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Abstract
Background: Offspring born to women with pregestational type 1 diabetes (T1DM) are exposed to an intrauterine hyperglycemic
milieu and has an increased risk of metabolic disease in later in life. In this present study we hypothesize that in utero exposure to
T1DM alters offspring DNA methylation and gene expression, thereby altering their risk of future disease.

Design: Follow-up study using data from the Epigenetic, Genetic and Environmental Effects on Growth, Metabolism and Cognitive
Functions in Offspring of Women with Type 1 Diabetes (EPICOM) collected between 2012-2013.

Setting: Exploratory sub study using data from the nationwide EPICOM study.

Participants: Adolescent offspring born to women with T1DM (n=20) and controls (n=20) matched on age, sex and postal code.

Main outcome measures: This study investigates DNA methylation using the 450K-Illumina Infinium assay® and RNA expression
(RNA sequencing) of leucocytes from peripheral blood samples.

Results: We identified 9 hypermethylated and 5 hypomethylated positions (p < 0.005, |DM-value| > 1). RNA expression profiling
identified 38 up- and 1 down-regulated genes (p < 0.005, log2FC ≥ 0.3.). Functional enrichment analysis revealed enrichment in
ontologies related to diabetes, carbohydrate and glucose metabolism, pathways including MAPK1/MAPK3 and MAPK family
signaling and genes related to T1DM, obesity and atherosclerosis. Lastly, by integrating the DNA methylation and RNA expression
data, we identified six genes where relevant methylation changes corresponded with RNA expression (CIITA, TPM1, PXN, ST8SIA1,
LIPA, DAXX).

Conclusions: Findings suggest the possibility for intrauterine hyperglycemia to impact later life methylation and gene expression, a
profile that may be linked to the increased risk of metabolic disease. 

Introduction
The “Developmental Origins of Health And Disease” hypothesis describes how an adverse early life environment may lead to
increased risk of adult disease 1. Offspring born to women with pregestational type 1 diabetes (T1DM) are exposed to a
hyperglycemic intrauterine milieu and recent studies have shown an increased risk of developing type 2 diabetes, cardiovascular
disease and obesity 2–4. The pathophysiological mechanisms behind this increased risk in the offspring are unclear, and whether a
link to intrauterine T1DM exposure exists remains to be elucidated. Epigenetic modifications have been proposed as a possible
mechanism by which maternal diabetes induces long-term effects 5. However, our knowledge on epigenetic programming of
offspring born to women with T1DM is still limited.

Methylation of cytosine is the best-studied epigenetic mark, with the addition of a methyl group to the C5 position of the cytosine-
ring, and generally occurs on cytosines followed by a guanine (CpG). Genomic regions with an overrepresentation of CpG sites are
termed CpG islands and are found at 60-70% of human gene promoters 6. Hypermethylation of CpG islands is involved in
transcriptional repression, thus, changes in DNA methylation adds level of regulation to the DNA molecule without changing the
DNA sequence and via this mechanism DNA transcription can be altered 7. Even though CpG sites are more sparse in gene bodies
than in promotors, studies have described CpG hypermethylation in gene bodies to positively correlate with RNA expression 8.
Changes in DNA methylation is well known to be involved in cell differentiation and embryogenesis and is considered to be part of
developmental biology 9. Besides CpG methylation, epigenetic alterations also include histone modifications and non-coding RNA 5.

Recent studies in cord blood and peripheral blood have linked especially maternal overweight but also, to a lesser degree, maternal
gestational diabetes to offspring epigenetic alterations 10–12. Few studies have evaluated the impact of maternal T1DM on
offspring epigenetic changes, and included studies exploring an adult cohort including both offspring born to women with
gestational diabetes and T1DM, using muscle, adipose tissue or preadipocytes, described increased expression of microRNA-15a
and microRNA-15b in skeletal muscle tissue and decreased leptin promotor methylation in subcutaneous adipocytes in offspring of
T1DM women 12–16. Only one study by Gaultier et al. explored the more genome-wide DNA methylation profile using Illuminas
Human Methylation 27 Beadchip in describing an association between intrauterine exposure to maternal T1DM and kidney function
in the adult offspring 17.
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In this study we hypothesized that in utero exposure to maternal T1DM alters global DNA methylation and RNA expression and
thereby alters the offspring’s risk of later disease development.

Results
Through medical records and the original Diabetes Association registry we retrieved information regarding pregnancy and birth for
the majority of both Index and Controls (Table 1). The Index and Controls included in the exploratory cohort were similar on most
parameters including BMI, oral glucose tolerance test (OGTT) fasting plasma glucose, OGTT 120 min plasma glucose, fasting
insulin, HOMA-IR, HbA1c, systolic and diastolic blood pressure and birth weight, although significant differences were present in

some of these parameters in the larger EPICOM group 18. Only gestational age at birth was significantly different for the intrauterine
T1DM exposed children compared to the controls (at that time it was common practice to induce labor ~2-3 weeks prior to the
expected delivery date in women with diabetes) (Gestational age: 259 (range=217–278) days vs. 278 (258–301) days, p <0.001).
Also, maternal age at birth, maternal BMI at birth and parity were similar between the women with T1DM and the mothers of the
Controls. For most of the women with T1DM we also had knowledge of their glycaemic regulation pregestationally and during the
pregnancy. For the RNAseq data one sample from the control cohort was missing. This however, did not change the overall
phenotypic results.
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Table 1
Baseline characteristics of diabetes exposed children and controls

  Exposed to T1DM Control children P-value

Number of children 20 20  

Male sex 10 (50%) 10 (50%)  

Age (years) 17.8 (0.8) 18.1 (0.8) 0.26

Body mass index (kg/m2) 23.2 (2.6) 23.4 (2.2) 0.81

Oral glucose tolerance test (mmol/L)      

time = 0 min 5.4 (0.4) 5.3 (0.3) 0.60

time = 120 min 6.0 (0.9) 6.4 (0.8) 0.20

S-Insulin (fasting) (pmol/L) 55.8 (17.3) 57.9 (19.8) 0.72

HOMA-IR 2.2 (0.7) 2.3 (0.8) 0.77

Waist circumference (cm) 75.8 (5.6) 76.4 (6.5) 0.77

Hip circumference (cm) 98.5 (7.4) 98.7 (5.3) 0.93

Systolic blood pressure (mmHg) 120.8 (9.6) 120.8 (11.6) 0.99

Diastolic blood pressure (mmHg) 63.4 (8.2) 63.7 (6.8) 0.89

Total cholesterol (mmol/L) 3.9 (0.7) 4.1 (1.1) 0.55

LDL cholesterol (mmol/L) 2.2 (0.6) 2.3 (1.0) 0.55

HDL cholesterol (mmol/L) 1.4 (0.4) 1.3 (0.4) 0.53

Triglycerides (mmol/L)‡ 0.8 (0.3-2.5) 0.9 (0.5-1.9) 0.24

HbA1c (%) [mmol/mol] 5.2 (0.2) [33 (2.5)] 5.1 (0.3) [32 (2.8)] 0.15

Gestational age at birth (days) 259 (217–278) (n=18) 278 (258 – 301) (n=17) < 0.001*

Birth weight (g) 3,482 (711) (n=19) 3,571 (542) (n=18) 0.68

Maternal Characteristics      

Maternal age at birth (years) 28.6 (3.8) (n=20) 29.8 (3.7) (n=20) 0.30

Maternal BMI at birth (kg/m2) 22.9 (2.3) (n=16) 24.2 (4.4) (n=17) 0.47*

Parity # 1.5 (1–3) (n=20) 1.8 (1–4) (n=18) 0.55*

Pre-eclampsia 5 (26%) (n=19) 2 (12%) (n=17) 0.41†

Maternal HbA1c (%) [mmol/mol]      

Pregestational 7.4 (1.3) [57] (n=18) (–)  

1st trimester 7.2 (1.2) [55] (n=17) (–)  

2nd trimester 6.3 (1.0) [45] (n=19) (–)  

3rd trimester 6.5 (0.9) [48] (n=18) (–)  

Differentially methylated positions and regions
Performing whole-blood genome-wide DNA methylation analysis using the 450K-Illumina Infinium assay we identified 14
differentially methylated positions (DMPs) with a p < 0.005 and |ΔM-value| > 1 (9 hypomethylated and 5 hypermethylated) between
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Index and Controls (Figure 1 and Supplemental Table S1 online) However, after Bonferroni correction, no single DMP reached the
threshold of a family wise error rate (FWER) (< 0.05). Differentially methylated regions (DMRs) defined as methylation in groups of
nearby positions have been proposed to be involved in transcriptional regulation. Therefore, we extended our analysis to the regional
level. However, no DMRs were identified applying a Benjamini-Hochberg false detection rate (FDR) < 0.05.

RNA expression
Subsequently, we analysed gene expression by RNAseq to test if any differentially expressed genes (DEGs), coding or non-coding
RNA, were present when comparing our two cohort groups (Index vs. Controls). We identified 39 coding DEGs (38 up regulated and 1
down regulated) (Table 2, Figure 2a+b and Supplemental Figure S1 online) (p < 0.005 and a log2FC ≥ 0.3). In addition, we also
found 20 non-coding DEGs ((7 up regulated tags and 13 downregulated tags) (p < 0.005 and a log2FC ≥ 0.3) (Supplemental Table
S2 online). No DEGs reached an FDR < 0.05.
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Table 2
List of differentially expressed autosomal coding genes between type 1 diabetes exposed offspring and controls.

Gene-ID Log2Fold
Change

Log
CPM

P-value Chromosome
Name

Start
Position

End
Position

External
Gene Name

ENSG00000103148.11 1.402 4.682 0.0003637 16 134273 188859 NPRL3

ENSG00000036448.5 1.238 3.216 0.001291 8 1993155 2113475 MYOM2

ENSG00000163735.6 0.778 3.821 0.0003347 4 74861359 74864496 CXCL5

ENSG00000120885.15 0.754 3.931 7.9319E-
05

8 27454434 27472548 CLU

ENSG00000259207.3 0.729 5.136 0.001563 17 45331212 45421658 ITGB3

ENSG00000005961.13 0.696 3.951 0.003207 17 42449548 42466873 ITGA2B

ENSG00000184922.9 0.687 5.329 0.004019 17 43298811 43324687 FMNL1

ENSG00000161911.7 0.682 1.937 0.001432 6 41117080 41122075 TREML1

ENSG00000113140.6 0.670 4.702 0.0003625 5 151040657 151066726 SPARC

ENSG00000175746.4 0.670 2.299 0.003372 15 39542885 39547046 C15orf54

ENSG00000138798.7 0.650 3.438 0.0008035 4 110834040 110933422 EGF

ENSG00000122786.15 0.642 2.518 0.004715 7 134429003 134655479 CALD1

ENSG00000100385.9 0.610 3.173 0.001113 22 37521878 37571094 IL2RB

ENSG00000082781.7 0.566 3.489 0.002852 3 124480795 124620265 ITGB5

ENSG00000198478.6 0.565 6.232 0.0013672 6 80341000 80413372 SH3BGRL2

ENSG00000168497.4 0.564 6.971 0.001083 2 192699028 192711981 SDPR

ENSG00000151693.5 0.564 2.812 0.0004620 2 9346894 9545812 ASAP2

ENSG00000185909.10 0.549 2.620 0.001593 3 49209044 49213917 KLHDC8B

ENSG00000140022.5 0.547 4.040 4.5483E-
05

14 81727000 81902809 STON2

ENSG00000019582.10 0.545 6.485 0.003180 5 149781200 149792492 CD74

ENSG00000101162.3 0.516 7.425 0.001578 20 57594309 57601709 TUBB1

ENSG00000090975.8 0.506 2.549 0.002654 12 123468027 123634562 PITPNM2

ENSG00000095303.10 0.505 5.532 0.0005005 9 125132824 125157982 PTGS1

ENSG00000111644.3 0.497 2.010 0.001323 12 6747241 6756626 ACRBP

ENSG00000169313.9 0.483 3.076 0.003989 3 151055168 151102600 P2RY12

ENSG00000163737.3 0.471 4.875 0.004818 4 74846794 74847841 PF4

ENSG00000141522.7 0.459 3.114 0.003189 17 79825597 79829282 ARHGDIA

ENSG00000054793.9 0.441 3.264 0.002419 20 50213053 50385173 ATP9A

ENSG00000107438.4 0.440 3.137 0.004217 10 96997329 97050781 PDLIM1

ENSG00000143368.9 0.429 2.080 0.004332 1 149895209 149900236 SF3B4

ENSG00000153071.10 0.419 4.220 0.0003941 5 39371780 39462402 DAB2

ENSG00000067225.13 0.401 6.571 0.0002313 15 72491370 72524164 PKM

ENSG00000143537.9 0.399 2.580 0.001539 1 155023042 155035252 ADAM15
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Gene-ID Log2Fold
Change

Log
CPM

P-value Chromosome
Name

Start
Position

End
Position

External
Gene Name

ENSG00000146192.10 0.387 5.061 0.003886 6 36973422 36996846 FGD2

ENSG00000177830.13 0.361 2.254 0.002612 11 867357 915058 CHID1

ENSG00000157823.12 0.339 3.560 0.004107 15 90373831 90437574 AP3S2

ENSG00000075624.9 0.335 9.389 0.003498 7 5566782 5603415 ACTB

ENSG00000172757.8 0.309 6.236 0.000952 11 65590493 65629497 CFL1

ENSG00000185261.9 -0.383 5.944 0.002067 5 93488671 93954309 KIAA0825

Functional enrichment analysis
To gain mechanistic insight into functional importance of the coding DEGs found above, we used enrichment analysis to associate
these changes to disease phenotypes (DO), Biological Processes (GOBP) and biological pathways (REACTOME). We observed
enrichment in ontologies relating to acquired metabolic disease, glucose metabolism disease, diabetes mellitus, carbohydrate
metabolism disease, disease of metabolism and clustering around genes including CXCL5, EGF and SPARC (DO) (Figure 3). For
biological processes and pathways, the analysis revealed enrichment relating to striated muscle tissue development, muscle tissue
development, growth and developmental growth (GOBP) and biological pathways (REACTOME) including ECM proteoglycans,
RAF/MAP kinase cascade, MAPK1/MAPK3 signaling and MAPK family signaling (Figure 3 and Supplemental Figure S2 online (cnet
plot of GOBP)).

Functional enrichment analysis was also carried out with identified DMPs as input. Again, enrichment in in ontologies and pathways
relating to carbohydrate metabolism and glucose transportation and pathways including Glucagon-like Peptide-1 (GLP1) regulated
insulin secretion were in the top-enriched terms (Supplemental Table S3 and S4 online).

Correlation between DNA methylation and gene expression
DNA methylation has been shown to play a regulatory role in mediating gene expression, and if located within a gene promotor,
higher levels of methylation usually repress transcriptional expression 8. To further explore the consequences of altered DNA
methylation patterns, we therefore compared the DNA methylation data with our gene expression data (Figure 4 and Supplemental
Table S5 online). First, we visualized correlations between changes at the group level. That is, the mean change in methylation level
plotted against the mean change in gene expression of the gene annotated to the methylation site. DEGs overlapping with DMPs
(annotated to closest gene to the methylation site), between T1DM exposed offspring and controls (p-value < 0.05) were plotted in a
scatter plot based on log2FC and ΔM-value.

This analysis revealed that 93 DMPs annotated to 76 DEGs showed an inverse correlation where DNA hypomethylation correlated to
an increased RNA expression (Figure 4, lower-right (blue)). On the contrary, DNA hypermethylation correlated to a decreased RNA
expression, 14 DMPs annotated to 12 DEGs were found to be inversely correlated (Figure 4, upper-left (red)). Also, 201 DMPs
annotated to 129 genes showed a positive correlation between DNA hypermethylation and increased RNA expression. As the second
step of our correlation analysis, we performed a Spearman rank correlation for each DMP-DEG pair, using each subject’s methylation
level at the involved DMPs and expression level (normalized counts) for the corresponding RNA expression data as input. Here, our
analysis showed that 2 DMPs and their corresponding genes had significant inverse correlation between DNA hypomethylation and
increased RNA expression (p < 0.1) (CIITA and TPM1, Table 3). DNA hypermethylation of CpG sites localized within the gene body
has been described as being associated with increased RNA expression and in our analysis, we found 4 annotated DMPs localized
within the gene body and their corresponding genes displaying positive correlation between DNA methylation and RNA expression (p
< 0.1) (PXN, ST8SIA1, LIPA and DAXX, Table 3).
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Table 3
Top candidate genes from the two-step correlation analysis.

  Probe name Gene region Relation
to CPG
island

Gene
symbol

rho P-value FDR-P-
value

DNA
hypomethylation
and positive RNA
expression

cg06871213 Body Nshore CIITA -0.3490 0.03002 0.06005

cg04194852 TSS1500 Island TPM1 -0.3237 0.04493 0.42438

DNA
hypermethylation
and positive RNA
expression
(located in
genebodies)

cg04256697 Body;TSS1500;Body OpenSea PXN 0.3933 0.01379 0.05514

cg24112692 Body OpenSea ST8SIA1 0.3686 0.02152 0.26539

cg13931663 Body;Body OpenSea LIPA 0.3020 0.06206 0.56834

cg20618109 Body;Body;TSS1500;Body;Body N_Shore DAXX 0.2909 0.07271 0.581641

Discussion
This exploratory study suggests the existence of epigenetic marks that possibly influence the long-term health of offspring born to
women with pregestational T1DM and elucidate intuitive pathways to be involved. Combining these epigenetic marks with gene
expression data in offspring exposed to T1DM in utero is novel and provides new insight into the mechanistic consequences of
epigenetic changes. However, none of the findings were present after correction for multiple testing.

In a cohort of prospectively studied offspring of women with T1DM we identified 14 DMPs (p < 0.005 and |ΔM-value| > 1), 9 being
hypomethylated and 5 hypermethylated, between T1DM exposed offspring and their matched unexposed controls. We also sought
to identify any overall differences in RNA expression between index and controls, and were able to identify a set of predominantly up
regulated genes (p < 0.005 and a log2FC ≥ 0.3).

The functional enrichment analysis showed clustering around the genes CXCL5, EGF and SPARC which is associated with diabetes,
obesity and insulin secretion and enriched in disease ontology terms of metabolic disease, diabetes and glucose metabolism
disease. These findings seem to fit the hypothesis of altered intrauterine programming of offspring born to women with T1DM 19–21.
The functional enrichment analysis points towards muscle tissue development and developmental growth to be associated with
intrauterine exposure to T1DM and that the MAPK signaling pathway could play a role in the pathogenesis. The link between
intrauterine exposure to T1DM and later life alterations in skeletal muscle has previously been described by Houshmand-Oeregaard
et al. and even though no studies have described a link between intrauterine exposure to diabetes and later life alterations in the
MAPK pathway, the central placement of MAPK in insulin signaling makes it a plausible object for pathogenetic changes 13,22.

Our access to both DNA methylation and gene expression data made it possible to explore the impact of epigenetic changes
induced by intrauterine T1DM exposure on gene expression. We chose to perform a two-step analysis where we first explored the
overall correlation between DMPs and DEGs at group level. During step two, we studied the individual correlation between ΔM-value
at the involved DMP and log2FC for the corresponding DEG. No studies within the area of fetal programming as a consequence of
maternal T1DM have to our knowledge, performed a similar linkage study between DNA methylation and RNA expression data.
However, in cancer studies similar methodology has been used 23. Applying this method, provided us with six genes where changes
in DNA methylation between offspring exposed to maternal T1DM and controls correlated with relevant changes in gene expression
(Table 3). PXN, which is localized at chromosome 12 has been linked to progression of T1DM and LIPA at chromosome 10 to the
composition of lipoproteins 24,25. Mutations in TPM1 at chromosome 15 is associated with both the development of the metabolic
syndrome and cardiac hypertrophy 26,27. CIITA is associated with MHC class II (MHCII) expression and MHCII antigen presentation in
adipocytes and is reported to trigger early adipose inflammation and insulin resistance as well as inducing changes to energy
expenditure in skeletal muscle 28,29.

In our study we chose to match our participants so that they did not overtly differ in phenotypic appearance. This approach resulted
in a very homogenous group where the major difference was in T1DM exposure status. The matching was an attempt to exclude
any phenotypic differences to be the cause of differences in methylation status. However, a consequence of the matching could, in
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theory, result in the observed changes in methylation and gene expression as being protective towards the development of later life
metabolic disease, as none of the participants in the exploratory cohort had overt metabolic disease in contrast to the participants in
the full EPICOM study 18. Also, it is well known that gestational age is associated with DNA-methylation and as gestational age
differed between our two cohorts, this could have influenced our findings 30.

Epigenetic changes in relation to intrauterine exposure to either nutrition or maternal diabetes has previously been described in
animal studies but the results have been difficult to apply to human studies 31,32. In recent years methylation analyses of cord blood
have shown promising results, but the use of cord blood methylation status as a biomarker of long-term offspring risk of disease
development has yet to be fully described 11,33.

Here we used leucocytes from peripheral blood from both T1DM exposed and non-exposed offspring. The most likely target tissue
for the pathogenesis of long-term consequences of being born to a mother with T1DM may, however, be pancreatic β-cells, and
muscle- and fat-tissue. These three tissues are not as readily available and it is debated whether peripheral blood leucocytes reflects
global epigenetic changes induced by maternal pregestational T1DM. Studies of tissue-specific differentially methylated regions
have shown conservation of DNA methylation patterns across different tissues 34,35. However, replication of our findings in target
tissues would further strengthen our hypothesis. In our study we did not have access to specific white cell counts for each
participant. Instead, we used the EstimateCellCounts algorithm from the minfi package, which enables us to minimize confounding
related to cell composition, a strength compared to prior studies within the same area.

The samples used in our study were collected at a mean age of ~18 years. This provides time to develop phenotypic characteristics.
However, it also provides the possibility that any epigenetic changes have occurred during the time period from birth to follow-up. In
the EPICOM study we didn’t have access to cord blood samples and it is therefore not possible for us to state, that the epigenetic
findings in our study have been present since birth. Lifestyle and diet in families where the mother has T1DM could be different
compared to families without diabetes and this could affect the epigenetic findings 36,37.

When interpreting our finding one must consider the fact that no single DMP reached the FWER adjusted value of 0.05. This is
probably a consequence of our modest sample size in the exploratory cohort and an obvious limitation of our study. Instead we
used the same pragmatic threshold for DMPs as West et al. providing an opportunity to compare findings in related studies 38.

The strength of this study is that it was performed on a group of prospectively studied offspring born to women with T1DM. For
both diabetes exposed offspring and their matched controls, we have extensive knowledge of intrauterine exposure, birth, neonatal
period as well as current health status. Our women with T1DM are well characterized, and no women with T2DM or gestational
diabetes were included in our cohort. This enables us to explore associations between both fetal and long-term consequences of
being born to mother with T1DM and epigenetic and transcriptomic alterations.

In conclusion, our data indicate intrauterine hyperglycemia to impact later life methylation and gene expression, a profile that may
be linked to the increased risk of metabolic disease. However comprehensive follow-up studies using a genome-wide approach and
including relevant target tissue is needed.

Methods

The EPICOM cohort:
This study is a part of the EPICOM (Environmental Versus Genetic and Epigenetic Influences on Growth, Metabolism and Cognitive
Functions in Offspring of Women with Type 1 Diabetes) study (ClinicalTrials.gov registration no. NCT01559181). From 1992-1999,
pregnancies in women with pregestational T1DM were prospectively reported to a registry managed by the Danish Diabetes
Association. Information regarding diabetes status and pregnancy outcome was reported to the registry by local obstetricians at
eight hospitals in Denmark, who were responsible for antenatal care and delivery for pregnant women with T1DM. Coverage of
cases from the reporting centers spanned from 75 to 93%, as described by Jensen et al. 39. The Danish Diabetes Association
Register consists of 1326 records of children born to women with T1DM. Only children born after 24 completed gestational weeks
were registered. As part of the EPICOM study we invited one child per mother (the oldest) to participate in a clinical study concerning



Page 10/19

metabolic risk. Controls were recruited from the background population and were matched by sex, age and postal number. Details
from this study have previously been described by Vlachova et al. 18.

Sample inclusion
Among the oldest participants of the EPICOM cohort we selected 20 offspring of women with pregestational T1DM (Index children)
and their 20 matched controls (Controls) as our exploratory cohort of DNA methylation and RNA expression (Table 1). Besides
fulfilling the matching criteria for inclusion in the EPICOM cohort, we made sure that our exploratory cohort did not differ in body
mass index (BMI), glucose tolerance, HbA1c, cholesterol or triglyceride levels and that the index child and their control were age
matched. DNA methylation and RNA expression profiling were performed on leucocytes isolated from peripheral blood samples.

DNA isolation and the 450K-Illumina Infinium assay®
EDTA treated peripheral blood samples were collected from the participants when they participated in the EPICOM study and were
stored as EDTA treated at -80°C until use. Genomic DNA was extracted from peripheral blood using QIAmp® Mini Kit (Qiagen,
Germany). For each sample, 1 µg of genomic DNA was bisulfite-converted using Zymo EZ DNA Methylation Kit according to the
manufacturer’s recommendations. DNA methylation level was measured using the 450K-Illumina Infinium assay (Illumina, Inc.) at
Aros Applied Biotechnology A/S.

(Pre-)processing of the 450K-Illumina Infinium assay data
All analyses were performed in R statistics, version 3.6.1 and R package minfi (version 1.32.0) was used for normalization, analysis
and visualization 40. Detection p-values were calculated to identify failed positions with a p-value cut-off > 0.01. Probes were
removed if they failed in more than 20% of the samples (n = 350). No samples were identified as failed, as the proportion of failed
probes did not exceed 1% for any single sample. Density-bean-plots were used to identify outliers and minfi’s inbuilt function was
used to evaluate data with respect to extreme methylation outliers (> 3 SD away from the median). We performed background
normalization and control normalization implementing the pre-processing choices of Genome Studio®. Next, we applied subset-
quantile-within-array-normalization correcting for technical differences between Infinium type I and II assay design allowing both
within-array and between-sample normalization. Cross reactive probes (n = 29.541), probes with SNPs documented in C or G of the
target (n = 18.284) probes on sex chromosomes (n = 12,312) were excluded, leaving 415,009 probes. Methylation values were
calculated as M-values (logit [beta]) (Equation (I)) 41.

M − value = log2
Beta

1 − Beta

Multidimensional scaling plots were evaluated to identify clusters of samples behaving differently than expected. Finally, the probes
were annotated to the human genome version 19 using the enhanced Illumina annotation method developed by Price et al. 42.

Estimated differential cell counts
We adjusted for differences in cell proportions using minfi’s estimateCellCounts that implements Houseman et al.’s regression
calibration algorithm 43. This algorithm returns relative proportions of CD4+ and CD8+ T-cells, natural killer cells, monocytes,
granulocytes and B-cells in each sample.

Identifying differentially methylated positions
To identify positions where methylation is associated with intrauterine exposure to maternal T1DM we fitted a linear model, which
utilizes a generalized least squares model (lmFit of R-package limma) allowing for missing values 44. Significance was evaluated
using F-test. The sample variances were estimated using an empirical Bayes approach with shrinkage towards the means. A
Bonferroni adjusted FWER below 0.05 was considered significant. We applied the model both without and with adjustment for
estimated relative cell proportions (CD4+ and CD8+ T-cells, natural killer cells, monocytes, granulocytes, and B-cells).

Identifying differentially methylated regions (DMRs)

( )
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We used DMRcate to identify any autosomal DMRs 45. DMRcate identifies and ranks the most differentially methylated regions
across the genome based on kernel smoothing of the differential methylation signal. The model performs well on small sample
sizes and builds on the well-established Limma package, allowing us to incorporate estimated cell proportions as covariates. A FDR
below 0.05 with a |ΔM-value| < 1 was considered significant.

RNA sequencing (RNA-seq) sample preparation
Blood samples were drawn using PAXgene Blood RNA Tubes® and placed 2 hours at room temperature, sequentially stored
overnight at -20 degrees before being stored at -80 degrees until analysis.

RNA-Seq library construction and sequencing
Whole transcriptome, strand-specific RNA-Seq libraries were prepared from total-RNA using the Ribo-Zero Globin technology
(Illumina, Inc.) for depletion of rRNA and globin mRNA followed by library preparation using the ScriptSeq technology (Illumina, Inc.).
Depletion and library preparation were automated on a Sciclone NGS (Caliper, Perkin Elmer) liquid handling robot. The total-RNA (1.7
µg per sample) was subjected to Baseline-ZERO DNase prior to depletion. Total-RNA was purified using Agencourt RNAClean XP
Beads before and after DNase treatment followed by on-chip electrophoresis on a LabChip GX (Caliper, Perkin Elmer) and by UV
measurements on a NanoQuant (Tecan). Cytoplasmic and mitochondrial rRNA as well as globin mRNA were removed from 400 ng
DNAse treated total RNA using the Ribo-Zero Globin Gold Kit (Human/Mouse/Rat, Illumina, Inc.) following the manufacturer’s
instructions and quality of the depleted RNA was estimated on a LabChip GX (Caliper, Perkin Elmer). Synthesis of strand-specific
RNA-Seq libraries were conducted using the ScriptSeq v2 kit (Illumina, Inc.) following the recommended procedure, and the qualities
of the RNA-Seq libraries were estimated by on-chip electrophoresis (HS Chip, LabChip GX, Caliper, Perkin Elmer) of a 1 µL sample.
The DNA concentrations of the libraries were estimated using the KAPA Library Quantification Kit (Kapa Biosystems). The RNA-Seq
libraries were multiplexed paired-end sequenced on an NextSeq 500 (75 + 6 + 75 bp) using a high output flowcell.

RNA-Seq analysis
Paired de-multiplexed fastq files were generated using bclfastq (v.2.20 Illumina) and initial quality control was performed using
FastQC. Adapter trimming was conducted using the GATK ReadAdaptorTrimmer tool followed by mapping to the human genome
(hg19) in addition to transcripts from databases on non-coding RNAs (mirbase, mitranscriptome, rfam, snornabase, tjumirna and
trnascanse) using Bowtie and then further analyzed using Tophat, and Cufflinks and HTSeq-count (union method) 46,47. HTSeq-
count (union method) was applied to produce raw counts which were then submitted for differential expression analysis in R using
edgeR 48. All non-informative features were filtered out by removing features with less than one counts per million (CPM) in 39
samples removing 98334 features, leaving 13842 for downstream analysis. A generalized linear model was fitted and p-values and
log fold changes (Log2FC) were retrieved from the individual comparisons of Index vs. Controls. A Benjamini-Hochberg FDR below
0.05 was considered significant.

Functional enrichment analysis
To investigate possible biological functions of the RNA expression changes in our cohort, we performed gene set enrichment
analysis (GSEA) using Clusterprofiler 49. The input genes were ranked based on the magnitude of changes in the Index vs. Controls
comparison (log2FC). Disease associations were identified by Disease Ontology (DO) enrichment analysis, while Gene Ontology
Biological Processes (GOBP) and REACTOME were used for functional and pathway enrichment. The top-enriched terms for each
enrichment analysis were sorted according to p-value and presented as barplots. Furthermore, gene-concept networks, that depicts
linkages of the genes and biological terms (DO, GOBP and REACTOME terms), were made by evoking the cnetplot function of
Clusterprofiler.

For methylation data, GOBP and REACTOME enrichment analysis were performed on all differentially methylated positions (p <
0.005) using the methylGSA package for R 50. The probes were annotated to the human genome version 19 as previously described.

Correlation between DNA methylation and gene expression
DNA methylation has been shown to play an important role in modulating gene expression. Therefore, we correlated changes in
methylation and gene expression of the gene closest to the methylation site. Shared differentially expressed genes (DEGs) and
DMPs (closest gene to methylation site) between Index and Controls (p < 0.05) were plotted in a scatter plot based on log2FC and
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ΔM-value. In the second part of the analysis, we used Spearman’s rank correlation to analyze the correlation between the specific
methylation level (M-value) and RNA expression level (normalized counts) for shared genes. We considered the correlations to be
interesting (either negative or positive) if p < 0.1.

Analysis software
Statistics was done using R 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) with Bioconductor 3.9.51 DNA
methylation data was analysed using the minfi 40, DMRcate 45 and Limma 52 package 1.32.0, and RNAseq data using edgeR 48.
Functional gene enrichment analysis was carried out using the R packages Clusterprofiler and MethylGSA 49,50. Graphics were made
using basic R functions ggbio, Gviz, DEseq, DEXSeq and ggplot2. The package knitr was used for data documentation.
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Figures

Figure 1

DNA methylation between type 1 diabetes exposed offspring and matched controls. Volcano plot of -log10 p-value against delta-M
values of differentially methylated positions. Red dots are DMPs between type 1 diabetes exposed offspring and matched controls
with a p-value < 0.005 and an absolute |ΔM-value| >1. The horizontal line represents p-value = 0.005.



Page 16/19

Figure 2

Differentially expressed coding genes between type 1 diabetes exposed offspring and matched controls. (a) Volcano plot of -log10
p-value against log fold change. Red dots are differentially expressed autosomal coding genes with a with a p < 0.005 and a log2FC
≥ 0.3. The horizontal line represents p = 0.005. (b) Manhattan plot of chromosomal distribution of differentially expressed genes
between type 1 diabetes exposed offspring and matched controls. The red horizontal line illustrates a crude p-value < 0.005.
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Figure 3

Functional Enrichment Analysis of the gene expression changes observed in type 1 diabetes exposed offspring compared to
matched controls. The differentially expressed autosomal coding genes were used as input for gene set enrichment analysis, to
identify enriched disease phenotypes (DO) (a), biological processes (GOBP) (b) and biological pathways (REACTOME) (c). The top-
enriched terms were sorted according to p-value (vertical black line denotes p = 0.05). A network plot (d, e), depicted the genes that
were involved in the significant DO terms (e) and REACTOME terms (e).
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Figure 4

Correlated changes in DNA methylation and gene expression in type 1 diabetes exposed offspring compared to matched controls.
Scatter plot depicting mean methylation difference (delta M) versus mean gene expression change (log2FC), of shared DEGs (p <
0,05) and DMPs (closest gene to methylation site, p < 0.05). Upper-left (red): Increased methylation corresponding to a decreased
gene expression. Lower-right (blue): Decreased methylation corresponding to increased gene expression. Upper-right: Increased
methylation corresponding to increased gene expression.
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