0
			1.9 ± 0.52	0.5 ± 0.19	0.2 ± 0.15	0.1 ± 0.07	0.1 ± 0.07	0.2 ± 0.15	0.0 ± 0.00	0.2 ± 0.11	0.9 ± 0.36	7.2 ± 2.2 !
		H2	0.0-1.0	0.0-3.0	0.0-0.0	0.0-2.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-6.0
			0.1 ± 0.09	0.2 ± 0.2	0.0 ± 0.0	0.3 ± 0.16	0.1 ± 0.09	0.1 ± 0.07	0.0 ± 0.00	0.1 ± 0.07	0.2 ± 0.11	$1.3 \pm 0.5!$
		H3	0.0-10.0	0.0-7.0	0.0-2.0	0.0-2.0	0.0-2.0	0.0-2.0	0.0-1.0	0.0-5.0	0.0-6.0	0.0-151
			2.0 ± 0.68	1.0 ± 0.47	0.3 ± 0.15	0.3 ± 0.19	0.2 ± 0.15	0.3 ± 0.16	0.1 ± 0.09	0.5 ± 0.35	1.67 ± 0.56	44.53 ± 1
		H4	0.0-0.0	0.0-0.0	0.0-0.0	0.0-3.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-7.0
			0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.53 ± 0.4
		H5	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-3.0
			0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.09	0.33 ± 0.2
		H6	0.0-4.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-1.0	0.0-2.0	0.0-1.0	0.0-7.0	0.0-7.0
			0.5 ± 0.29	0.1 ± 0.07	0.1 ± 0.09	0.1 ± 0.07	0.0 ± 0.00	0.1 ± 0.07	0.1 ± 0.13	0.1 ± 0.07	0.5 ± 0.47	1.47 ± 0.2
		H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0
			0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.07 ± 0.1				
	Engorged	H1	0.0-3.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-7.0
			0.9 ± 0.27	0.0 ± 0.0	0.1 ± 0.13	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.01	0.0 ± 0.00	1.67 ± 0.6
		H2	0.0-0.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-7.0
			0.0 ± 0.0	0.1 ± 0.07	0.1 ± 0.07	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.09	0.67 ± 0.4
		H3	0.0-16.0	0.0-4.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-5.0	0.0-8.0	0.0-94.0
			1.7 ± 1.08	0.4 ± 0.27	0.1 ± 0.09	0.0 ± 0.0	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.8 ± 0.38	0.9 ± 0.58	22.6 ± 7.6
		H4	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-5.0
			0.0 ± 0.0	0.1 ± 0.7	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	$0.40 \pm 0 . \therefore$
		H5	0.0-2.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0
			0.13 ± 0.13	0.0 ± 0.0	0.1 ± 0.07	0.0 ± 0.0	0.0 ± 0.00	0.07 ± 0.1				
		H6	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-10.0
			0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.8 ± 0.6
		H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
			0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00				
C. peregrinus	Non engorged	H1	0.0-4.0	0.0-2.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-8.0	0.0-11.0
			1.1 ± 0.36	0.2 ± 0.14	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.2 ± 0.11	0.1 ± 0.07	0.2 ± 0.11	0.7 ± 0.54	3.3 ± 0.9 ¢
		H2	0.0-1.0	0.0-0.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-9.0	0.0-1.0	0.0-2.0
			0.1 ± 0.09	0.0 ± 0.0	0.0 ± 0.00	0.1 ± 0.13	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.6 ± 0.60	0.1 ± 0.09	0.27 ± 0.1
		H3	0.0-6.0	0.0-2.0	0.0-1.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-4.0	0.0-29.0	0.0-121.
			1.0 ± 0.47	0.3 ± 0.16	0.2 ± 0.11	0.0 ± 0.00	0.1 ± 0.09	0.1 ± 0.07	0.0 ± 0.00	0.3 ± 0.27	2.0 ± 1.9	43.5 ± 10
		H4	0.0-0.0	0.0-0.0	0.0-2.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-9.0	0.0-4.0	0.0-17.0
			0.0 ± 0.0	0.0 ± 0.00	0.2 ± 0.15	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.6 ± 0.60	0.3 ± 0.26	1.2 ± 1.1 \%
		H5	0.0-0.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
			0.0 ± 0.0	0.1 ± 0.07	0.1 ± 0.1	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.0 (
		H6	0.0-3.0	0.0-0.0	0.0-0.0	0.0-4.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-8.0	0.0-1.0	0.0-4.0
			0.5 ± 0.27	0.0 ± 0.00	0.0 ± 0.00	0.3 ± 0.3	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.5 ± 0.53	0.1 ± 0.07	0.7 ± 0.3 (

		$\begin{aligned} & 18.00- \\ & 19.00 \end{aligned}$	$\begin{aligned} & 19.00- \\ & 20.00 \end{aligned}$	$\begin{aligned} & 20.00- \\ & 21.00 \end{aligned}$	$\begin{aligned} & 21.00- \\ & 22.00 \end{aligned}$	$\begin{aligned} & 23.00- \\ & 00.00 \end{aligned}$	$\begin{aligned} & 00.00- \\ & 01.00 \end{aligned}$	1.00-2.00	2.00-3.00	3.00-4.00	4.00-5.0
	H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0
		0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.0	0.0 ± 0.00	0.07 ± 0.6				
Engorged	H1	0.0-3.0	0.0-3.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-2.0	0.0-6.0	0.0-7.0
		0.4 ± 0.21	0.3 ± 0.21	0.1 ± 0.09	0.1 ± 0.09	0.1 ± 0.07	0.1 ± 0.09	0.0 ± 0.00	0.3 ± 0.18	1.13 ± 0.5	2.13 ± 0.6
	H2	0.0-2.0	0.0-2.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-30.0	0.0-2.0	0.0-1.0
		0.3 ± 0.16	0.0 ± 0.15	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	2.0 ± 2.0	0.13 ± 0.13	0.07 ± 0.1
	H3	0.0-4.0	0.0-13.0	0.0-2.0	0.0-1.0	0.0-2.0	0.0-1.0	0.0-2.0	0.0-5.0	0.0-25.0	0.0-76.0
		0.5 ± 0.3	1.1 ± 0.86	0.3 ± 0.16	0.1 ± 0.07	0.2 ± 0.15	0.1 ± 0.07	0.13 ± 0.13	0.6 ± 0.38	2.07 ± 1.7	25.6 56.2
	H4	0.0-2.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-5.0
		0.1 ± 0.13	0.0 00.00	0.0 ± 0.0	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.13 ± 0.13	0.0 ± 0.0	$0.4 \pm 0.3<$
	H5	0.0-1.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0
		0.1 ± 0.07	0.1 ± 0.07	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.0	0.2 ± 0.11
	H6	0.0-1.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-4.0	0.0-6.0
		$0.1 \pm \pm 0.09$	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.09	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07	0.1 ± 0.07	0.47 ± 0.29	$0.5 \pm 0.4 C$
	H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0
		0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.0 (

Table 1 b. Mean and S.E. of female C. oxystoma and C. peregrinus aspirated hourly from cattle (cow) body surface at Sahebganj-Tantipara (ST), West Bengal. Body

			$\begin{aligned} & 18.00- \\ & 19.00 \end{aligned}$	$\begin{aligned} & 19.00- \\ & 20.00 \end{aligned}$	$\begin{aligned} & 20.00- \\ & 21.00 \end{aligned}$	$\begin{aligned} & 21.00- \\ & 22.00 \end{aligned}$	$\begin{aligned} & 23.00- \\ & 00.00 \end{aligned}$	$\begin{aligned} & 00.00- \\ & 01.00 \end{aligned}$	$\begin{aligned} & 1.00- \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.00- \\ & 3.00 \end{aligned}$	3.00-4.00	4.00-5.00
C. oxyatoma	Non engorged	H1	0.0-4.0	0.0-1.0	0.0-0.0	0.0-3.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-11.0
			1.3 ± 0.43	0.2 ± 0.11	0.0 ± 0.00	0.3 ± 0.25	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.2 ± 0.11	0.2 ± 0.11	1.7 ± 0.92
		H2	0.0-17.0	0.0-3.0	0.0-4.0	0.0-1.0	0.0-1.0	0.0-2.0	0.0-9.0	0.0-2.0	0.0-18.0	0.0-111.0
			4.0 ± 1.51	1.0 ± 0.35	0.6 ± 0.34	0.1 ± 0.08	0.3 ± 0.13	0.3 ± 0.17	1.3 ± 0.78	0.6 ± 0.23	3.3 ± 1.69	$53.3 \pm 10 . \varepsilon$
		H3	0.0-7.0	0.0-4.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-2.0	0.0-1.0	0.0-3.0	0.0-20.0
			1.1 ± 0.63	0.4 ± 0.33	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.2 ± 0.11	0.2 ± 0.16	0.1 ± 0.08	0.3 ± 0.25	9.8 ± 1.75
		H4	0.0-2.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-3.0
			0.2 ± 0.17	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.3 ± 0.25
		H5	0.0-3.0	0.0-1.0	0.0-0.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-29.0
			0.3 ± 0.26	0.1 ± 0.08	0.0 ± 0.00	0.1 ± 0.08	0.1 ± 0.08	0.1 1 ± 0.08	0.1 ± 0.08	0.1 ± 0.08	0.1 ± 0.08	5.8 ± 3.02
		H6	0.0-1.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-4.0
			0.1 ± 0.08	0.0 ± 0.00	0.2 ± 0.11	0.0 ± 0.00	0.1 ± 0.09	1.0 ± 0.36				
		H7	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
			0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00
	Engorged	H1	0.0-2.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-7.0
			0.6 ± 0.19	0.0 ± 0.00	0.1 ± 0.08	0.9 ± 0.58						
		H2	0.0-13.0	0.0-21.0	0.0-29.0	0.0-2.0	0.0-0.0	0.0-6.0	0.0-1.0	0.0-2.0	0.0-33.0	0.0-99.0
			3.2 ± 1.24	2.3 ± 1.73	2.4 ± 2.4	0.2 ± 0.16	0.0 ± 0.00	0.6 ± 0.49	0.2 ± 0.11	0.3 ± 0.18	5.6 ± 2.75	$29.9 \pm 8.1<$
		H3	0.0-17.0	0.0-27.0	0.0-11.0	0.0-1.0	0.0-1.0	0.0-1.0	0.0-0.0	0.0-2.0	0.0-11.0	0.0-29.0
			3.17 ± 1.56	2.9 ± 2.26	1.0 ± 0.91	0.1 ± 0.08	0.1 ± 0.08	0.1 ± 0.08	0.0 ± 0.00	0.3 ± 0.17	1.2 ± 0.90	6.5 ± 3.13
		H4	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0
			0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08						
		H5	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-12.0
			0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	1.3 ± 0.98
		H6	0.0-0.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-7.0
			0.0 ± 0.00	0.0 ± 0.00	0.3 ± 0.18	0.0 ± 0.00	0.7 ± 0.58					
		H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
			0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00
C. peregrinus	Non engorged	H1	0.0-2.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-3.0
			0.5 ± 0.23	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.4 ± 0.28
		H2	0.0-17.0	0.0-3.0	0.0-7.0	0.0-3.0	0.0-0.0	0.0-4.0	0.0-1.0	0.0-26.0	0.0-13.0	0.0-175.0
			4.7 ± 1.74	0.3 ± 0.25	1.3 ± 0.78	0.3 ± 0.25	0.0 ± 0.00	0.3 ± 0.33	0.1 ± 0.08	2.6 ± 2.13	2.3 ± 1.18	50.3 ± 16.5
		H3	0.0-2.0	0.0-2.0	0.0-0.0	0.0-1.0	0.0-2.0	0.0-1.0	0.0-1.0	0.0-12.0	0.0-10.0	0.0-25.0
			0.3 ± 0.18	0.3 ± 0.18	0.0 ± 0.00	0.1 ± 0.08	0.2 ± 0.16	0.1 ± 0.08	0.1 ± 0.08	1.3 ± 0.98	1.1 ± 0.89	6.8 ± 2.4
		H4	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-2.0	0.0-0.0	0.0-0.0
			0.0 ± 0.00	0.2 ± 0.16	0.0 ± 0.00	0.0 ± 0.00						
		H5	0.0-3.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-30.0
			0.7 ± 0.31	0.2 ± 0.11	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 00.00	0.0 ± 0.00	4.4 ± 2.53
		H6	0.0-1.0	0.0-2.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-2.0
			0.1 ± 0.08	0.2 ± 0.16	0.2 ± 0.11	0.0 ± 0.00	0.0 ± 0.00	0.0 00.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.09	0.2 ± 0.16

		$\begin{aligned} & 18.00- \\ & 19.00 \end{aligned}$	$\begin{aligned} & 19.00- \\ & 20.00 \end{aligned}$	$\begin{aligned} & 20.00- \\ & 21.00 \end{aligned}$	$\begin{aligned} & 21.00- \\ & 22.00 \end{aligned}$	$\begin{aligned} & 23.00- \\ & 00.00 \end{aligned}$	$\begin{aligned} & 00.00- \\ & 01.00 \end{aligned}$	$\begin{aligned} & 1.00- \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.00- \\ & 3.00 \end{aligned}$	3.00-4.00	4.00-5.00
	H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
		0.0 ± 0.00									
Engorged	H1	0.0-5.0	0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-5.0	0.0-9.0
		0.5 ± 0.42	0.0 ± 0.00	0.1 ± 0.08	0.7 ± 0.46	1.0 ± 0.73					
	H2	0.0-3.0	0.0-3.0	0.0-16.0	0.0-9.0	0.0-0.0	0.0-3.0	0.0-1.0	0.0-8.0	0.0-111.0	0.0-167.0
		0.8 ± 0.32	0.7 ± 0.33	1.6 ± 1.31	0.8 ± 0.75	0.0 ± 0.00	0.4 ± 0.26	0.1 ± 0.08	1.8 ± 0.89	19.2 ± 11.22	67.9 ± 12.2
	H3	0.0-26.0	0.0-41.0	0.0-1.0	0.0-6.0	0.0-1.0	0.0-3.0	0.0-1.0	0.0-4.0	0.0-29.0	0.0-29.0
		4.25 ± 2.46	5.8 ± 4.00	0.2 ± 0.11	0.6 ± 0.49	0.1 ± 0.08	0.3 ± 0.25	0.1 ± 0.08	0.3 ± 0.33	5.1 ± 2.73	6.7 ± 2.60
	H4	0.0-1.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-4.0
		0.1 ± 0.08	0.1 ± 0.08	0.0 ± 0.00	0.4 ± 0.33						
	H5	0.0-9.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-3.0	0.0-0.0	0.0-11.0
		0.8 ± 0.75	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.3 ± 0.25	0.0 ± 0.00	2.4 ± 0.94
	H6	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-1.0	0.0-0.0	0.0-5.0
		0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08	0.0 ± 0.00	1.3 ± 0.54
	H7	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0
		0.0 ± 0.00									

Due to technical limitations, table 2 is only available as a download in the Supplemental Files section.
Table 3a. Results of ANOVA using the time, host landing of Culicoides as the source of variations for the observed abundance in the cattle sheds in the study area (Dharan). The values in bold indicate significance at $\mathrm{P}<0.0001$ level. T- time, H - Host body parts.
(a) Culicoides oxystoma

Source	SS		MS		DF	F
TIME	12813.434		1281.343		10	17.546
HOST LANDING	10408.242		1734.707		6	23.754
TIME*HOST LAND	NDING 49505.948		825.099		60	11.298
Error	78725.333		73.029		1078	
Total	151452.958		1154			
Contrast	Difference	Contrast	Differenc	ce Contrast		Difference
T10 vs T7	11.629	T11 vs T1	2.771	T2 vs T6		0.219
T10 vs T5	11.610	T1 vs T7	1.000	T2 vs T3		0.181
T10 vs T6	11.562	T1 vs T5	0.981	T2 vs T4		0.171
T10 vs T3	11.524	T1 vs T6	0.933	T2 vs 78		0.038
T10 vs T4	11.514	T1 vs T3	0.895	T8 vs T7		0.248
T10 vs T8	11.381	T1 vs T4	0.886	T8 vs T5		0.229
T10 vs T2	11.343	T1 vs T8	0.752	T8 vs T6		0.181
T10 vs T9	11.019	T1 vs T2	0.714	T8 vs T3		0.143
T10 vs T1	10.629	T1 vs T9	0.390	T8 vs T4		0.133
T10 vs T11	7.857	T9 vs T7	0.610	T4 vs T7		0.114
T11 vs T7	3.771	T9 vs T5	0.590	T4 vs T5		0.095
T11 vs T5	3.752	T9 vs T6	0.543	T4 vs T6		0.048
T11 vs T6	3.705	T9 vs T3	0.505	T4 vs T3		0.010
T11 vs T3	3.667	T9 vs T4	0.495	T3 vs T7		0.105
T11 vs T4	3.657	T9 vs T8	0.362	T3 vs T5		0.086
T11 vs T8	3.524	T9 vs T2	0.324	T3 vs T6		0.038
T11 vs T2	3.486	T2 vs T7	0.286	T6 vs T7		0.067
T11 vs T9	3.162	T2 vs T5	0.267	T6 vs T5		0.048
Contrast	Difference	Contrast		Difference	Contrast	Difference
H3 vs H7	8.903	H1 vs H5		1.485	H2 vs H6	0.006
H3 vs H5	8.818	H1 vs H4		1.418	H6 vs H7	0.412
H3 vs H4	8.752	H 1 vs H 6		1.158	H6 vs H5	0.327
H3 vs H6	8.491	H 1 vs H 2		1.152	H6 vs H4	0.261
H 3 vs H2	8.485	$\mathrm{H} 2 \mathrm{vs} \mathrm{H7}$		0.418	H 4 vs H7	0.152
H3 vs H1	7.333	H 2 vs H 5		0.333	H4 vs H5	0.067
H1 vs H7	1.570	H 2 vs H4		0.267	H5 vs H7	0.085

(b) Culicoides peregrinus

Source	SS		MS	DF	F
TIME	12478.244		1247.824	101	15.632
HOST LANDING	12967.780		2161.297	62	27.076
TIME*HOST LAND	NDING 58232.010		970.534	$60 \quad 1$	12.159
Error	86048.667		79.823	1078	
Total	169726.701		1154		
Contrast	Difference	Contrast	Difference	Contrast	Difference
T10 vs T7	11.105	T11 vs T9	4.210	T1 vs T6	0.552
T10 vs T5	11.086	T9 vs T7	0.952	T1 vs T4	0.505
T10 vs T6	11.067	T9 vs T5	0.933	T1 vs T3	0.486
T10 vs T4	11.019	T9 vs T6	0.914	T1 vs T2	0.314
T10 vs T3	11.000	T9 vs T4	0.867	T2 vs T7	0.276
T10 vs T2	10.829	T9 vs T3	0.848	T2 vs T5	0.257
T10 vs T1	10.514	T9 vs T2	0.676	T2 vs T6	0.238
T10 vs T8	10.390	T9 vs T1	0.362	T2 vs T4	0.190
T10 vs T9	10.152	T9 vs T8	0.238	T2 vs T3	0.171
T10 vs T11	5.943	T8 vs T7	0.714	T3 vs T7	0.105
T11 vs T7	5.162	T8 vs T5	0.695	T3 vs T5	0.086
T11 vs T5	5.143	T8 vs T6	0.676	T3 vs T6	0.067
T11 vs T6	5.124	T8 vs T4	0.629	T3 vs T4	0.019
T11 vs T4	5.076	T8 vs T3	0.610	T4 vs T7	0.086
T11 vs T3	5.057	T8 vs T2	0.438	T4 vs T5	0.067
T11 vs T2	4.886	T8 vs T1	0.124	T4 vs T6	0.048
T11 vs T1	4.571	T1 vs T7	0.590	T6 vs T7	0.038
T11 vs T8	4.448	T1 vs T5	0.571	T6 vs T5	0.019
Contrast	Difference	Contrast	Difference	Contrast	Difference
H3 vs H7	9.915	H1 vs H5	1.224	H2 vs H6	0.067
H3 vs H5	9.806	H1 vs H4	1.067	H6 vs H7	0.339
H3 vs H4	9.648	H1 vs H6	0.994	H 6 vs H5	0.230
H3 vs H6	9.576	H 1 vs H2	0.927	H 6 vs H4	0.073
H3 vs H2	9.509	H2 vs H7	0.406	H4 vs H7	0.267
H 3 vs H1	8.582	H2 vs H5	0.297	H 4 vs H5	0.158
H 1 vs H 7	1.333	H2 vs H4	0.139	H5 vs H7	0.109

Table 3b. Results of ANOVA using the time, host landing of Culicoides as the source of variations for the observed abundance in the cattle sheds in the study area (Sahebganj-Tantipra). The values in bold indicate significance at $\mathrm{P}<0.0001$ level. T-time, H - Host body parts.
(a) Culicoides oxystoma

Source	SS	MS	DF	F	
Time	17941.411	1794.141	10	33.205	
HOST LANDING	12727.071	2121.179	6	39.258	
Time*HOST LANDING	56263.952	937.733	60	17.355	
Error	45765.083	54.032	847		
Total	132697.518		923		
Contrast	Difference	Contrast	Difference	Contrast	Difference
T10 vs T5	15.821	T11 vs T1	1.345	T2 vs T6	0.810
T10 vs T4	15.786	T1 vs T5	1.952	T2 vs T8	0.774
T10 vs T6	15.702	T1 vs T4	1.917	T2 vs T7	0.738
T10 vs T8	15.667	T1 vs T6	1.833	T2 vs T3	0.333
T10 vs T7	15.631	T1 vs T8	1.798	T3 vs T5	0.595
T10 vs T3	15.226	T1 vs T7	1.762	T3 vs T4	0.560
T10 vs T2	14.893	T1 vs T3	1.357	T3 vs T6	0.476
T10 vs T9	14.345	T1 vs T2	1.024	T3 vs T8	0.440
T10 vs T1	13.869	T1 vs T9	0.476	T3 vs T7	0.405
T10 vs T11	12.524	T9 vs T5	1.476	T7 vs T5	0.190
T11 vs T5	3.298	T9 vs T4	1.440	T7 vs T4	0.155
T11 vs T4	3.262	T9 vs T6	1.357	T7 vs T6	0.071
T11 vs T6	3.179	T9 vs T8	1.321	T7 vs T8	0.036
T11 vs T8	3.143	T9 vs T7	1.286	T8 vs T5	0.155
T11 vs T7	3.107	T9 vs T3	0.881	T8 vs T4	0.119
T11 vs T3	2.702	T9 vs T2	0.548	T8 vs T6	0.036
T11 vs T2	2.369	T2 vs T5	0.929	T6 vs T5	0.119
T11 vs T9	1.821	T2 vs T4	0.893	T6 vs T4	0.083
Contrast	Difference	Contrast	Difference	Contrast	Difference
H2 vs H7	11.008	H3 vs H4	3.136	H5 vs H1	0.098
H 2 vs H4	10.970	H3 vs H6	2.939	H1 vs H7	0.644
H 2 vs H6	10.773	H 3 vs H1	2.530	H 1 vs H4	0.606
H 2 vs H1	10.364	H3 vs H5	2.432	H1 vs H6	0.409
H 2 vs H5	10.265	H5 vs H7	0.742	H6 vs H7	0.235
H2 vs H3	7.833	H5 vs H4	0.705	H 6 vs H4	0.197
H3 vs H7	3.174	H5 vs H6	0.508	H 4 vs H7	0.038

(b) Culicoides peregrinus

Source	SS		MS	DF	F	
Time	29269.818		2926.982	10	29.522	
HOST LANDING	23410.734		3901.789	6	39.355	
Time*HOST LANDI	ING 118813.742		1980.229	60	19.973	
Error	83975.250		99.144	847		
Total	255469.544		923			
Contrast	Difference	Contrast	Difference		Contrast	Difference
T10 vs T7	20.226	T9 vs T11	1.738		T2 vs T6	0.929
T10 vs T5	20.226	T11 vs T7	2.274		T2 vs T4	0.821
T10 vs T6	20.119	T11 vs T5	2.274		T2 vs T3	0.619
T10 vs T4	20.012	T11 vs T6	2.167		T2 vs T8	0.119
T10 vs T3	19.810	T11 vs T4	2.060		T8 vs T7	0.917
T10 vs T8	19.310	T11 vs T3	1.857		T8 vs T5	0.917
T10 vs T2	19.190	T11 vs T8	1.357		T8 vs T6	0.810
T10 vs T1	18.464	T11 vs T2	1.238		T8 vs T4	0.702
T10 vs T11	17.952	T11 vs T1	0.512		T8 vs T3	0.500
T10 vs T9	16.214	T1 vs T7	1.762		T3 vs T7	0.417
T9 vs T7	4.012	T1 vs T5	1.762		T3 vs T5	0.417
T9 vs T5	4.012	T1 vs T6	1.655		T3 vs T6	0.310
T9 vs T6	3.905	T1 vs T4	1.548		T3 vs T4	0.202
T9 vs T4	3.798	T1 vs T3	1.345		T4 vs T7	0.214
T9 vs T3	3.595	T1 vs T8	0.845		T4 vs T5	0.214
T9 vs T8	3.095	T1 vs T2	0.726		T4 vs T6	0.107
T9 vs T2	2.976	T2 vs T7	1.036		T6 vs T7	0.107
T9 vs T1	2.250	T2 vs T5	1.036		T6 vs T5	0.107
Contrast	Difference	Contrast	Diffe	ence	Contrast	Difference
H2 vs H7	14.886	H3 vs H4	3.386		H 5 vs H1	0.318
H 2 vs H4	14.803	H3 vs H6	3.265		H1 vs H7	0.538
H 2 vs H6	14.682	H3 vs H1	2.932		H 1 vs H4	0.455
H 2 vs H1	14.348	H3 vs H5	2.614		H 1 vs H6	0.333
H2 vs H5	14.030	H5 vs H7	0.856		H 6 vs H7	0.205
H 2 vs H3	11.417	H5 vs H4	0.773		H 6 vs H4	0.121
H3 vs H7	3.470	H5 vs H6	0.652		H 4 vs H7	0.083

Figures

Figure 1

The body of cow was divided into head $(\mathrm{H} 1)$, neck $(\mathrm{H} 2)$, hump $(\mathrm{H} 3)$, back $(\mathrm{H} 4)$, leg $(\mathrm{H} 5)$, belly $(\mathrm{H} 6)$, hip (H7)
(a) Nulliparous
-ASPIRATOR -LIGHTTRAP

(b) Parous

(c) Engorged

(a) Nulliparous

(b) Parous

(c) Engorged

Figure 2
a Comparative graphical representation on sampling of Culicoides oxystoma by two trapping methods (aspirator; light trap) during May-October, 2018 from Sahebganj-Tantipara b Comparative graphical representation on sampling of Culicoides peregrinus by two trapping methods (aspirator; light trap) during MayOctober, 2018 from Sahebganj-Tantipara

Figure 3

Graph represents the proportion of engorged females, Culicoides oxystoma (COX) and Culicoides peregrinus (CPE) trapped on different body surfaces of cow at two collection sites: a). Dharan, b). Sahebganj-Tantipara respectively. Region of body surface abbreviated as H 1 , head; H 2 , neck; H 3 , hump; H 4 , back; H 5 , leg; H6, belly; H7, hip. Duration of collection (T1-T11) hours, T1: 18.00-19.00; T2: 19.00-20.00; T3: 20.00-21.00; T4: 21.00-22.00; T5: 23.00-00.00; T6: 00.0001.00; T7: 01.00-2.00; T8: 02.00-03.00; T9: 03.00-04.00; T10: 04.00-05.00; T11: 05.00-06.00.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table2.docx
- Graphicalabstract.jpg

