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Abstract

Metabolic reprogramming, especially aerobic glycolysis is considered a hallmark of cancer, and is
becoming a novel target for cancer therapy. Phosphoglycerate kinase | (PGK1) which is an important
enzyme generating the first ATP in glycolysis pathway was already shown can promote some types of
cancer development and progression, however, the role of PGK1 in lung cancer development is less
reported. The aim of this study was to explore the mechanism of PGK1 in promoting non-small cell lung
cancer (NSCLC) development and progression. Gene overexpression or silencing, scratch assay, Trans-
well assay, western blot, immunohistochemistry, chromatin immunoprecipitation, real-time quantitative
RT-PCR, MTT cell viability assay and mouse xenograft, glucose uptake, lactate secretion, ATP production
and Extracellular Acidification Rate (ECAR) seahorse assay were performed to investigate the biological
function and the underlying mechanism of PGK1 in NSCLC development. Our study found that PGK1 was
high expressed in non-small cell lung cancer tissues, its expression is positive correlated with tumor grade
and clinical stage and negative correlated with patients’ overall survival. Importantly, its expression was
also associated with clinicopathological characteristics of lung cancer patients. Overexpression PGK1
could not only promote lung epithelial cell and tumor cell migration and proliferation in vitro, but also
increase the tumor growth in vivo. Mechanically, PGK1 promotes NSCLC development and progression by
activating AKT/ERK signaling pathway and altering aerobic glycolysis pathway. Meanwhile PGK7 was
HIF1a downstream target gene and played an essential role in hypoxia-induced shift of glycolysis. In
addition, the PGK1 expression was positive correlated with HIF1a expression in NSCLC tissues. Therefore,
we concluded that PGK1 could be a biomarker for NSCLC diagnosis and outcome evaluation, and
targeting PGK1 should be an innovative strategy for NSCLC therapy in the future.

Introduction

Lung cancer is the most commonly diagnosed cancer and accounts for 18.4% of cancer-related death
worldwide which is the leading cause of cancer death both in men and women[1]. Lung tumors can be
divided into two main histopathological categories: small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC). About 80% of lung cancer cases are NSCLC, which is composed of three major
pathological subtypes: adenocarcinoma, squamous cell carcinoma and large-cell carcinomal(2]. Excision,
chemotherapy and radiotherapy are the three major therapeutic strategies to treat lung cancer. Although
there have been advances in targeted therapies and immunotherapies, the 5-year survival rate remains
only 15%[3]. Therefore, how to improve the clinical outcomes of the NSCLC patients is remain a
challenge.

Metabolism reprogramming has been considered as a hallmark of cancer. Tumor cell prefer to process
glycolysis to generate ATPs even in the presence of oxygen (Warburg Effect)[4]. Because of the aerobic
glycolysis, tumor cells consume more glycose compared to the normal cells, and more lactate is secreted
as a metabolite nearby the tumor cells, supporting an acidic microenvironment which can promotes
tumor cells growth and metastasis[5]. Thus, targeting Warburg Effect has become a prevalent therapeutic
strategy, and mounting studies are focusing on its potential to treat cancer.
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Hypoxia is a common reason to cause metabolic shift and acidic microenvironment in cancer[6]. HIF1a is
the main transcriptional regulator response to hypoxia[7] and involve in kinds of biological processes in
cancer, include angiogenesis[8], cell invasion [9]and glycolysis[10]. Some of the rate limiting enzymes of
the glycolysis are considered as targets for inhibiting Warburg Effect, such as HK2 and GAPDH[11-15]. It
was also reported these genes could be regulated by HIF1a[16, 17]. PGK1 is one of the central enzymes in
the glycolysis pathway, which catalyzes the conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate
and generates a molecule of ATP and it has been shown dysregulated in different kinds of tumors. In
certain type of tumor, PGK1 was considered as an anti-tumor factor, Lay AJ[18] found that extracellular
PGK1, which is secreted by tumor cells, can inhibit tumorigenesis and angiogenesis as a disulphide
reductase. However, more studies showed that PGK1 was an oncogene in most of tumors, for example:
colon cancer[19], oral cancer[20], endometrial cancer[21] and its expression was negatively correlated
patients’ survival. It was also known that PGK1 promotes breast cancer development by regulating the
HIF1a-Mediated EMT[22)]. Nevertheless, what is the function of PGK1 in lung cancer development and
whether HIF1a plays a role here is poorly understand.

In our paper, we uncovered a key function of PGK1 as an oncogene in lung cancer development.
Mechanistically, we showed that PGK1 could promote NSCLC cells proliferation and migration capacities
via altering metabolism pathway and activating AKT/ERK signaling pathway. Meanwhile, PGK7 is a
downstream gene of HIFTa and play an essential role in hypoxia-induced glycolysis alteration. Thus, our
study indicate that PGK1 could be a potential survival biomarker of NSCLC patients, provide a new link
between metabolism reprogramming and the malignant phenotype, which can be an innovative target
therapy for lung cancer.

Results

PGK1 is high expressed in lung cancer tissues and its expression level is positive correlated with lung
cancer grade and stage and negative correlated with patients’ overall survival. We first performed the
immunohistochemistry (IHC) staining of PGK1 in non-small cell lung cancer patients’ tissues involve in
different types, grades and clinical stages to determine whether irregular expression of PGK1 could been
observed in NSCLC patients (Fig. 1). We found that PGK1 was higher expressed in grade 3 and stage
lII+1V lung cancer tissues of both adenocarcinoma and squamous cell carcinoma (Fig. 1, A-C). This can
be confirmed by both in terms of intensity and percentage of positive cells. Whereas in grade 2 and stage
I, especially in gradel and stage | tumors, much fewer cells expressed PGK1, and at substantially lower
levels (Fig. 1, A-C). The survival analysis showed that the overall survival rate of high expression PGK1
patients was significantly reduced compared with those with low PGK1 expression (Fig. 2, A). Together,
these findings support the hypothesis that upregulation of PGK1 may play a role in promoting lung
cancer progression and PGK1 maybe a potential biomarker for NSCLC patients’ outcome.

PGK1 expression is correlated with clinicopathological characteristics in lung cancer patients. We further
measured the PGK1 expression in all the 90 patients’ tissues by IHC. Semi-quantitative analysis showed
that the PGK1 expression was significantly higher in moderately and poorly differentiated NCSLC tissues
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compared with that in well-differentiated NSCLC tissue samples (Table 1). Meanwhile, PGK1 expression
in NSCLC tissue samples with lymph node metastasis was also demonstrated to be significantly higher
compared with that in NSCLC specimens without lymph node metastasis (Table 1). The relationship
between PGK1 expression and the clinicopathological features of patients with NSCLC was further
examined. PGK1 expression was found to significantly associate with tumor differentiation, clinical
stage, T stage and lymph node metastasis, but not with age and sex (Table 1).

Table 1

Association between clinicopathological features in patient with lung cancer
and PGK1 expression (n=90).

PGK1 expression

Clinicopathological features  NO. of cases  High(n) Low(n) P-value
Sex 0.251
Male 55 35 20

Female 35 18 17

Age 0.787
=55 52 30 22

<55 38 23 15
Differentiation 0.001
Well 19 5 14

Moderate +poor 71 48 23

T stage 0.024
T1+T2 61 31 30

T3+T4 29 22 7

Clinical stage 0.042
I 57 29 28

-V 33 24 9

LN metastasis 0.003
N- 49 22 27

N+ 41 31 10

N-, no lymph node metastasis; N+, presence of lymph node metastasis.
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PGK1 plays a role in enhancing cell migration capacity. To further analyze whether PGK1 play a role in
cancer development in vitro, we generated PGK1 overexpression (OE) stable cell line by lentivirus-driven
system in B2B(BEAS-2B) and A549 cell lines. From the wound-healing assay we can found that when
overexpress PGK1, the migration capacity was significantly enhanced in both B2B and A549 cell line
compared with control (Fig. 2, B-D). The Boyden chamber-based migration assay also showed that the
higher migration capacity was observed in PGK1 overexpressed B2B and A549 cell lines (Fig. 2, E and F).
We then generated the PGK1 knockdown (KD) cell lines by lentivirus-driven shRNA-mediated silencing
both in B2B and A549 cells. We chose two different shRNAs of PGK1 to avoid the off-target effect. The
migration capacity was measured by trans-well assay again (Fig. 2, G), and it showed significantly
reduced in both B2B and A549 cell lines when PGK1 expression was silenced by the two different shRNAs
(Fig. 2, H). Thus, PGK1 could promote migration in both lung epithelia and cancer cells.

PGK1 promotes cell proliferation both in vitro and in vivo. We next examined whether PGK1 could
promote cell proliferation. Immunofluorescence (IF) assay for Ki-67 was performed in control and PGK1
OE cell lines, along with the Ki-67 index analysis, the data showed that Ki-67 positive cells were
significantly increased in PGK1 overexpressed B2B and A549 cell lines compared with each control

(Fig. 3, A-D). Cell viability and proliferation assay (MTT) also been performed and the results showed that
when PGK1 was overexpressed in B2B and A549 cell lines, the proliferation ability was significantly
increased compared with each control group (Fig. 3, E and F). While PGK1 knockdown had the opposite
effects. The cell proliferation capacity was significantly weakened when PGK1 was knockdown by the
two shRNAs (Fig. 3, E and F). To investigate the effect of PGK1 on tumor growth in vivo, PGK1
overexpression, PGK1 knockdown and control A549 cells were injected subcutaneously in BALB/c nude
mice and kept growth for 6 weeks. The tumor volume was measured every week. The results showed that
the tumor volume of mice transplanted with PGK1 overexpressed A549 cells was significantly larger than
the control, while the volume was significantly smaller in transplanted with both shPGK1-1 and shPGK1-2
A549 cells compared with control (Fig. 3, G and H). Thus, these findings demonstrated that PGK1
promotes NSCLC cell proliferation both in vitro and in vivo.

Dysregulation of PGK1 expression affects aerobic glycolysis in lung epithelial and tumor cells. The
glycolysis pathway is the main metabolic pathway for tumor cells to generate ATPs, and the PGK1 is a
major enzyme in glycolysis pathway. To explore whether dysregulate PGK1 could affect the glycolysis
capacity in B2B and NSCLC cells, The glucose uptake assay, lactate production and ECAR (Extracellular
acidification rate) assay were performed. We found that overexpression PGK1 in B2B cell would
significantly increase glucose uptake, lactate and ATP production (Fig. 4, A-C), meanwhile the seahorse
assay also showed that both the glycolysis capacity and glycolysis reserve were enhanced in PGK1 OE
cell lines (Fig. 4, D). Whereas knockdown PGK1 showed the opposite effect (Fig. 4, A-C and E). In NSCLC
cells, A549 cell lines, the glucose uptake, lactate and ATP production, glycolysis capacity and glycolysis
reverse were significantly increased when PGK1 was overexpressed (Fig. 4, F-I), while these features were
significantly decreased when PGK1 was knockdown by different shRNAs (Fig. 4, F-H and J). Together,
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these date improved that dysregulate PGK1 would affect the glycolysis pathway of both B2B and NSCLC
cells.

PGK1 promotes NSCLC cell proliferation through the AKT/ERK signaling pathway. Paper[23] showed that
PGKT1 could activate AKT signaling pathway in oral squamous cell carcinoma. Therefore, we want to
investigate whether AKT signaling pathway would be activated by PGK1 in B2B and A549 cells. The
activated AKT was measured in these cell lines. PGK1 overexpression was found to significantly increase
p-AKT phosphorylation in both B2B and A549 cell lines (Fig. 5, A and C), while PKG1 knockdown by the
two different shRNAs would reduce AKT phosphorylation obviously (Fig. 5, B and D). MAPK families play
an important role in cell proliferation, differentiation, transformation, apoptosis and some other cellular
programs[24]. Therefore, we further checked the MAPK families’ cascades in both B2B and A549 cell lines
when PGK1 was dysregulated. The results showed that the p-ERK phosphorylation was significantly
increased when PGK1 was overexpressed in both B2B and A549 cells (Fig. 5, A and C), while PGK1
knockdown was found to reduce p-ERK phosphorylation in these two cell lines (Fig. 5, B and D).
Meanwhile the activated JNK/SAPK and p-38 were unchanged in neither PGK1 overexpression nor PGK1
knockdown B2B and A549 cells (Fig. 5, A-D). These findings suggested that PGK1 might promote NSCLC
progression by activating the AKT/ERK signaling pathway.

PGK1 can be directly regulated by HIF1a and plays an important role in HIF1a-induced alteration of
glycolysis pathway. HIF1a is a central regulator to promote cancer cell survival and progression in solid
tumors by inducing glycolysis[25]. PGK1 is a target gene of HIF1q, in our study, we found that both PGK1
protein and RNA level were significantly increased when the A549 cells were treated in hypoxia condition
(Fig. 6, A and B). We performed HIF1a Chip-qPCR assay in A549 cell line to confirm whether PGK7 was
HIF1a target gene in NSCLC (Fig. 6, C). The IgG Chip was performed as negative control. The primers in
the promoter region of PGK7 and VEGFa were designed, the VEFGa was considered as positive control of
HIF1a-Chip[26], whereas primers from 3’region of FGF5 gene was designed as a negative control of
HIF1a-Chip, the g-PCR date showed that the PGK7 and VEGFa enrichments were significantly increased in
hypoxia treated A549 cells compared with untreated cells, while the FGF5 enrichment almost didn’t
change(Fig. 6, C). Thus, PGK7 was improved to be one of the HIF1a downstream target gene. The
seahorse assay was performed again and the data showed that when A549 cells were treated in hypoxia
for 24h, the glycolysis capacity and reverse were significantly increased, while PGK1 knockdown could
rescue the hypoxia-induced increased glycolysis (Fig. 6, D and E). Meanwhile, the results of glucose
uptake lactate secretion and ATP production assays all showed increased in hypoxia treated A549 cells
and decreased in PGK1 KD counterparts (Fig. 6, F-H). So together the findings we concluded that PGK7 is
a downstream target gene of HIF1a and plays an important role in hypoxia-induced alteration of
glycolysis pathway in NSCLC cells.

HIF1a levels positively correlate with PGK1 levels in lung cancer patients. To analyze whether there is a
correlation between PGK1 and HIF1a expression level in lung cancer patients, we performed the IHC of
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HIF1a in patients’ samples (Fig. 7, A). HIF1a was almost undetectable in normal lung tissue, while was
significantly upregulated in both lung adenocarcinoma and lung squamous cell carcinoma (Fig. 7, A and
B). Importantly, the HIF1a expression in the tumors was also positively correlate with the tumor clinical
stages (Fig. 7, B). The analysis of staining intensity of PGK1 and HIF1a supporting a positive link
between PGK1 and HIF1a expression in lung cancer patients (Fig. 7, C).

Discussion

Mounting studies focus on investigating the relationship between tumor and metabolism recently,
especially the glucose metabolism. Abnormal glucose metabolism is a distinguishing feature of tumor
metabolism, thus, targeting aerobic glycolysis is becoming a new strategy for treating cancer[27]. There
were some paper reported that some of the rate limiting enzymes of glycolysis were involve in NSCLC
development. For example, Patra et al. [28]showed that HK Il (Hexokinase Il) is required for lung cancer
development in mouse models. Minchenko et al.[29] also observed PFK (Phosphofructokinase) mRNA is
upregulated in human lung cancer tissues and A549 cells compared with normal tissues, and could be
induced by hypoxia. In addition, Xie et al.[30] found that LDHA (Lactate dehydrogenase) play an essential
role in lung cancer cell survival and proliferation, and inhibit LDHA can be a potential therapeutic target
for NSCLC. According our study, we confirmed that PGK1 promote lung cancer development via altering
metabolic pathway, supporting a new link between glycolytic pathway and lung cancer development.

AKT signaling pathway has been reported to regulate cell proliferation[31]. Aberrant activation of AKT is
associated with malignancy[32]. It has been showed that the amplification of AKT promotes the
tumorigenesis and progression in human gastric adenocarcinomal[33], ovarian and breast carcinoma(34]
and human pancreatic carcinomal35]. Amplification of phosphatidylinositide-3-kinase (PI3K) and
deletion of PTEN, a PI3K antagonist, are the common upstream activator of AKT; meanwhile, AKT is also
a critical downstream effector of some oncogenes, for example Ber-Abl, Her2/ neu, and Ras. Some paper
also reported that AKT stimulates aerobic glycolysis that correlates with a more aggressive malignancy in
human glioblastoma[36]. Some of the glycolytic enzymes, including GLUT1 and GLUT4[37], also can be
activated by increasing of AKT signaling. MAPK families include three main members: named ERK, C-
Jun-N-terminal kinase/ stress-activated protein kinase (JNK/SAPK) and P-38 kinase, which are the three
main chain of proteins in the cell that transduce signals from the receptors on the cell surface to the DNA
in the nucleus of the cell. It is well known that MAPK signal pathway plays an essential role in the
regulation of cell proliferation in mammalian cells[24], especially the ERK signaling pathway is reported
implicated in tumorigenesis[38]. Our present study date suggests that the expression level of PGK1 was
positively correlated with the phosphorylation level of AKT and ERK in both B2B and A549 cells. These
data supports a new chain of glycolytic enzyme (PGK1) -phosphorylation AKT - phosphorylation ERK1/2
— tumorigenesis, which may explore a new sight of target therapy for lung cancer. However, the more
detailed mechanism of how PGK1 affect AKT and ERK phosphorylation and what the downstream effect
of P-ERK is still elusive and need to be further investigated.
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Most human solid tumors are subjected to hypoxia in the way of acute or chronic because of aberrant
vascularization and a poor oxygen supply[39]. Hypoxia-inducible factor a-1 (HIF1a) is the main response
of hypoxia[40]. Most tumor cell will change its behavior via HIF-dependent pathway, leading to cancer
progression, angiogenesis, metastasis and radiation and drug resistance[41]. One of the most important
and canonical pathway is the alteration of glycolysis, which has been thoroughly studied. It has been
reported that HIF1a was overexpressed in NSCLC tissue compared with normal tissue and was related to
the enhancing of angiogenesis and with poor prognosis[42]. Our date also found that HIF1a was
upregulated in NSCLC tissue and has a positive correlation with tumor clinical stage and PGK1
expression. Our data confirmed PGKT is a downstream target gene of HIF1a. These date supply an
additional supplementary evidence to confirm the glycolytic pathway changed via HIF1a-dependent way
during NSCLC development.

Conclusion

Our date suggests that PGK1 is a potential biomarker for NSCLC patients’ diagnosis and survival
evaluation, and PGK1 may promote NSCLC progression by altering tumor cells glycolytic pathway and
activating AKT/ERK signaling pathway. PGKT is HIF1a downstream target gene and plays an important
role in hypoxia-induced alternation of glycolytic pathway.

Material And Methods
Patients and tissue samples

We selected 90 cancer tissue samples from NSCLC inpatients (Age range, 39-76 years; sex, 55 males and
35 females) and 20 matched cancer adjacent tissue samples in total from The First Affiliated Hospital of
University of Science and Technology of China (USTC). All tissue samples taken from the patients were
approved by the ethical review of Committee of The First Affiliated Hospital of USTC. All samples were
performed immunohistochemistry staining for PGK1 and HIF1a. All patients received radical surgery; the
patients who received any form of pre-surgical adjuvant therapy were excluded. The clinical and
pathological characteristics (sex, age, differentiation, T stage, clinical stage and lymph node metastasis)
of NSCLC were established in accordance with the criteria of The Eighth Edition Lung Cancer Stage
Classification[43].

Cell culture, generation of the stable cell line

BEAS-2B (B2B), A549, HEK293T cell lines were purchased from American Type Culture Collection.
HEK293T cells were cultured in DMEM medium supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin/glutamine (PSG). B2B and A549 cells were cultured in Roswell Park Memorial
Institute 1640 supplemented with 10% FBS and PSG. For generate the PGK1 overexpression (OE) stable
cell line, PGK1 cDNA of human was synthesized and cloned in p-Lenti-EF1a-Backbone plasmid. The
primers were listed in Table S1. The restriction enzyme sites are BamHI and Xbal. For generating PGK1
knockdown (KD) stable cell line, we chose two different shRNAs (constructed in PLKO plasmid) which
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were purchased from Thermo Fisher. 0.5x10% HEK293T cells were seeded in 6-well plate and transfected
with 2ug of control, PGK1-overexpression and shRNAs plasmid along with the packaging plasmid using
the Fu-GENE transfect reagent. 72h after transfection, harvested the viral supernatant, then transduced
into B2B and A549 cell lines. 48h after transduction, cells were selected with 10ug/ml puromycin for two
passages and were maintain cultured in normal medium with 2ug/ml puromycin.

Immunohistochemistry (IHC) and immunofluorescence
staining

For immunohistochemistry staining on paraffin sections, slides first were heated at 55°C for 10 min and
then merged into xylene for 5 min, followed by consecutive dewaxing steps (2x xylene, 100% ethanol,
75% ethanol, 50% ethanol, 5 min each). Then boiled the slides in 10mM citrate buffer by microwave for
10 min for the purpose of antigen retrieval, cooling the slides in room temperature. The subsequent
processes were performed with the VECTASTAIN Universal Quick HRP Kit (PK-7800; Vector Laboratories)
following the manufacturer’s instructions. DAB Peroxidase (HRP) Substrate Kit (SK-4100; Vector
Laboratories) was used for staining developing. Images were acquired by an Axio Imager A2 microscope.

For immunofluorescence staining of culture cells, 100,000 cells were seeded on coverslips in 24-well
plates. Next, cells were washed with PBS and fixed by 4% PFA for 10 min. Then cells were blocked with
5% BSA, 0.2% Triton X-100 in PBS for 1 hour and incubated with primary antibody in blocking buffer at
4°C overnight. Next day, cells were incubated with secondary antibody for 2 hours in room temperature in
dark, followed by incubating with DAPI for 20 min, and then coverslips were washed and mounted in anti-
fade mounting medium. The fluorescence images were acquired by using CONFOCAL microscope with a
25xo0r 63x objective and analyzed with ImageJ Software.

Quantification of immunoreactivity

For semi-quantitative analysis of immunoreactivity of PGK1 and HIF1q, we used H-score in this study. We
randomly selected 10 different tumor fields in ax400 magnification sight, at least 100 cells in each sight,
and the H-score was generated by adding the percentage of strongly stained(3x),the percentage of
moderately stained(2x)0the weakly stained(1x), giving a range of 0-300. Two of the authors obtained the
score independently, and the authors did not know any clinical parameters of patients. The differences of
interobserver were less than 5% in this study, and the mean of the two values was used. In the case of the
percentage of PGK1 immunostaining intensity in moderately + strongly was more than 50%, we defined it
as high expression. Ki-67 labeling index was used to describe the Ki-67 immunoreactivity. ImageJ was
used to quantify the Ki-67 positive cells based on fluorescent nuclear signal intensity and manually tuned
to obtain the accurate results. At least 1000 cells in 10 random views were selected to analyze.

Scratch wound assay and Boyden chamber migration assay

Both B2B, A549 with control, PGK1 OE cells were seeded in 6-well plate. When cells reaching 100%
confluence, scratches were made by 10ul pipette tips, washed the cell by PBS 3 times, then culture the
cells in the medium without FCS, images were acquired after scratching, as well as 24h and 48h later. For
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Boyden chamber assay, the inserts were placed on 24-well plate contained normal culture medium.
120,000 B2B and 50,000 A549 cells with control, PGK1 OE and PGK1 KD were seeded on the top of
inserts in the medium without FCS. 8 hours later (for A549 cells, 24h later), the insert membranes were
fixed by 4% PFA for 10 min and washed by PBS 3 times. The upper surface of the membranes was first
cleaned by wiping with a cotton swab. Then the membranes were stained with crystal violet for 10 min.
Then washed the membranes by PBS 3 times, the membranes were cut and mounted on the slides.
Images were acquired from random area of the membrane by 20x objective microscope, and the cells
which migrated to the lower surface of the membrane were quantified by Imaged. For each migration
assay, a minimum of three independent experiments were performed.

RNA isolation and q-PCR

RNA was isolated by using TRIzol RNA Isolating Reagent (Invitrogen). For quantification PCR analysis,
cDNA was synthesized with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems), and
Q-PCR was performed by using the SYBR Green PCR master mix. Cycle numbers were normalized to
these of B-actin. g-PCR primers used in this research can be found in Table S1.

Western Blotting

Cells were cultured in normal medium, when cells reached to 70%-80% confluence; cells were washed and
lysed in radioimmunoprecipitation assay (RIPA) buffer supplemented with proteinase inhibitor and
phosphorylase inhibitor. The lysate was harvest by scratching. All the experiments were performed on ice.
The concentration of protein was measured by pierce BCA protein assay kit (Thermo Fisher, Cat#:23227).
The same amount of proteins were mixed with 5X Leammli sample buffer and boiled at 95°C for 10 min.
Protein was loaded on the SDS-PAGE gel and separated by electrophoresis, transferred onto PVDF
membrane. Membranes were stained by ponceau for 1 min and then blocked by blocking buffer
(PBS+0.1% Tween-20+5% BSA) in room temperature for 1 hour. Then the membranes were incubated
with primary antibody at 4°C overnight. The detail of primary antibodies used in this research were
presented in Table S2. Then the membranes were incubated with appropriate secondary antibody in room
temperature for 1 hour. Immunoreactive bands were observed by chemiluminescence. Three independent
experiments were performed.

Cell proliferation assay (MTT)

The MTT assay was performed follow by the protocol from Promocell (Cat#: PK-CA707-30006). 3000
cells were seeded in 96-well plates with 100ul medium. When the cells were attached to the plate, added
10ul MTT solution to each well and placed the plates in the culture incubator for 4 hours. 200ul DMSO
was added to each well and pipette up and down several times to dissolve the formazan salt. Measured
the absorbance signal on a spectrophotometer at 570nm, measured background absorbance at 630nm.
To obtain normalized absorbance value the substrate background absorbance from signal absorbance
OD57¢-OD¢3q. Three duplicated in each cell line group, and three independent experiments were performed

in this assay.

Animal experiment
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BALB/c nu/nu mice were purchased from Cyagen Biosciences Company, Soochow city, China, and bred
under pathogen-free conditions. For subcutaneous transplantation, 107 control, PGK1 OE and PGK1
shRNA-silencing A549 cells were subcutaneously injected into the flanks of BALB/c nu/nu mice. The
tumor size was measured every week. The tumor volume was calculated by the following formula:
volume= (longest diameter x shortest diameterz)/2. After 7 weeks, the mice were sacrificed, and the
tumors were frozen in liquid nitrogen for further study. Unexpected died mice were excluded from
analysis.

Glucose uptake, lactate and ATP production assay and
seahorse assay

Glucose Uptake Colorimetric Assay Kit (Biovision, Cat#: K676-100), Lactate Assay Kit (Cell Biolabs, Cat#:
MET-5012) and ATP colorimetric Assay Kit (Biovision, Cat#: K959) were used to measure glucose uptake
and the lactate, ATP production according to the manufacturer’s instructions. The extracellular
acidification rate (ECAR) was measured using the seahorse XFe 24 Extracellular Flux Analyzer according
to the manufacturer’s instruction. ECAR were determined by using Seahorse XFe Glycolysis Stress Test Kit
(Agilent, Cat#: 103017-100). Briefly, 3x1 0% B2B cells and 4x10* A549 cells were seeded into a seahorse
XFe 24 cell culture microplate. After calibration and baseline measurements, glucose (10mM), the
oxidative phosphorylation inhibitor oligomycin (1uM), and the glycolytic inhibitor 2-DG (50mM) were
sequentially injected into each well at certain time points. Date was analyzed by seahorse XFe 24 Wave
software. Four repeat wells in each cell line, and three independent assays were performed in these
measurements.

Chip and Chip-gPCR

107A549 cells treated in normoxia and hypoxia were fixed with 1% formaldehyde for 10min at room
temperature. 125mM glycine was added to quench the fixation. Cells were suspended in cold PBS in the
concentration of 5x10%/ml. Added equal volume of 2x lysis buffer (100mM Tris-HCI pH8, 300mM NaCl,
2% Triton-100, 10mM CaCl2) for 10min on ice with shaking. Next, nuclei were sheared by MNase
(7.8U/5%10%cells) for 15min at 37°C. Stop the reaction by adding 20mM EDTA on ice 30min. The extracts
were pre-cleaned with 75ul protein G beads for 2h in 4°C, then incubated with 12.5ug HIF1a primary
antibody and same amount of rabbit IgG respectively overnight at 4°C and binding to 75ul BSA-coated
protein G beads. Immunoprecipitates were washed by following steps: twice with low salt buffer
(0.1%SDS, 1%Triton-100, 2mM EDTA, 20mM Tri-HCI pH7.5, 150mM NaCl), three times with high salt
buffer (0.1%SDS, 1%Triton-100, 2mM EDTA, 20mM Tri-HCI pH7.5, 500mM NaCl), twice with LiCl buffer
(10mM Tris-HCI pH7.5, 250mM LiCl, 1% NP-40, 1%Na-Doc, 20mM EDTA) and then eluted with Elution
buffer (50mM Tris-HCI pH 8.0,70mM EDTA pH8.0, 1%SDS). After treaded samples by adding Tul RNase A
Th at 37°C and 10ul Protein K 2h at 37°C, cross-linking was reversed by incubation at 65°C overnight.
DNA was purified by using Qiagen mini elute PCR purification kit (Cat#28004). Then concentration of
immunoprecipitated DNA was measured by Qubit. The g-PCR was performed to analyze the enrichment.
Chip-gPCR primers can be found in Table S1.
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Statistical analysis

All date was statistically analyzed by using SPSS 25.0 software. Independent sample ttest was used for

comparison between two groups. x? test was used to estimate the association between PGK1 expression
and the clinicopathological characteristics of patients with NSCLC. The Kaplan-Meier method and log-
rank test were used to compare the overall survival of patients. Data were presented as mean + SD.
P<0.05 was considered statistically significant.
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Figure 1

PGKT1 expression level was upregulated in NSCLC patients. (A and B) IHC of representative patients’
tissue samples from different types of lung tumors in different grades (A) and different stage (B) stained
with anti-PGK1 antibody. Scale bars, 50 um. (C) Relative staining intensity (H-score) for PGK1 in different
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grade and stage of different types of lung tumors. For adenocarcinoma (AD), n=51 (n=11 grade 1, n=25
grade 2, n=15 grade 3; n=11 stage I-ll, n=22 stage Ill, =18 stage IV). For squamous cell carcinoma (SCC)
n=29 (n=8 grade1, n=18 grade 2, n=13 grade 3; n=9 stage I-ll, n=15 stage Ill, n=15 stage IV). For normal
lung tissue n=20. Statistical analysis was performed by Student’s t test with two-tailed distribution. Data
are shown as mean + SEM. *** p<0.001 versus normal lung tissue. #, p<0.05; ##, p<0.01; ###, p<0.001.
NL, normal lung tissue.
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PGK1 dysregulation affects cell migration. (A) Kaplan-Meier survival curves for overall survival in lung
cancer patients. (B and C) Scratch wound healing assays with control and PGK1 OE B2B and A549 cells
respectively. Scale bars, 100 pm. (D) Quantification of scratch wound healing assay. (E) Boyden chamber
migration assay with control and PGK1 OE B2B and A549 cells. Scale bars, 100 pm. (F) Quantification of
migrated cells in (E). (G) Boyden chamber migration assay with control and PGK1 silencing B2B and
A549 cells. Scale bars, 100 um. (H) Quantification of migrated cells in (G). All the data shown are mean +
SD, *, p<0.05; **, p<0.01; ***, p<0.001.
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Figure 3

PGK1 promotes tumor growth both in vitro and in vivo. (A and C) Ki-67 immunofluorescence images of
control and PGK1 OE B2B (A) and A549 (C) cells. Scale bar, 20 um. (B and D) Ki-67 index in control and
PGK1 OE B2B (B) and A549 (D) cells. Statistical analysis was performed by Student’s t test with two-
tailed distribution. Data are mean * SEM. ***, P<0.001. (E and F) Cell viability of the control, PGK1 OE and
PGK1 KD by two different shRNAs B2B (E) and A549 (F) cells was measured by MTT assay. Data are
showed as mean + SD, *, p<0.05; **, p<0.01. (G) PGK1 control, PGK1 OE and PGK1 KD by two different
shRNAs A549 cells were subcutaneously injected into nude mice. Mice were euthanized after 7weeks to
harvest the xenograft tumors. Image of all xenograft tumors are shown. (H) The tumor growth curves
were plotted. Data are presented as mean = SD (N=3). *, p<0.05 at day 42.
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Figure 4

PGK1 plays a role in altering aerobic glycolysis in lung epithelia cells and NSCLC cells. (A-C) Glucose
uptake, lactate secreted and ATP production of PGK1 control, PGK1-overexpression and PGK1 with
shRNA-1 or shRNA-2 B2B cells were measured. Data shown as mean + SD of triplicate measurements
that were repeated three times with similar results. *, P<0.05. ECAR assay for control and PGK1-
overexpression B2B cells (D) and ECAR assay for control, PGK1 with shRNA-1 or shRNA-2 B2B cells (E).
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Data were shown as mean  SD of quintuplicate measurements that were repeated three times with
similar results. *, P<0.05. (F-H) Glucose uptake, lactate secreted and ATP production were measured
again in PGK1 control, PGK1-overexpression and PGK1 with shRNA-1 or shRNA-2 A549 cells. Data shown
as mean = SD of triplicate measurements that were repeated three times with similar results. *, P<0.05; **,
P<0.01. (I and J) ECAR assays were performed on control and PGK1-overexpression A549 cells (I) and on
control, PGK1 with shRNA-1 or shRNA-2 A549 cells (J). Data were shown as mean + SD of quintuplicate
measurements that were repeated three times with similar results. *, P<0.05; **, P<0.01; ***, P<0.001.
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Figure 5

PGK1 promotes NSCLC progression by activating AKT/ERK signaling pathway. (A) Western blot analysis
for activated AKT, P38, JNK, ERK of control and PGK1-overexpression B2B cells. (B) Western blot analysis
for activated AKT, P38, JNK, ERK of control and PGK1 with shRNA-1 or shRNA-2 B2B cells. (C) Western
blot analysis for activated AKT, P38, JNK, and ERK of control and PGK1-overexpression A549 cells. (D)
Western blot analysis for activated AKT, P38, JNK, ERK of control and PGK1 with shRNA-1 or shRNA-2
A549cells. a-tub, a-tubulin.
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Figure 6

PGK1 is HIF1a target gene and plays an essential role in hypoxia-induced shift of glycolysis pathway. (A)
Western bolt analysis of HIF1a and PGK1 in different time points of A549 cells treated in hypoxia. (B) g-
PCR analysis of PGK1 expression in A549 cells treated in hypoxia for different time points. Data shown
are mean = SD of three independent experiments. **, P<0.01; ***, P<0.001. (C) Chip-qPCR analysis of IgG
and HIFT1a occupancy at VEGFa and PGK1 promoter and FGF5 3’ UTR region. Data shown are mean + SD
of two independent experiments. NS, no significance. ***, P<0.001. (D and E) ECAR assays were
performed on PGK1 control A549 cells treated in normoxia or hypoxia and PGK1-overexpression A549
cells treated in hypoxia. Data were shown as mean = SD of quintuplicate measurements that were
repeated three times with similar results. *, P<0.05. (F-H) Glucose uptake, lactate secreted and ATP
production of PGK1 control treated in normoxia or hypoxia and PGK1-overexpression A549 cells were
measured. Data shown as mean + SD of triplicate measurements that were repeated three times with
similar results. *, P<0.05; **, P<0.01. Nor, normoxia; Hyp, hypoxia.
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Figure 7 Normal tissue Adenocarcinoma(AD
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Figure 7

HIF1a levels positively correlate with PGK1 levels in lung cancer patients. (A) IHC of representative
patients’ tissue samples from different types of lung tumors in different stage stained with anti-HIF1a
antibody. Scale bars, 50 pm. (C) Relative staining intensity (H-score) for HIF1a in different stage of
different types of lung tumors. For adenocarcinoma (AD), n=51 (n=11 stage I-ll, n=22 stage Ill, n=18 stage
IV). For squamous cell carcinoma (SCC) n=29 (n=9 stage I-ll, n=15 stage lll, n=15 stage IV). For normal
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lung tissue n=20. Statistical analysis was performed by Student'’s t test with two-tailed distribution. Data
are shown as mean + SEM. *** p<0.001 versus normal lung tissue. #, p<0.05; ##, p<0.01. (D) Correlation
between the relative staining intensity for PGK1 and HIF1q; r, Pearson correlation coefficient. NL, normal
lung tissue.
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