[1] Younossi, Z., F. Tacke, M. Arrese, et al., Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology, 2019. 69(6): 2672-2682. http://doi.org/10.1002/hep.30251
[2] Zhou, J.H., F. Zhou, W.X. Wang, et al., Epidemiological Features of Nafld from 1999 to 2018 in China. Hepatology, 2020. 71(5): 1851-1864. http://doi.org/10.1002/hep.31150
[3] Powell, E.E., V.W.S. Wong, and M. Rinella, Non-Alcoholic Fatty Liver Disease. Lancet, 2021. 397(10290): 2212-2224. http://doi.org/10.1016/S0140-6736(20)32511-3
[4] Yki-Jarvinen, H., Non-Alcoholic Fatty Liver Disease as a Cause and a Consequence of Metabolic Syndrome. Lancet Diabetes & Endocrinology, 2014. 2(11): 901-910. http://doi.org/10.1016/S2213-8587(14)70032-4
[5] Reid, B.M. and A.J. Sanyal, Evaluation and Management of Non-Alcoholic Steatohepatitis. European Journal of Gastroenterology & Hepatology, 2004. 16(11): 1117-1122. http://doi.org/10.1097/00042737-200411000-00005
[6] Ducker, G.S. and J.D. Rabinowitz, One-Carbon Metabolism in Health and Disease. Cell Metabolism, 2017. 25(1): 27-42. http://doi.org/10.1016/j.cmet.2016.08.009
[7] Friso, S., S. Udali, D. De Santis, et al., One-Carbon Metabolism and Epigenetics. Molecular Aspects of Medicine, 2017. 54: 28-36. http://doi.org/10.1016/j.mam.2016.11.007
[8] Xiao, Y.J., X.F. Su, W. Huang, et al., Role of S-Adenosylhomocysteine in Cardiovascular Disease and Its Potential Epigenetic Mechanism. International Journal of Biochemistry & Cell Biology, 2015. 67: 158-166. http://doi.org/10.1016/j.biocel.2015.06.015
[9] Kruglova, M.P., S.V. Grachev, P.O. Bulgakova, et al., Low S-Adenosylmethionine/S-Adenosylhomocysteine Ratio in Urine Is Associated with Chronic Kidney Disease. Laboratory Medicine, 2020. 51(1): 80-85. http://doi.org/10.1093/labmed/lmz035
[10] Valli, A., J.J. Carrero, A.R. Qureshi, et al., Elevated Serum Levels of S-Adenosylhomocysteine, but Not Homocysteine, Are Associated with Cardiovascular Disease in Stage 5 Chronic Kidney Disease Patients. Clin Chim Acta, 2008. 395(1-2): 106-10. http://doi.org/10.1016/j.cca.2008.05.018
[11] Schalinske, K.L. and A.L. Smazal, Homocysteine Imbalance: A Pathological Metabolic Marker. Advances in Nutrition, 2012. 3(6): 755-762. http://doi.org/10.3945/an.112.002758
[12] Muzurovic, E., I. Kraljevic, M. Solak, et al., Homocysteine and Diabetes: Role in Macrovascular and Microvascular Complications. J Diabetes Complications, 2021. 35(3): 107834. http://doi.org/10.1016/j.jdiacomp.2020.107834
[13] da Silva, R.P., B.J. Eudy, and R. Deminice, One-Carbon Metabolism in Fatty Liver Disease and Fibrosis: One-Carbon to Rule Them All. Journal of Nutrition, 2020. 150(5): 994-1003. http://doi.org/10.1093/jn/nxaa032
[14] Zhang, X.L., Y. Wang, and P.S. Liu, Omic Studies Reveal the Pathogenic Lipid Droplet Proteins in Non-Alcoholic Fatty Liver Disease. Protein & Cell, 2017. 8(1): 4-13. http://doi.org/10.1007/s13238-016-0327-9
[15] Dahlhoff, C., S. Worsch, M. Sailer, et al., Methyl-Donor Supplementation in Obese Mice Prevents the Progression of Nafld, Activates Ampk and Decreases Acyl-Carnitine Levels. Molecular Metabolism, 2014. 3(5): 565-580. http://doi.org/10.1016/j.molmet.2014.04.010
[16] Walker, A.K., R.L. Jacobs, J.L. Watts, et al., A Conserved Srebp-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans. Cell, 2011. 147(4): 840-52. http://doi.org/10.1016/j.cell.2011.09.045
[17] da Silva, R.P., K.B. Kelly, A. Al Rajabi, et al., Novel Insights on Interactions between Folate and Lipid Metabolism. Biofactors, 2014. 40(3): 277-283. http://doi.org/10.1002/biof.1154
[18] Lai, Z.W., J.L. Chen, C.H. Ding, et al., Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with Nafld. Obesity, 2020. 28(1): 197-205. http://doi.org/10.1002/oby.22667
[19] Baric, I., K. Fumic, B. Glenn, et al., S-Adenosylhomocysteine Hydrolase Deficiency in a Human: A Genetic Disorder of Methionine Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(12): 4234-4239. http://doi.org/10.1073/pnas.0400658101
[20] Dai, H.J., W.J. Wang, X.H. Tang, et al., Association between Homocysteine and Non-Alcoholic Fatty Liver Disease in Chinese Adults: A Cross-Sectional Study. Nutrition Journal, 2016. 15. http://doi.org/10.1186/s12937-016-0221-6
[21] Polyzos, S.A., J. Kountouras, K. Patsiaoura, et al., Serum Homocysteine Levels in Patients with Nonalcoholic Fatty Liver Disease. Annals of Hepatology, 2012. 11(1): 68-76. http://doi.org/10.1016/S1665-2681(19)31488-7
[22] Fan, J.G., J.D. Jia, Y.M. Li, et al., Guidelines for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Update 2010. Journal of Digestive Diseases, 2011. 12(1): 38-44. http://doi.org/10.1111/j.1751-2980.2010.00476.x
[23] Arning, E. and T. Bottiglieri, Quantitation of S-Adenosylmethionine and S-Adenosylhomocysteine in Plasma Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Methods Mol Biol, 2016. 1378: 255-62. http://doi.org/10.1007/978-1-4939-3182-8_27
[24] Nelson, B.C., C.M. Pfeiffer, L.T. Sniegoski, et al., Development and Evaluation of an Isotope Dilution Lc/Ms Method for the Determination of Total Homocysteine in Human Plasma. Analytical Chemistry, 2003. 75(4): 775-784. http://doi.org/10.1021/ac0204799
[25] Saadeh, S., Z.M. Younossi, E.M. Remer, et al., The Utility of Radiological Imaging in Nonalcoholic Fatty Liver Disease. Gastroenterology, 2002. 123(3): 745-50. http://doi.org/10.1053/gast.2002.35354
[26] Lind, M.V., L. Lauritzen, A. Ross, et al., The Role of One Carbon Metabolism and Methylation Capacity in Metabolic Syndrome. Annals of Nutrition and Metabolism, 2015. 67: 268-268. http://doi.org/10.1016/j.numecd.2018.01.005
[27] Finer, S., P. Saravanan, G. Hitman, et al., The Role of the One-Carbon Cycle in the Developmental Origins of Type 2 Diabetes and Obesity. Diabetic Medicine, 2014. 31(3): 263-272. http://doi.org/10.1111/dme.12390
[28] Bjorck, J., M. Hellgren, L. Rastam, et al., Associations between Serum Insulin and Homocysteine in a Swedish Population-a Potential Link between the Metabolic Syndrome and Hyperhomocysteinemia: The Skaraborg Project. Metabolism, 2006. 55(8): 1007-13. http://doi.org/10.1016/j.metabol.2006.03.010
[29] Muzurovic, E., D.P. Mikhailidis, and C. Mantzoros, Non-Alcoholic Fatty Liver Disease, Insulin Resistance, Metabolic Syndrome and Their Association with Vascular Risk. Metabolism-Clinical and Experimental, 2021. 119. http://doi.org/10.1016/j.metabol.2021.154770
[30] Seppala-Lindroos, A., S. Vehkavaara, A.M. Hakkinen, et al., Fat Accumulation in the Liver Is Associated with Defects in Insulin Suppression of Glucose Production and Serum Free Fatty Acids Independent of Obesity in Normal Men. Journal of Clinical Endocrinology & Metabolism, 2002. 87(7): 3023-3028. http://doi.org/10.1210/jcem.87.7.8638
[31] Puri, P., R.A. Baillie, M. Wiest, et al., A Lipidomic Analysis of Non-Alcoholic Fatty Liver Disease (Nafld). Journal of Hepatology, 2006. 44: S260-S261. http://doi.org/10.1016/S0168-8278(06)80708-7
[32] Arumugam, M.K., S. Chava, K. Rasineni, et al., Elevated S-Adenosylhomocysteine Induces Adipocyte Dysfunction to Promote Alcohol-Associated Liver Steatosis. Scientific Reports, 2021. 11(1). http://doi.org/10.1038/s41598-021-94180-x
[33] Matte, C., F.M. Stefanello, V. Mackedanz, et al., Homocysteine Induces Oxidative Stress, Inflammatory Infiltration, Fibrosis and Reduces Glycogen/Glycoprotein Content in Liver of Rats. International Journal of Developmental Neuroscience, 2009. 27(4): 337-344. http://doi.org/10.1016/j.ijdevneu.2009.03.005
[34] Pfalzer, A.C., S.W. Choi, S.A. Tammen, et al., S-Adenosylmethionine Mediates Inhibition of Inflammatory Response and Changes in DNA Methylation in Human Macrophages. Physiological Genomics, 2014. 46(17): 617-623. http://doi.org/10.1152/physiolgenomics.00056.2014
[35] Lind, M.V., L. Lauritzen, H. Vestergaard, et al., One-Carbon Metabolism Markers Are Associated with Cardiometabolic Risk Factors. Nutr Metab Cardiovasc Dis, 2018. 28(4): 402-410. http://doi.org/10.1016/j.numecd.2018.01.005
[36] Zawada, A.M., K.S. Rogacev, B. Hummel, et al., S-Adenosylhomocysteine Is Associated with Subclinical Atherosclerosis and Renal Function in a Cardiovascular Low-Risk Population. Atherosclerosis, 2014. 234(1): 17-22. http://doi.org/10.1016/j.atherosclerosis.2014.02.002