[1] W. Jacoby, I. Pasten, Methods in Enzymology: Cell Culture. Vol. 58, Academic Press, New York, 1979.
[2] R.I. Freshney, Culture of animal cells: a manual of basic technique and specialized applications, John Wiley & Sons, 2015.
[3] J.E. Polli, In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms, The AAPS journal 10 (2008) 289-299.
[4] A. Moleiro, G. Conceição, A. Leite-Moreira, A. Rocha-Sousa, A critical analysis of the available in vitro and ex vivo methods to study retinal angiogenesis, Journal of ophthalmology 2017 (2017).
[5] W.F. Scherer, J.T. Syverton, G.O. Gey, Studies on the propagation in vitro of poliomyelitis viruses: IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix, The Journal of experimental medicine 97 (1953) 695-710.
[6] H. Soule, J. Vazquez, A. Long, S. Albert, M. Brennan, A human cell line from a pleural effusion derived from a breast carcinoma, Journal of the national cancer institute 51 (1973) 1409-1416.
[7] J.L. Biedler, L. Helson, B.A. Spengler, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer research 33 (1973) 2643-2652.
[8] D. Yaffe, O. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle, Nature 270 (1977) 725-727.
[9] F.L. Graham, J. Smiley, W. Russell, R. Nairn, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, Journal of general virology 36 (1977) 59-72.
[10] L. Hayflick, P.S. Moorhead, The serial cultivation of human diploid cell strains, Experimental cell research 25 (1961) 585-621.
[11] L. Hayflick, The limited in vitro lifetime of human diploid cell strains, Experimental cell research 37 (1965) 614-636.
[12] E. González‐Gualda, A.G. Baker, L. Fruk, D. Muñoz‐Espín, A guide to assessing cellular senescence in vitro and in vivo, The FEBS Journal 288 (2021) 56-80.
[13] L.S. Gollahon, E. Kraus, T.-A. Wu, S.O. Yim, L.C. Strong, J.W. Shay, M.A. Tainsky, Telomerase activity during spontaneous immortalization of Li-Fraumeni syndrome skin fibroblasts, Oncogene 17 (1998) 709-717.
[14] M.M. Geens, T.A. Niewold, Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization, Cytotechnology 63 (2011) 415-423.
[15] Y. Diebold, M. Calonge, A.E.q. de Salamanca, S. Callejo, R.M. Corrales, V. Sáez, K.F. Siemasko, M.E. Stern, Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva, Investigative ophthalmology & visual science 44 (2003) 4263-4274.
[16] B. Baquero-Perez, S.V. Kuchipudi, R.K. Nelli, K.-C. Chang, A simplified but robust method for the isolation of avian and mammalian muscle satellite cells, BMC cell biology 13 (2012) 16.
[17] R.J. Naylor, R.J. Piercy, Development of a clonal equine myoblast cell line capable of terminal differentiation into mature myotubes in vitro, American journal of veterinary research 76 (2015) 608-614.
[18] M. Fernandez-Fuente, E.G. Ames, M.L. Wagner, H. Zhou, M. Strom, P.S. Zammit, J.R. Mickelson, F. Muntoni, S.C. Brown, R.J. Piercy, Assessment of the transformation of equine skin–derived fibroblasts to multinucleated skeletal myotubes following lentiviral-induced expression of equine myogenic differentiation 1, American journal of veterinary research 69 (2008) 1637-1645.
[19] K.R. Amilon, Y. Cortes-Araya, B. Moore, S. Lee, S. Lillico, A. Breton, C.L. Esteves, F.X. Donadeu, Generation of functional myocytes from equine induced pluripotent stem cells, Cellular Reprogramming (Formerly" Cloning and Stem Cells") 20 (2018) 275-281.
[20] R.J. Geor, The role of nutritional supplements and feeding strategies in equine athletic performance, Equine and Comparative Exercise Physiology 3 (2006) 109-119.
[21] C. Agar, R. Gemmill, T. Hollands, S. Freeman, The use of nutritional supplements in dressage and eventing horses, Veterinary record open 3 (2016) e000154.
[22] R. Gemmill, C. Agar, S. Freeman, T. Hollands, Factors affecting owners’ choice of nutritional supplements for use in dressage and eventing horses, Veterinary Record Open 3 (2016) e000155.
[23] J. Murray, E. Hanna, P. Hastie, Equine dietary supplements: an insight into their use and perceptions in the Irish equine industry, Irish veterinary journal 71 (2018) 1-6.
[24] J.L. Roberts, J.-A. Murray, Equine nutrition in the United States: a review of perceptions and practices of horse owners and veterinarians, Journal of Equine Veterinary Science 34 (2014) 854-859.
[25] J.L. Roberts, J.-A. Murray, Survey of equine nutrition: perceptions and practices of veterinarians in Georgia, USA, Journal of Equine Veterinary Science 33 (2013) 454-459.
[26] T. Dodge, Consumers' perceptions of the dietary supplement health and education act: implications and recommendations, Drug testing and analysis 8 (2016) 407-409.
[27] R.R. Starr, Too little, too late: ineffective regulation of dietary supplements in the United States, American journal of public health 105 (2015) 478-485.
[28] J.T. Dwyer, P.M. Coates, M.J. Smith, Dietary supplements: regulatory challenges and research resources, Nutrients 10 (2018) 41.
[29] J.K. Wong, T.S. Wan, Doping control analyses in horseracing: a clinician’s guide, The Veterinary Journal 200 (2014) 8-16.
[30] F. Botrè, C. Georgakopoulos, M.A. Elrayess, Metabolomics and doping analysis: promises and pitfalls, Future Science, 2020.
[31] H.W. Cheung, K.S. Wong, N.S. To, A.J. Bond, A.F. Farrington, A. Prabhu, P. Curl, T.S. Wan, E.N. Ho, Label‐free proteomics for discovering biomarker candidates of RAD140 administration to castrated horses, Drug Testing and Analysis 13 (2021) 1034-1047.
[32] R. Aikin, N. Baume, T. Equey, O. Rabin, Biomarkers of doping: uses, discovery and validation, Bioanalysis 12 (2020) 791-800.
[33] F. Loria, M. Manfredi, G. Reverter-Branchat, J. Segura, T. Kuuranne, N. Leuenberger, Automation of RNA-based biomarker extraction from dried blood spots for the detection of blood doping, Bioanalysis 12 (2020) 729-736.
[34] K. Papadopoulos, P. Wattanaarsakit, W. Prasongchean, R. Narain, Gene therapies in clinical trials, Polymers and Nanomaterials for Gene Therapy, Elsevier, 2016, pp. 231-256.
[35] J.R. Chamberlain, J.S. Chamberlain, Progress toward gene therapy for Duchenne muscular dystrophy, Molecular Therapy 25 (2017) 1125-1131.
[36] G.A.R. Gonçalves, R.d.M.A. Paiva, Gene therapy: advances, challenges and perspectives, Einstein (Sao Paulo) 15 (2017) 369-375.
[37] N.F. Nidetz, M.C. McGee, V.T. Longping, C. Li, L. Cong, Y. Li, W. Huang, Adeno-associated viral vector-mediated immune responses: understanding barriers to gene delivery, Pharmacology & therapeutics 207 (2020) 107453.
[38] A. Baoutina, I.E. Alexander, J.E. Rasko, K.R. Emslie, Potential use of gene transfer in athletic performance enhancement, Molecular therapy 15 (2007) 1751-1766.
[39] A. Baoutina, A brief history of the development of a gene doping test, Future Science, 2020.
[40] L.N. Moro, D.L. Viale, J.I. Bastón, V. Arnold, M. Suvá, E. Wiedenmann, M. Olguín, S. Miriuka, G. Vichera, Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer, Scientific reports 10 (2020) 1-10.
[41] E. Brzeziańska, D. Domańska, A. Jegier, Gene doping in sport–perspectives and risks, Biology of sport 31 (2014) 251.
[42] C.P. Neuhaus, B. Parent, Gene Doping—in Animals? Ethical Issues at the Intersection of Animal Use, Gene Editing, and Sports Ethics, Cambridge Quarterly of Healthcare Ethics 28 (2019) 26-39.
[43] J.J. Zhang, J.F. Xu, Y.W. Shen, S.J. Ma, T.T. Zhang, Q.L. Meng, W.J. Lan, C. Zhang, X.M. Liu, Detection of exogenous gene doping of IGF‐I by a real‐time quantitative PCR assay, Biotechnology and applied biochemistry 64 (2017) 549-554.
[44] H.W. Cheung, K.S. Wong, V.Y. Lin, T.S. Wan, E.N. Ho, A duplex qPCR assay for human erythropoietin (EPO) transgene to control gene doping in horses, Drug Testing and Analysis 13 (2021) 113-121.
[45] D.A. Moser, L. Braga, A. Raso, S. Zacchigna, M. Giacca, P. Simon, Transgene detection by digital droplet PCR, PloS one 9 (2014) e111781.
[46] T. Wilkin, A. Baoutina, N. Hamilton, Equine performance genes and the future of doping in horseracing, Drug testing and analysis 9 (2017) 1456-1471.
[47] K. Bryan, L. Katz, E. Hill, Effects of equine myostatin (MSTN) genotype variation on transcriptional responses in Thoroughbred skeletal muscle, Comparative Exercise Physiology 15 (2019) 327-338.
[48] L. Bailly‐Chouriberry, F. Baudoin, F. Cormant, Y. Glavieux, B. Loup, P. Garcia, M.A. Popot, Y. Bonnaire, RNA sample preparation applied to gene expression profiling for the horse biological passport, Drug testing and analysis 9 (2017) 1448-1455.
[49] E.W. Hill, J. Gu, S.S. Eivers, R.G. Fonseca, B.A. McGivney, P. Govindarajan, N. Orr, L.M. Katz, D.E. MacHugh, A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses, PloS one 5 (2010) e8645.
[50] E.W. Hill, B.A. McGivney, J. Gu, R. Whiston, D.E. Machugh, A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses, BMC genomics 11 (2010) 552.
[51] T. Tozaki, T. Miyake, H. Kakoi, H. Gawahara, S. Sugita, T. Hasegawa, N. Ishida, K. Hirota, Y. Nakano, A genome‐wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene, Animal genetics 41 (2010) 28-35.
[52] M. Binns, D. Boehler, D. Lambert, Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA, Animal genetics 41 (2010) 154-158.
[53] R. van den Hoven, E. Gür, M. Schlamanig, M. Hofer, A.C. Onmaz, R. Steinborn, Putative regulation mechanism for the MSTN gene by a CpG island generated by the SINE marker Ins227bp, BMC veterinary research 11 (2015) 1.
[54] M.F. Rooney, E.W. Hill, V.P. Kelly, R.K. Porter, The “speed gene” effect of myostatin arises in Thoroughbred horses due to a promoter proximal SINE insertion, PloS one 13 (2018) e0205664.
[55] M.F. Rooney, R.K. Porter, L.M. Katz, E.W. Hill, Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse, PloS one 12 (2017) e0186247.
[56] E. Hill, B. McGivney, M. Rooney, L. Katz, A. Parnell, D. MacHugh, The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions, Equine veterinary journal 51 (2019) 625-633.
[57] J.L. Petersen, J.R. Mickelson, A.K. Rendahl, S.J. Valberg, L.S. Andersson, J. Axelsson, E. Bailey, D. Bannasch, M.M. Binns, A.S. Borges, Genome-wide analysis reveals selection for important traits in domestic horse breeds, PLoS genetics 9 (2013) e1003211.
[58] J.L. Petersen, S.J. Valberg, J.R. Mickelson, M.E. McCue, Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions, Animal genetics (2014).
[59] M. Rooney, C. Curley, J. Sweeney, M. Griffin, R. Porter, E. Hill, L. Katz, Prolonged oral coenzyme Q10-β-cyclodextrin supplementation increases skeletal muscle complex I+ III activity in young Thoroughbreds, Journal of Applied Animal Nutrition 8 (2020) 11-20.
[60] X.M. Yin, K. Wang, A. Gross, Y. Zhao, S. Zinkel, B. Klocke, K.A. Roth, S.J. Korsmeyer, Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis, Nature 400 (1999) 886-891.
[61] N.N. Danial, C.F. Gramm, L. Scorrano, C.Y. Zhang, S. Krauss, A.M. Ranger, S.R. Datta, M.E. Greenberg, L.J. Licklider, B.B. Lowell, S.P. Gygi, S.J. Korsmeyer, BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis, Nature 424 (2003) 952-956.
[62] H.M. Blau, G.K. Pavlath, E.C. Hardeman, C.P. Chiu, L. Silberstein, S.G. Webster, S.C. Miller, C. Webster, Plasticity of the differentiated state, Science 230 (1985) 758-766.
[63] H. Green, M. Meuth, An established pre-adipose cell line and its differentiation in culture, Cell 3 (1974) 127-133.
[64] H. Green, Triglyceride-accumulating clonal cell line, United States patent US, 1977, Vol. 4,003,789. .
[65] L. Young, J. Sung, G. Stacey, J.R. Masters, Detection of Mycoplasma in cell cultures, Nature protocols 5 (2010) 929-934.
[66] E.W. Hill, R.G. Fonseca, B.A. McGivney, J. Gu, D.E. MacHugh, L.M. Katz, MSTN genotype (g.66493737C/T) association with speed indices in Thoroughbred racehorses, Journal of applied physiology 112 (2012) 86-90.
[67] P.C. Macpherson, S.T. Suhr, D. Goldman, Activity‐dependent gene regulation in conditionally‐immortalized muscle precursor cell lines, Journal of cellular biochemistry 91 (2004) 821-839.
[68] F. Jacobsen, T. Hirsch, D. Mittler, M. Schulte, M. Lehnhardt, D. Druecke, H. Homann, H. Steinau, L. Steinstraesser, Polybrene improves transfection efficacy of recombinant replication‐deficient adenovirus in cutaneous cells and burned skin, The journal of gene medicine 8 (2006) 138-146.
[69] S. Di Donna, K. Mamchaoui, R.N. Cooper, S. Seigneurin-Venin, J. Tremblay, G.S. Butler-Browne, V. Mouly, Telomerase Can Extend the Proliferative Capacity of Human Myoblasts, but Does Not Lead to Their Immortalization, Molecular Cancer Research 1 (2003) 643-653.
[70] H.-Y. Oh, X. Jin, J.-G. Kim, M.-J. Oh, X. Pian, J.-M. Kim, M.-S. Yoon, C.-I. Son, Y.S. Lee, K.-C. Hong, Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs, BMC cell biology 8 (2007) 20.
[71] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid, Analytical biochemistry 150 (1985) 76-85.
[72] P.A. Srere, [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)], in: M.L. John (Ed.), Methods in Enzymology, Academic Press, 1969, Vol. Volume 13, pp. 3-11.
[73] W.J. Powers, R.H. Haas, T. Le, T.O. Videen, T. Hershey, L. McGee-Minnich, J.S. Perlmutter, Normal platelet mitochondrial complex I activity in Huntington’s disease, Neurobiology of disease 27 (2007) 99-101.
[74] C.H. Zhu, V. Mouly, R.N. Cooper, K. Mamchaoui, A. Bigot, J.W. Shay, J.P. Di Santo, G.S. Butler‐Browne, W.E. Wright, Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin‐dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies, Aging cell 6 (2007) 515-523.
[75] O. Rokach, N.D. Ullrich, M. Rausch, V. Mouly, H. Zhou, F. Muntoni, F. Zorzato, S. Treves, Establishment of a human skeletal muscle-derived cell line: biochemical, cellular and electrophysiological characterization, Biochemical Journal 455 (2013) 169-177.
[76] M. Stadler, A. Fire, Wobble base-pairing slows in vivo translation elongation in metazoans, RNA 17 (2011) 2063-2073.
[77] S. Muses, J.E. Morgan, D.J. Wells, A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies, PloS one 6 (2011) e24826.
[78] M. Thorley, S. Duguez, E.M.C. Mazza, S. Valsoni, A. Bigot, K. Mamchaoui, B. Harmon, T. Voit, V. Mouly, W. Duddy, Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines, Skeletal muscle 6 (2016) 1-12.
[79] D. Yaffe, Retention of differentiation potentialities during prolonged cultivation of myogenic cells, Proceedings of the National Academy of Sciences of the United States of America 61 (1968) 477.
[80] Z.Y. Wang, L.L. Paris, R.K. Chihara, A.J. Tector, C. Burlak, Immortalized porcine liver sinusoidal endothelial cells: an in vitro model of xenotransplantation‐induced thrombocytopenia, Xenotransplantation 19 (2012) 249-255.
[81] L. Balducci, A. Blasi, M. Saldarelli, A. Soleti, A. Pessina, A. Bonomi, V. Coccè, M. Dossena, V. Tosetti, V. Ceserani, Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors, Stem cell research & therapy 5 (2014) 63.
[82] D.A. Olyslaegers, L.M. Desmarets, A. Dedeurwaerder, H.L. Dewerchin, H.J. Nauwynck, Generation and characterization of feline arterial and venous endothelial cell lines for the study of the vascular endothelium, BMC veterinary research 9 (2013) 170.
[83] J.S. Ahn, D.-H. Kim, H.-B. Park, S.-H. Han, S. Hwang, I.-C. Cho, J.-W. Lee, Ectopic overexpression of porcine Myh1 increased in slow muscle fibers and enhanced endurance exercise in transgenic mice, International journal of molecular sciences 19 (2018) 2959.
[84] T. Tozaki, F. Sato, E.W. Hill, T. Miyake, Y. Endo, H. Kakoi, H. Gawahara, K. Hirota, Y. Nakano, Y. Nambo, M. Kurosawa, Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses, The Journal of veterinary medical science / the Japanese Society of Veterinary Science 73 (2011) 1617-1624.
[85] R.K. Porter, M.D. Brand, Cellular oxygen consumption depends on body mass, The American journal of physiology 269 (1995) R226-228.
[86] D.G. Nicholls, V.M. Darley-Usmar, M. Wu, P.B. Jensen, G.W. Rogers, D.A. Ferrick, Bioenergetic profile experiment using C2C12 myoblast cells, JoVE (Journal of Visualized Experiments) (2010) e2511.
[87] M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proceedings of the National Academy of Sciences 104 (2007) 19494-19499.
[88] I.A. Okkelman, N. Neto, D.B. Papkovsky, M.G. Monaghan, R.I. Dmitriev, A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses, Redox biology 30 (2020) 101420.
[89] N. Neto, R.I. Dmitriev, M.G. Monaghan, Seeing Is Believing: Noninvasive Microscopic Imaging Modalities for Tissue Engineering and Regenerative Medicine, Cell Engineering and Regeneration (2020) 599-638.
[90] A.J. Walsh, K.P. Mueller, K. Tweed, I. Jones, C.M. Walsh, N.J. Piscopo, N.M. Niemi, D.J. Pagliarini, K. Saha, M.C. Skala, Classification of T-cell activation via autofluorescence lifetime imaging, Nature biomedical engineering 5 (2021) 77-88.
[91] K.P. Quinn, E. Bellas, N. Fourligas, K. Lee, D.L. Kaplan, I. Georgakoudi, Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios, Biomaterials 33 (2012) 5341-5348.
[92] A.V. Meleshina, V.V. Dudenkova, A.S. Bystrova, D.S. Kuznetsova, M.V. Shirmanova, E.V. Zagaynova, Two-photon FLIM of NAD (P) H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation, Stem cell research & therapy 8 (2017) 1-10.
[93] S. Huang, A.A. Heikal, W.W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein, Biophysical journal 82 (2002) 2811-2825.
[94] A. Bonetti, F. Solito, G. Carmosino, A. Bargossi, P. Fiorella, Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects, Journal of Sports Medicine and Physical Fitness 40 (2000) 51.
[95] M. Cooke, M. Iosia, T. Buford, B. Shelmadine, G. Hudson, C. Kerksick, C. Rasmussen, M. Greenwood, B. Leutholtz, D. Willoughby, Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals, Journal of the International Society of Sports Nutrition 5 (2008) 1.
[96] K. Mizuno, M. Tanaka, S. Nozaki, H. Mizuma, S. Ataka, T. Tahara, T. Sugino, T. Shirai, Y. Kajimoto, H. Kuratsune, Antifatigue effects of coenzyme Q10 during physical fatigue, Nutrition 24 (2008) 293-299.
[97] D. Alf, M.E. Schmidt, S.C. Siebrecht, Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study, Journal of the International Society of Sports Nutrition 10 (2013) 1-8.
[98] D. Leelarungrayub, N. Sawattikanon, J. Klaphajone, P. Pothongsunan, R.J. Bloomer, Coenzyme Q10 supplementation decreases oxidative stress and improves physical performance in young swimmers: a pilot study, The Open Sports Medicine Journal 4 (2010).