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Abstract
Background: The application of nitrogen (N) fertilizer not only increases crop yield but also improves the
N utilization efficiency. The critical N concentration (Nc) can be used to diagnose crops N nutritional
status. The Nc dilution curve model of maize was calibrated with leaf dry matter (LDM) as the indicator,
and the performance of the model for diagnosing maize N nutritional status was further evaluated. Three
field experiments were carried out in two sites between 2018 and 2020 in Ningxia Hui Autonomous
Region with a series of N levels (application of N from 0 to 450 kg N ha-1). Two spring maize cultivars,
i.e., Tianci19 (TC19) and Ningdan19 (ND19), were utilized in the field experiment.

Results: The results showed that a negative power function relationship existed between LDM and leaf N
concentration (LNC) for spring maize under drip irrigation. The Nc dilution curve equation was divided

into two parts: when the LDM < 1.11 t ha-1, the constant leaf Nc value was 3.25%; and when LDM > 1.11 t

ha-1, the Nc curve was 3.33*LDM-0.24.

Conclusion: The LDM based Nc curve can well distinguish data the N-limiting and non-N-limiting N status
of maize, which was independent with maize varieties, growing seasons and stages. Additionally, the N
nutrition index (NNI) had a significant linear correlation with the relative leaf dry matter (RLDM). This
study revealed that the LDM based Nc dilution curve could accurately identify spring maize N status
under drip irrigation. NNI can thus, be used as a robust and reliable tool to diagnose N nutritional status
of maize.

Introduction
Nitrogen (N) is a key element for maintaining crop growth [1]. Under N deficiency, an increase of N
application can dramatically stimulate the growth of crops and maintain a good grain yield [2]. However,
the applied N in the soil cannot be fully absorbed by the crop, and consequently, about 60% of the N
fertilizer is lost through ammoniation, nitrification, denitrification, leaching, and runoff [3]. The N
utilization efficiency has become an important factor restricting sustainable development of agricultural
production, since N utilization efficiency is generally low as a result of excessive N application for
maintaining high grain yield [4, 5]. The major challenge is how to achieve optimum water-fertilizer
management, and obtain a continuous increase in maize production and efficiency in intensive planting
[6, 7]. At different growth stages of maize, optimizing its N application rate is especially helpful to further
improve maize yield and quality [8, 9].

Diagnosis of N nutrition in crops mainly includes the measurement of chlorophyll using chlorophyll meter
[10], spectral diagnosis [11], remote sensors [12], as well as image processing [13]. One of the common
disadvantages of these methods is that there are large variations in the results obtained especially under
luxury absorption [14, 15]. Greenwood et al. (1991) [15] summarized the characteristics of crop growth
and N absorption and proposed the concept of critical N concentration (Nc), which is the minimum N
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required for the maximum crop growth. Nc has received significant attention from numerous researchers
related to reliable N diagnosis with sufficient accuracy, and can thus, be used as an index to evaluate the
crop N nutritional status of crops. Plant dry matter (PDM) based Nc dilution curves have been
successfully constructed and applied in rice [14, 16, 17], wheat [18, 19], and other crops [20]. However,
some previous reports show that Nc dilution curves may vary with environmental conditions, crops, and
varieties [21, 22]. Therefore, a robust Nc dilution curve is especially important for diagnosing N
requirements during the growth of specific crops.

Maize (Zea mays L.) is a globally main crop. Growth and yield of maize are significantly affected by the
application of fertilizers, especially for N. Previous studies have reported calibrated Nc curves model for
maize in different regions using plant dry matter (PDM) [21, 23]. Leaves are the main tissues and organs
of maize, while the Nc dilution curves model is also varied with tissues and organs [24]. Besides, leaves
are extremely sensitive to N nutritional status. For instance, the leaf dry matter (LDM) and N of maize
generally increase with increased N application. However, when N was applied above a certain dosage,
LDM does not increase but the N concentration continues to increase [22]. With maize growth, the dry
matter accumulation in leaves increases, but the N concentration decreases [22]. Therefore, the leaves N
concentration (LNC) can be used as an important index for evaluating the status of crop growth. For
instance, LDM based Nc curve has been successfully established and applied in several main crops, such
as rice [25], and winter wheat [26]. However, LDM based Nc curve model in maize has not been calibrated
under the integrated technology of water and fertilizer. Therefore, this study aimed (1) to calibrate and
validate LDM based Nc dilution curve in maize, (2) to compare the validated model with other crops Nc

curve models and to evaluate its reliability in spring maize, and (3) to offer a novel method for precisely
managing N fertilizer application in spring maize cultivated under drip irrigation conditions.

Materials And Methods

Field experiment design:
Three experiments were carried out in two experimental sites, Pingjipu (38°25′N, 106°1′E) and Yongning
(38°13′N, 106°14′E) in 2018, 2019, and 2020 in Ningxia Hui Autonomous Region of China. The spring
maize cultivars were, Tianci19 (TC19) and Ningdan19 (ND19). Six N fertilizer application rates included 0
(N0), 90 (N1), 180 (N2), 270 (N3), 360 (N4), and 450 kg ha−1 (N5). A randomized complete block design
with three replicate was used in the experimental plots. Each plot (15 m×4.5 m) had eight rows of spring
maize, with 40 cm - 70 cm row spacing and 20 cm distance between each hill within each row, following
typical planting of spring maize. The plant density reached 90,000 plants ha−1. The basic soil properties
are shown in Table 1, including sowing and harvesting date information.
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Table 1
Soil properties (0–60 cm depth) in the experimental fields

Parameter Units Experiments

Experiment 1 Experiment 2 Experiment 3

Year   2018 2019 2020

Site   Pingjipu Yongning Pingjipu Yongning Pingjipu Yongning

Cultivar   TC19 ND19 TC19 ND19 TC19 ND19

pH value   7.82 8.53 7.98 8.44 7.76 8.57

Organic
matter

g kg−1 14.83 10.56 11.45 8.07 12.82 14.83

Total N g kg−1 0.92 0.96 0.8 0.98 0.75 0.92

Available N mg
kg−1

37.81 40.23 37.42 40.47 36.82 39.44

Available P mg
kg−1

20.63 18.96 19.04 18.33 19.37 20.63

Available K mg
kg−1

109.17 108.92 102.53 106.25 105.31 111.25

Sowing date   20/4 24/4 26/4 22/4 28/4 20/4

Harvesting
date

  22/9 20/9 16/9 18/9 18/9 22/9

The integrated technology of water and fertilizer was adopted in field experiments. The total irrigation
amount applied during the maize growing season in each plot was 400 mm, including 20, 100, 140, 120,
and 20 mm at the seedling, jointing-bell, tasseling-silk, filling, and maturity stage, respectively. Urea
dissolved in drip irrigation was applied as N fertilizer, with 10%, 45%, 20%, and 25% of the N applied at
seedling, jointing-bell, tasseling-silk, and filling stage, respectively. And 138 kg potassium dihydrogen
(P2O5 ha−1) and 120 kg potassium sulfate (K2O ha−1) were applied as the phosphorus and potassium
fertilizer for each plot. Other management followed the practices of local farmers.

Sampling and measurement
Three spring maize plants with uniform growth were randomly selected from each plot at the fourth leaf
collar (V4), the sixth leaf collar (V6), the tenth leaf collar (V10), the twelfth leaf collar (V12), tasseling
stage (VT) and silking stage (R1). The plants were separated into stems and leaves. Plant tissues were
oven-dried at 105℃ for 30 min and then at 80℃ until reaching a constant weight. All sampled leaves
were weighted to calculate the LDM and stored in hermetic bags for the downstream chemical analysis.
The leaves N content was measured by using the micro-Kjeldahl method [27].
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Critical Nitrogen Dilution Curve
The critical nitrogen dilution (Nc) was calculated following the method reported by Justes et al. [28]. A
typical power-law function was adopted to regress the correlation between Nc and LDM. The two-year
data (i.e., experiment 1 and 2) were used to calibrate the Nc model for the two spring maize cultivars. The
calibrated curve model was further validated by an independent dataset from experiment 3. Nc was
derived from the equation described by Plénet and Lemaire [29]:

Nc = a LDM−b (1)

Where Nc means the Nc concentration concentration (%), LDM represents the leaf dry matter (t ha−1), a

indicates the Nc concentration concentration when LDM equalts to 1 t ha−1, while b is the statistical
parameter controlling the slope of the curve, representing the ratio of the relative dry matter accumulation
rate to the relative N content accumulation rate.

Nitrogen Nutrition Index
The N nutrition index (NNI) was derived from the equation reported by Plénet and Lemaire [29]:

NNI = LNC/Nc

2
NNI = 1, > 1, and < 1 mean plant N nutritional status is optimal, excessive, and deficient, respectively.

Relative Ldm
Relative LDM (RLDM) was calculated by dividing the LDM to the maximum LDM at each growth stage.
The following equation was used:

where RLDMi is the relative leaf dry matter within growth stage i, LDMi is the measured leaf dry matter

within growth stage i (t ha−1), and LDMmax represents the maximum leaf dry matter at each growth stage

(t ha−1).

Statistical Analysis
ANOVA was used to analyze the significant difference between LDM and LNC in different nitrogen
fertilizer application rates. Means were determined using the least significant difference at the P<0.05
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level and analytical data were classified to the N-limiting and non-N-limiting group. The non-linear
relationship between NNI and RLDM were fitted using Origin 2018 (Origin Lab Corporation, USA).

Results

The dynamic change in the status of both spring maize
cultivar’s LDM and LNC
The leaf dry matter (LDM) of both spring maize cultivars increased as the growth stage increased in all
the six N fertilizer application rates. The increase followed an S-shaped pattern (Fig. 1). The LDM of TC19
and ND19 ranged from 0.32 to 4.06 t ha−1 (Fig. 1a) and 0.23 to 3.73 t ha−1 (Fig. 1b) in 2018, and from
0.39 to 4.30 t ha−1 (Fig. 1c) and 0.34 to 3.97 t ha−1 (Fig. 1d) in 2019, respectively. Significant differences
in LDM were observed from N0 to N3 rates in both 2018 and 2019. However, no significant differences in
LDM of both maize cultivars were observed between N4 and N5 rates.

 

The leaves nitrogen content (LNC) of both spring maize cultivars also increased as the growth stage
increased in all the six N fertilizer application rates. In general, for all the crop growth stages, decrease of
LNC accompanied by an increase in LDM (Fig. 2). The LNC of TC19 and ND19 ranged between 1.38–
3.74% and 1.85–3.53% in 2018 (Fig. 2a, b), and between 1.42–3.61% and 1.43–3.48% in 2019 (Fig. 2c,
d), respectively. The LNC of the same cultivar had a similar variation tendency.

 

Calibration Of N Curves
The Nc values were calculated from V6 to R1 for the two spring cultivars (TC19 and ND19) using
experimental data 1and 2 between 2018 and 2019. The Nc dilution curves for the two spring cultivars

(TC19 and ND19) were calibrated using twenty data points (LDM range from 1.11 to 4.25 t ha−1), during
the vegetative growth stages of spring maize (Fig. 3a). The Nc values decreased with an increase in LDM.
The coefficients of equations determination of TC19 and ND19 cultivars were 0.90 and 0.95 (𝑃 < 0.01),
respectively (Fig. 3a).

 

TC19: Nc=3.41LDM−0.22 (4)

ND19: Nc=3.28 LDM−0.27 (5)
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The coefficients of the two Nc curves for TC19 and ND19 (Fig. 3a) were analyzed based on the method
described by Mead and Curnow [30]. We did not observe a significant difference (tslope = 0.548< t (0.05,
20) = 2.086, and tintercept = 0.435 < t (0.05, 20) = 2.086) at the 95% confidence level. Therefore, the Nc

curves of the two spring cultivars were combined and fitted to obtain the unified Nc curve of maize under
drip-irrigated (Fig. 3b). However, we could not obtain a robust Nc curve the early growth stages (V4) of
spring maize, since LNC does not change significantly with the increase of the low LDM. There is no
obvious competition between plants' utilization of water, fertilizer, light, and other resources. When LDM
increases, LNC does not be significantly reduced. The low LDM data were acquired in the early growth
stage of maize when the plants were very small. In this study, the Nc curves were not applied to the early
growth of maize. Instead, a minimum LNC value (3.31%) was defined for the non-N-limiting group, while a
maximum LNC value (3.19%) for the N-limiting groups. The LNC value of 3.25% was defined as the
constant leaf Nc value for the early growth stage of maize (Fig. 3b), when LDM < 1.11 t ha−1 (Fig. 3b).
Therefore, the Nc curve can be described as follows:

 

Validation Of The N Curve
The LDM based Nc model was validated using data from a one-year independent experiment 3 in two
spring maize cultivars (TC19 and ND19), in 2020 (n=72) (Fig. 4). The results showed that the non-N-
limiting and N-limiting group data were located above and below the Nc curve, respectively. The Nc curve
effectively distinguished the N-limiting from the non-N-limiting groups in the independent experimental
data and was not affected by the growing seasons, growth stages, and cultivars. Therefore, the calibrated
LDM based Nc curve in this study can be applied for evaluating and diagnosing the N nutritional status of
spring maize.

Changes Of Nni Values Under Various N Levels
There was substantial variation in NNI between different N levels, cultivars growing seasons and stages
(Fig. 5). NNI increased with an increase of N application. NNI values of TC19 and ND19 ranged between
0.61 to 1.45 and 0.60 to 1.32, respectively (Fig. 5a, b) in 2018, and between 0.55 to 1.29 and 0.62 to 1.37
(Fig. 5c, d) in 2019, respectively. Furthermore, the NNI values were N0, N1, and N2 rates less than 1.0 in
2018 and 2019, which indicated that LNC was low and that the N fertilizer application rates were
insufficient. However, the NNI values in N4 and N5 rates in 2018 and 2019 were greater than 1.0, which
indicated that LNC was high and that the N fertilizer rates were excessively applied. NNI values in the N3
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rate were around 1.0, which indicated the N application dose of 270 kg ha−1 not only ensured the
accumulation of LDM but also prevented N extravagant absorption.

Relationships Between Nni And Rldm
The correlation between NNI and RLDM was studied with data from experiments 1 and 2, obtained in
2018 and 2019. NNI and RLDM showed a significant linear correlation at different growth stages, and
RLDM increased with an increase in NNI (Fig. 6). The coefficients of determination from V4 to R1 were
0.84, 0.89, 0.83, 0.87, 0.65 and 0.67, respectively.

 

Discussion

Critical Nitrogen Dilution Curves Compared with Other
Crops
Precise estimation of crops N nutritional status is essential for improving their N utilization efficiency. The
Nc has been broadly utilized for diagnosing crops N nutritional status [31]. In the present study, the Nc

value in the vegetative growth stage of spring maize gradually decreased with increased LDM (Fig. 3a),
and this is consistent with that reported in rice (either the whole plant or the specific organ) [14, 25] and
wheat [18, 26]. The LNC based Nc dilution curve of spring maize under drip irrigation consisted of two

parts: when LDM < 1.11 t ha−1, the Nc value was defined as 3.25%, and when LDM ≥ 1.11 t ha−1, the Nc

curve was defined as 3.33*LDM−0.24 (Fig. 3b). Due to the little individual plants and minimal dry matter
accumulation in leaves before the early growth stages (V4) of spring maize, there was no obvious
competition for water, fertilizer, light, and other resources. The increase in LDM did not significantly
reduce LNC. Therefore, the leaf Nc value was relatively stable in the early growth stage of spring maize.
After the jointing stage (V6), leaf area index and leaf number increased, stalk growth occurred due to the
phenomenon of shading, and this led to N dilution [32].

From a mathematical view, parameter a means the LNC when LDM equals to 1.0 t ha−1 and represents
the inherent N demand characteristics of the spring maize at the early growth stage. Parameter b
indicates the change in LNC with LDM, and its value is determined by the proportional ratio between leaf
N absorption and dry matter. In the present study, the value of parameter b (0.24) was less than that of
the Nc dilution curve based on PDM for maize [33] (Fig. 3b). Low parameter b means that the leaf N
dilution process is slow. The differences in PDM and LDM curves were mainly reflected in the calibrated
model. Based on the Nc curve determined by LDM, the leaves were regarded as the central locations of
crop growth. The N absorbed by the crop met the leaf growth, photosynthesis, and respiration needs, and
led to a slow decline in LNC [34, 35]. For PDM based Nc curve, the stem N concentration was lower than
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that of leaf during the vegetative growth stages, while the dilution rate was lower than that of the stem
[21], which was related to the leaf being the main organ of photosynthesis, and requires a certain N
concentration to ensure efficient photosynthesis and yield formation [36]. Additionally, the Nc dilution
curve b value of spring maize leaves under drip irrigation was higher than the reported Nc dilution curve b
value of winter wheat and rice leaves (0.15, 0.22) [25, 26] (Fig. 7). The b value of Nc curve varies with crop
types.

Application And Feasibility Analysis Of Lnc Based N Curve
The main purpose of calibrating the Nc dilution curve was to assess the N nutritional status of maize
through agronomic research methods in this study. This scientific N application technology can reduce
the cost of production and anthropogenic N pollution [37]. The Nc curve provides an alternative to assess
the N nutritional status in the growth stage of maize under drip irrigation. Previous studies indicate that
only the LDM and LNC of the maize can reflect its N nutritional status using the Nc curve. For example,
when LNC values were on the Nc curve, which indicated that the N application rate was optimum; LNC
values ranged between Nmin and Nc, indicating a deficiency in the N application rate. LNC values were
between Nc and Nmax, which indicated that excessive N was applied. The calibrated Nc curve can be used
to distinguish the N deficiency from the surplus states of crops, and the Crop-Syst model [38] is used to
calculate the N demand with the assistance of the Nc curve [39].

NNI can serve as an ideal indicator to diagnose N nutritional status of crops [22]. In this study, the NNI
values of leaves in the two spring maize cultivars ranged between 0.55 and 1.45 under different N rates
(Fig. 5). The NNI value per N rate was lowest in V12, which increased with an increase in N fertilizer
application rate from V12 to R1 stage. This was associated with the vigorous spring maize growth and
development in V12 to R1 stage, the high absolute and relative quantities of nutrients required by maize,
and the high absorption rate during this stage [40]. Secondly, the NNI was recovered in R1(Fig. 5), which
was linked to the N status of spring maize converting from vegetative growth to reproductive growth
stage, and the demand for N fertilizer was not as urgent as that in V12 (Fig. 5). This indicates that the N
status of spring maize can be affected by the amount of N fertilizer application at different fertilization
periods, which NNI can confirm, and this was in line with the previous reports [41]. This conclusion could
be adopted to obtain a quantitative NNI and to diagnose N deficiency in spring maize with sufficient
efficiency and effectiveness.

The Nc dilution curve of crops are calibrated under different N rates in most studies, and other conditions
are found to be relatively suitable. However, crops are subjected to stress caused by different factors in
real agricultural production. For example, severe drought stress severely affected the final yield of spring
wheat during the growth stage in Northern China [42]. Previous studies show that Nc dilution curves and
NNI values of crops under drought stress are lower than normal [43]. This can be associated with the lack
of water, which limits plant growth and causes a reduction in dry matter, thus caused a decrease of N



Page 10/20

accumulation. Besides, because water content has a close relationship with the N availability, water
deficiency reduces the bio-available N in soils, thus caused a decrease in the soil N supply capacity [44].
Therefore, the crop N deficiency was seen when NNI was lower than 1.0, and topdressing with N was
needed. Besides water, the interaction between other elements such as phosphorus and potassium with N
also affected the N status of crops [45]. Therefore, clarifying the factors affecting the Nc dilution curve of
crops under different conditions is of great significance for its application, and the use of NNI in
accurately diagnosing crops N nutritional status.

Conclusion
LNC decreases with an increase in LDM, and further increases with the N application rates during the
early growth stages of spring maize under drip irrigation. A calibrated maize Nc model is reported in this
study, in two cultivars with different N rates. The Nc dilution curve equation used is Nc = 3.25%, when

LDM < 1.11 t ha−1, and Nc = 3.33 LDM−0.24 when LDM ≥ 1.11 t ha−1. The calibrated Nc curve effectively
distinguishes the N-limiting from the non-N-limiting groups based on LDM, and the curve is not
independent with the cultivars, growing seasons and stages. NNI is utilized to assess the N nutritional
state of maize plants. NNI of N3 rate (270 kg ha−1) is considered to be closest to 1.0, and maximum LDM
can be obtained with the N3 rate. NNI is, therefore, significantly positively correlated with RLDM.
Therefore, the N3 rate (270 kg ha−1) may be used as the reference of N application for spring maize under
drip irrigation, and water and fertilizer integration in Northwest China.
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Figures

Figure 1

Changes in maize LDM at various growth stages under different nitrogen (N) fertilizer application
dosages in two years of experimental data (a: 2018 TC19, b: 2019 TC19, c: 2018 ND19, d: 2019 ND19).



Page 15/20

Figure 2

Changes in maize LNC at various growth stages under different N fertilizer application dosages in two
years of experimental data (a: 2018 TC19, b: 2018 ND19 c:2019 TC19, d: 2019 ND19).
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Figure 3

The leaf Nc for two maize cultivars (TC19 and ND19) in 2018 and 2019. (a: The Nc dilution curves for
two spring cultivars (TC19 and ND19) calibrated using twenty data points, b: the curves of two spring
cultivars combined and fitted to obtain the unified Nc curve of maize). ** indicates significant difference
at 𝑃 < 0.01.
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Figure 4

Validation of the established leaf Nc dilution curve. The data were collected from an independent
experiment using two maize cultivars (TC19 and ND19), which was conducted in 2020.
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Figure 5

Dynamic changes in the N nutrition index (NNI) for two varieties (TC19 and ND19) at various growth
stages (V4 to R1) under different N application dosages. (a: 2018 TC19, b: 2018 ND19, c: 2019 TC19, d:
2019 ND19).
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Figure 6

The correlation between NNI with relative leaf dry matter (RLDM) for two maize cultivars (TC19 and
ND19) at various growth stages (V4 to R1) during the 2018 and 2019 growing seasons. (a: V4, V6, and
V10 stages of maize; b: V12, VT and R1 stages of maize).
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Figure 7

Comparison of LDM based Nc curves in different crops.


