1. Hochberg, Z. et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32, 159–224 (2011).
2. Clausen, T. D. et al. High Prevalence of Type 2 Diabetes and Pre-Diabetes in Adult Offspring of Women With Gestational Diabetes Mellitus or Type 1 Diabetes. Diabetes Care 31, 340–36 (2008).
3. Rijpert, M. et al. Risk Factors for Childhood Overweight in Offspring of Type 1 Diabetic Women With Adequate Glycemic Control During Pregnancy. Diabetes Care 32, 2099–2104 (2009).
4. Manderson, J. G. et al. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia 45, 991–96 (2002).
5. Hjort, L. et al. Diabetes in pregnancy and epigenetic mechanisms—how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 7, 796–806 (2019).
6. Illingworth, R. S. & Bird, A. P. CpG islands--’a rough guide’. FEBS Lett 583, 1713–1720 (2009).
7. Szyf, M. & Bick, J. DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev. 84, 49–57 (2013).
8. Jones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
9. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).
10. Opsahl, J. O. et al. Epigenetic signatures associated with maternal body mass index or gestational weight gain: A systematic review. J. Dev. Orig. Health Dis. (2020). doi:10.1017/S2040174420000811
11. Jönsson, J. et al. Lifestyle intervention in pregnant women with obesity impacts cord blood DNA methylation which associates with body composition in the offspring. Diabetes 1–202 (2020).
12. Kelstrup, L., Hjort, L., Houshmand-Oeregaard, A., Clausen, T. D. & Ninna, S. Gene expression and DNA methylation of PPARGC1A in Muscle and Adipose Tissue from Adult Offspring of Women with Diabetes in Pregnancy. Diabetes 3, 1–41 (2016).
13. Houshmand-Oeregaard, A. et al. Increased expression of microRNA-15a and microRNA-15b in skeletal muscle from adult offspring of women with diabetes in pregnancy. Hum. Mol. Genet. 27, 1763–1771 (2018).
14. Hansen, N. S. et al. Fetal hyperglycemia changes human preadipocyte function in adult life. J. Clin. Endocrinol. Metab. 102, 1141–1150 (2017).
15. Houshmand-Oeregaard, A. et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin. Epigenetics 9, 1–12 (2017).
16. Houshmand-Oeregaard, A. et al. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy. PLoS One 12, 1–18 (2017).
17. Gautier, J. et al. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation. 1–14 (2015). doi:10.1371/journal.pone.0134654
18. Vlachová, Z. et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study. Diabetologia 58, 1454–1463 (2015).
19. Chavey, C. & Fajas, L. CXCL5 drives obesity to diabetes, and further. Aging (Albany. NY). 1, 674–677 (2009).
20. Maachi, H. et al. HB-EGF signaling is required for glucose-induced pancreatic β-cell proliferation in rats. Diabetes 69, 369–380 (2020).
21. Kos, K. & Wilding, J. P. H. SPARC: A key player in the pathologies associated with obesity and diabetes. Nat. Rev. Endocrinol. 6, 225–235 (2010).
22. King, G. L., Park, K. & Li, Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: The 2015 Edwin Bierman Award Lecture. Diabetes 65, 1462–1471 (2016).
23. Diéz-Villanueva, A. et al. DNA methylation events in transcription factors and gene expression changes in colon cancer. Epigenomics 12, 1593–1610 (2020).
24. Prashanth, G., Vastrad, B., Tengli, A., Vastrad, C. & Kotturshetti, I. Identification of hub genes related to the progression of type 1 diabetes by computational analysis. BMC Endocr. Disord. 21, 1–65 (2021).
25. Arnaboldi, L. et al. LIPA gene mutations affect the composition of lipoproteins: Enrichment in ACAT-derived cholesteryl esters. Atherosclerosis 297, 8–15 (2020).
26. Savill, S. A., Leitch, H. F., Harvey, J. N. & Thomas, T. H. Inflammatory adipokines decrease expression of two high molecular weight isoforms of tropomyosin similar to the change in type 2 diabetic patients. PLoS One 11, 1–13 (2016).
27. Mazzarotto, F. et al. Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation 387–398 (2020). doi:10.1161/CIRCULATIONAHA.119.037661
28. Zhang, S. Y. et al. Adrenomedullin 2 improves early obesity-induced adipose insulin resistance by inhibiting the class II MHC in adipocytes. Diabetes 65, 2342–2355 (2016).
29. Fang, M. et al. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. Biochim. Biophys. Acta - Gene Regul. Mech. 1859, 294–305 (2016).
30. Merid, S. K. et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 12, 1–17 (2020).
31. Waterland, R. & Jirtle, R. L. Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).
32. Li, C. C. Y. et al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics 8, 602–11 (2013).
33. Quilter, C. R. et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 28, 4868–79 (2014).
34. Slieker, R. C. et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin 6, 26 (2013).
35. Byun, H. M. et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet. 18, 4808–4817 (2009).
36. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102, 10604–9 (2005).
37. Feil, R. & Fraga, M. F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 13, 97–109 (2012).
38. West, N. A., Kechris, K. & Dabelea, D. Exposure to Maternal Diabetes in Utero and DNA Methylation Patterns in the Offspring. Immunometabolism 3, 1–9 (2013).
39. Jensen, D. M. et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care 27, 2819–23 (2004).
40. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–9 (2014).
41. Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11, 587 (2010).
42. Price, M. E. et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics and Chromatin 6, 1–15 (2013).
43. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, (2012).
44. Smyth, G. K. Linear Models for Microarray Data. Bioinforma. Comput. Biol. Solut. using R Bioconductor, R. R. Gentlem, 397–420 (2005).
45. Peters, T. J. et al. De novo identification of differentially methylated regions in the human genome. 1–16 (2015).
46. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
47. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
48. Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR : a Bioconductor package for differential expression analysis of digital gene expression data. 26, 139–140 (2010).
49. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012).
50. Ren, X. & Kuan, P. F. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics 35, 1958–1959 (2019).
51. Gentleman, R. C. et al. Bioconductor : open software development for computational biology and bioinformatics. Genome Biol. 5, (2004).
52. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S. Smyth, G.K. In. in Bioinformatics and Computational Biology Solutions using R and Biocunductor. 397–420 (2015).