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Abstract
Background: Sports-related injuries are the most common in the lower extremities among physical regions, and overall injury
rates were higher among males and persons aged 5–24 years. To evaluate impaired functional performance in sports training
facilities and sports, a marker-less motion analysis system that can measure joint kinematics in bright indoor and outdoor
environments is required.   

Objective: To establish the concurrent and angle-trajectory validity and intra-trial reliability of a novel multi-view image-based
motion analysis system with marker-less during lower extremity tasks in healthy young men.

Methods: Ten healthy young men participated voluntarily in this study. The hip and knee joint angles were collected using a
multi-view image-based motion analysis system (marker-less) and a Vicon motion capture system (with markers) during the
lower extremity tasks. Intraclass correlation coe�cient (ICC) analyses were used to identify the concurrent and angle-
trajectory validity and intra-trial reliability of the multi-view image-based motion analysis system.

Results: In the concurrent validity, the correlation analysis revealed that the ICC3, k values on the hip and knee �exions during
knee bending in sitting, standing, and squat movements were 0.747 to 0.936 between the two systems. In particular, the
angle-trajectory validity was very high (ICC3, 1 = 0.859–0.998), indicating a high agreement between the two systems. The
intra-trial reliability of each system was excellent (ICC3, 1 = 0.773–0.974), re�ecting high reproducibility.  

Conclusion: We suggest that this novel marker-less motion analysis system is highly accurate and reliable for measuring joint
kinematics of the lower extremities during the rehabilitation process and monitoring the sports performance of athletes in
sports training facilities.

Background
An average annual estimate of 8.6 million sports-related injuries were reported between 2011 and 2014 in the USA, which
represents an age-adjusted rate of 34.1 per 1,000 persons. The sports-related injuries reported more than one-half of the injury
episodes in males (61.3%) and persons aged 5–24 years (64.9%), owing to the fact that the types of activities differed by sex
and age groups. Physical regions injured while participating in sports activities included lower extremity (42.0%), upper
extremity (30.3%), and head and neck (16.4%) [1]. Common lower extremity injuries include strains, sprains, tendon rupture,
dislocation, and fractures that occur during team ball sports, such as basketball, soccer, volleyball, and �eld hockey [1, 2].
One-half of sports-related injury episodes result in emergency department visits or hospitalizations [1]. To return to sports
after lower extremity injuries, the rehabilitation of the injured athlete is managed by sports physicians and physiotherapists,
coaches, and athletic trainers through assessment of lower extremity function. Standardized functional testing is used to
compare functional performance data of pre-injury or normative data of healthy athletes [3].

Three-dimensional (3D) motion capture with a marker-based tracking system (e.g., Vicon motion capture system) is known as
the gold standard to assess functional performance, such as joint analysis, in both clinical and sports settings [4]. The 3D
motion analysis is considered a key objective indicator in planning treatment interventions and monitoring treatment
e�ciency [5]. A number of professionals, including physicians and physiotherapists, coaches, and athletic trainers have been
performing objective outcome-based care, such as joint angle, and the use of valid and reliable instruments to measure joint
angle is imperative. The joint angle measures represent the index of change in sports functional performance or the
evaluation outcome value to therapeutic interventions during rehabilitation programs [6–8]. To achieve accurate and reliable
results, highly skilled and well-trained operators are required to calibrate and run the 3D motion capture system; thus, they are
not easily available to all professionals [9]. Although the 3D motion capture system is the most valid and reliable measure, it
is expensive, and requires a set-up environment which has limited feasibility in most rehabilitation and sports training
facilities [10]. In particular, it is di�cult to measure the joint angle in bright indoor and outdoor areas, such as sports training
facilities and �elds, because the camera is equipped with an infrared strobe to emit a light signal and collect the re�ected
signal from the markers.
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To overcome this challenge, a multi-view image-based motion analysis system has been developed that reliably measures the
joint kinematics in bright indoors and outdoors, regardless of obstacles (e.g., other functional measure equipment) near the
testing area. That is, this system has the capability to achieve motion tracking with marker-less based on image analysis
technology in a space without environmental restrictions. Although marker-less motion capture technology (commonly
images) has gained an increasing attention in biomechanics �eld, there are a limited number of studies for comparing the
difference between the marker-less motion capture technique and marker-based motion capture technique [11, 12]. Therefore,
the aim of this study was to establish the concurrent and angle-trajectory validity of a novel multi-view image-based motion
analysis system with maker-less through hip and knee joint angle measurements by comparing them with joint angle data
obtained using a Vicon motion capture system with markers. In addition, this study was conducted to determine the intra-trial
reliability of the multi-view image-based motion analysis system and Vicon motion capture system in healthy young men.

Methods
Subjects

In this study, ten health young men (age = 25.4 ± 2.0 years, height = 174.4 ± 5.0 cm, weight = 68.9 ± 6.8 kg) participated
voluntarily. Participants were excluded if they had a current or past history of neurological, musculoskeletal, or cognitive
system disorders. Prior to participation, the subjects were informed regarding the purpose and procedures of the study and
signed an informed consent form. The experimental protocol followed the Declaration of Helsinki and was approved by the
Institutional Review Board of Woosong University (1041549-210105-SB-114) before its execution.

Measurements

Multi-view image-based motion analysis system
A multi-view image collection system consisting of four red-green-blue (RGB) cameras (4DEYE, SYM healthcare lnc., Seoul,
Republic of Korea) was used to capture the subjects’ posture at 30 Hz from four different directions (Figure 1). After image
collection, the angles of the hip and knee joints were analyzed using a custom analysis program developed based on the
open source image analysis libraries; OpenCV [13] and OpenPose [14]. Speci�cally, OpenPose software estimated the two-
dimensional positions of seven physical keypoints, including the neck, left shoulder, right shoulder, mid hip, right hip, knee,
and ankle, in each of the four images simultaneously captured by the four cameras. Then, OpenCV software reconstructed the
three-dimensional position of each keypoint from the four different two-dimensional positions of the keypoint based on
information on the relative position and orientation of the cameras.

Hip �exion/extension was described as the angle of the femoral shaft relative to the trunk, while knee �exion/extension was
described as the angle between the femoral and tibial shafts. First, the trunk coordinates were obtained as follows: The Z-axis
of the trunk was de�ned as a vector pointing to the neck from the mid-hip. The X-axis was de�ned as a vector normal to the
plane consisting of the left shoulder, right shoulder, and mid hip. The Y-axis was a vector orthogonal to the Z- and X-axes.
Subsequently, the femoral and tibial shaft vectors were de�ned as vectors pointing the knee from the right hip and the ankle
from the knee, respectively. To quantify the hip �exion in the three-dimensional space regardless of the plane of hip �exion,
the hip �exion angle was calculated as the angle between the negative Z-axis of the trunk coordinate and the femoral shaft
vector. As the leg raised, the hip �exion angle increased from 0 ° (i.e., anatomical neutral posture) to 180 °. Finally, the
calculated joint angles were interpolated to match the data length with the data collected at 100 Hz using the Vicon motion
capture system.

Vicon motion capture system
A Vicon motion capture system (MX T series, Oxford Metrics, Ltd., Oxford, UK) has proprietary hardware to capture the
coordinates of the positioning points using eight infrared (IR) cameras. This system also requires retro-re�ective markers to
the emitted IR light signal from the IR strobe of each camera. Four markers (14-mm in diameter) were attached to the trunk
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and lower extremity landmarks, including the seventh cervical vertebrae (C7), eighth thoracic vertebrae (T8), jugular notch, and
xiphoid process of the sternum. Two cross-shaped clusters consisting of four markers were attached to the thigh and shank.
One axis of the cross was aligned to the femoral or tibial shaft. Each camera captured the three-dimensional locations of all
markers at 100 Hz. Joint angles were calculated in similar manner as the analysis based on the multi-view motion capture
system, however the trunk coordinate, femoral shaft, and tibial shaft vector were de�ned differently using the positioning
points of each marker. The trunk coordinate was obtained as described by Wu and colleague’s methods [15]. The femoral and
tibial shaft vectors were obtained using a cross-shaped cluster. The joint angle analysis was conducted using MATLAB
R2018A (The Mathworks, Inc., Natick, MA, USA).

Lower extremity tasks

The lower extremity tasks consisted of knee bending in sitting and standing (open kinematic chain) and squat movements
(closed kinematic chain). First, to perform the knee bending while sitting, the starting posture was that the subjects sat on a
chair without a back and arm rest, and maintained 90° of knee �exion. The subjects performed full extension of the knee joint
and repositioned them toward the starting posture. Second, for knee bending while standing, the subjects maintained
standing with full knee extension (starting posture), and then they performed knee bending up to approximately 90° �exion.
Finally, to perform the squat movement, the starting posture is that the feet were located shoulder width apart with arms
stretched out anteriorly of the body and parallel to the �oor. The subjects performed a deep squat and then moved toward
starting posture [16]. Each lower extremity task was performed in �ve trials with �ve s resting time between each trial, and the
resting time between experimental tasks was three to �ve min in this study. During the lower extremity tasks, the joint angle
data on hip and knee �exion were collected and processed, and each trial data and average data of trials were used for data
analysis.

Data analysis
Descriptive statistics included mean and standard deviations. Intra-class correlation coe�cients (ICCs) and 95% con�dence
intervals (CIs) were used for the analysis of concurrent and angle-trajectory validity (ICC3, k) between the novel multi-view
image-based motion analysis system (marker-less) and the Vicon motion capture system (with markers). ICC analysis was
used to assess the intra-trial reliability (ICC3, 1) of each motion analysis system. ICC values can be interpreted as follows: ICC<
0.50 (poor), 0.50–0.75 (moderate), 0.76–0.90 (good), and 0.90 (high). In addition, the coe�cient of variation (CV), standard
error of measurement (SEM), and minimal detectable change (MDC) were calculated to �nd absolute reliability [17, 18]. The
CV for method error was calculated as follows: CV = 100 × (2 × (SDd /√2)/(X1 + X2)); SDd = standard deviation (SD) of the
differences between two measures, X1 and X2 = each mean of the two measures [19]. The SEM was calculated as follows:
SEM = SD × √(1 – ICC) to provide a measure of variability and was used to calculate the MDC. Finally, the MDC represents a
statistical estimate of the smallest amount of change to provide con�dence that a change is not the result of subject
variability or measurement error, and was calculated as follows: MDC = z-score (95% CI) × SEM × √2 [20]. The signi�cance
level was set at p < 0.05. All statistical analyses were performed using SPSS for Windows (version 18.0; SPSS Inc., Chicago,
IL, USA) and Microsoft Excel 2019 (Microsoft Inc., Redmond, WA, USA).

Results
Validity 

The concurrent validity of the novel multi-view image-based motion analysis system (marker-less) was determined by
comparing the Vicon motion capture system (with markers) through hip and knee �exion angles during lower extremity tasks,
as shown in Table 1. Correlation analysis revealed that the ICC3, k values on the knee �exions in sitting and standing were
0.747 (95% CI = −0.017–0.937, CV = 5.80%) and 0.780 (95% CI = 0.116–0.945, CV = 5.23%), respectively. The hip and knee
�exions during squat movement showed high validity (ICC3, k = 0.902 and 0.936; 95% CI = 0.606–0.976 and 0.743–0.984; CV
= 4.11 and 4.10%, respectively) of the multi-view image-based motion analysis system (Table 1).   
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The angle-trajectory validity of the hip and knee joint angles was represented by comparing one trial data of each system
through full range of motion, and the validity data of each subject are presented as shown in Table 2. Correlation analysis
identi�ed that the ICC3, 1 values of each subject on the knee �exions in sitting and standing were very high (ICC3, 1 = 0.938–
0.998 and 0.859–0.998, respectively). The ICC3, 1 values for the hip and knee �exions during squat movement were 0.970–
0.995 and 0.926–0.994, respectively (Table 2). The representative joint angle graphs to reveal the angle-trajectory validity of
the multi-view image-based motion analysis system are shown in Figure 2. 

Reliability

The intra-trial reliability was determined by repeated measures of the novel multi-view image-based motion analysis system
(marker-less) and Vicon motion capture system (with makers), and is presented in Table 3. In the ICC3, 1 values for knee
�exion while sitting, the multi-view image-based motion analysis system was 0.918 (95% CI = 0.705–0.979, CV = 2.83 %, SEM
= 4.59, MDC = 12.71), and the Vicon motion capture system was 0.969 (95% CI = 0.879–0.992, CV = 1.78 %, SEM = 4.72, MDC
= 13.07). The ICC3, 1 values for knee �exion while standing were 0.773 (95% CI = 0.321–0.938, CV = 2.21 %, SEM = 3.66, MDC
= 10.14) and 0.879 (95% CI = 0.587–0.968, CV = 3.14 %, SEM = 4.31, MDC = 11.96), indicating good reliability. The ICC3, 1

values for hip �exion during squat movement showed high reliability (ICC3, 1 = 0.887 and 0.974; 95% CI = 0.611–0.971 and
0.898–0.993; CV = 3.13% and 1.43%; SEM = 5.10 and 2.17; MDC = 14.15 and 6.02) from each system. Finally, the correlation
analysis showed that the ICC3, 1 values of knee �exion during squat movement were very good (ICC3, 1 = 0.908, 95% CI =
0.673–0.976, CV = 1.82 %, SEM = 4.99, MDC = 13.82) and high (ICC3, 1 = 0.970, 95% CI = 0.885–0.992, CV = 1.20 %, SEM =
2.76, MDC = 7.65) reliability in the multi-view image-based motion analysis system and Vicon motion capture system,
respectively (Table 3).       

Discussion
The aim of this study was to determine the concurrent and angle-trajectory validity as well as intra-trial reliability of the
proposed multi-view image-based motion analysis system during lower extremity tasks in healthy young men. The results
demonstrated that the novel multi-view image-based motion analysis system with marker-less has high concurrent validity
(ICC3, k = 0.747 to 0.936) when compared with hip and knee joint angles captured by the Vicon motion capture system with
markers, as well as excellent reliability (ICC3, 1 = 0.773 to 0.974) when measured repeatedly. In particular, the angle-trajectory
validity between these systems was very high (ICC3, 1 = 0.859 to 0.998) in measuring joint angles during lower extremity tasks,
and it was revealed in all subjects. We suggest that this novel marker-less motion analysis system is highly accurate and
reliable for the measurement of joint angles or kinematics during human movement.

This study supports previous studies conducted on healthy young men and preschool children, which investigated the
concurrent validity and reliability of multi-view image-based motion capture systems determined by comparing the Vicon
motion capture system through kinematics of upper and lower extremities [16, 21]. Cai et al. (2019) investigated the
concurrent validity and test-retest reliability of a Kinect V2 system based on 2D depth images during four upper limb tasks
(hand to contralateral shoulder, hand to mouth, combing hair, and hand to back pocket) in ten healthy men. The Kinect V2-
based upper limb functional assessment system had high concurrent validity (Pearson’s r correlation, r = 0.74 to 0.99) and
test-retest reliability (r = 0.70 to 0.96) of the range of motion in upper limb tasks [21]. In another study, lower extremity
kinematics data on squat and standing broad jump movements between the Captury based on a passive vision system and
Vicon motion analysis system were compared in 14 preschool children. They revealed that the a repeated measures
correlations (means concurrent validity of The Captury) on hip and knee �exions during squats and jumps were ranged from
0.73–0.99 [16]. In addition, Ceseracciu et al. (2014) compared marker-less and marker-based motion capture technologies
through kinematic gait data, and demonstrated that sagittal plane kinematics were estimated better than on the frontal and
transverse planes in the hip, knee, and ankle joints.
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3D motion capture systems with markers or trackers, such as the Xsens MVN BIOMECH system (Xsens Technologies B.V., The
Netherlands) and a 3D motion analyzer (Shimano Dynamics Lab, Sittard, Netherland), were also established for validity or
reliability when compared with kinematic data from the Vicon motion capture system [22, 23]. They highlighted the
importance of marker placement for comparative statistical analysis between the two motion capture systems, and explained
that the difference measured between the systems was related to some movements of the 3D motion analyzer markers
during dynamic measurements [23]. These marker-based 3D motion captures suffer from well-known shortcomings including
obtrusion, expense, data errors owing to damage to the marker trajectories, long set-up times, requirement of operating skills,
and the lack of ability to capture the dynamic motion of subjects in normal clothing [9, 24]. In contrast, the multi-view image-
based motion capture system performs well in less controlled indoor settings or outdoors, and has advantages, such as low
cost and no special preparation of the subject [24, 25]. Therefore, many researchers have gained interest in multi-view image-
based motion capture systems [11]. To our knowledge, this study is the �rst attempt to investigate the angle-trajectory validity
of a multi-view image-based motion analysis system without markers through lower extremity kinematic measures. Because
this novel system is based on multi-view images from various perspectives, 3D motion analysis is possible. Moreover,
regardless of the light environment, such as an infrared strobe or LED marker, the joint kinematic data could be collected to
evaluate the intervention effects during the rehabilitation process and monitor the sports performance of athletes in bright
indoor and outdoor sports training facilities and sports �elds.

Although this study revealed meaningful �ndings, certain limitations should be considered. First, the lower-extremity
kinematics of this study only included sagittal plane motions, including hip and knee �exion/extension. Further studies
should investigate the upper or lower extremity kinematics of the sagittal, frontal, and horizontal planes during clinically
relevant functional activities or various dynamic and fast sports performances. Second, the study to analyze joint kinematics
on representative sports performances is also required in outdoor or sports �elds because the data in this study were only
collected in bright indoor environments. Finally, the current �ndings cannot be generalized to the sagittal plane kinematics of
lower extremity motions, which may indicate the need for a large sample size in healthy adults or athletes.

Conclusions
This study investigated the concurrent and angle-trajectory validity and intra-trial reliability of a novel multi-view image-based
motion analysis system. The �ndings of this study revealed good to high correlations in hip and knee �exions during lower
extremity tasks between the multi-view image-based motion analysis system with marker-less and Vicon motion capture
system with markers, suggesting a high agreement. Moreover, the intra-trial reliability of each system was excellent, indicating
high reproducibility. Therefore, the novel multi-view image-based motion analysis system may be a useful measurement tool
to evaluate the intervention effects during the rehabilitation process and monitoring the sports performance of athletes in
sports training facilities and sports �elds.

Abbreviations
MI-based MAS: multi-view image-based motion analysis system without markers; VMCS: Vicon motion capture system with
markers; SD: standard deviation; ICC: intraclass correlation coe�cient; CI: con�dence interval; CV: coe�cient of variation;
MDC: minimal detectable change.
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Tables

Table 1 Concurrent validity between the novel multi-view image-based motion analysis system and Vicon motion capture system

Motion Measurement Mean±SD (°) ICC (3, k) 95% CI CV (%)

Knee flexion (sitting) MI-based MAS 89.94±10.01 0.747* -0.017–0.937 5.80

VMCS 82.87±11.68

Knee flexion (standing) MI-based MAS 111.88±5.45 0.780† 0.116–0.945 5.23

VMCS 101.65±11.99

Hip flexion (squatting) MI-based MAS 105.57±14.75 0.902† 0.606–0.976 4.11

VMCS 103.00±13.41

Knee flexion (squatting) MI-based MAS 104.11±16.15 0.936† 0.743–0.984 4.10

VMCS 116.73±15.83

MI-based MAS,  multi-view image-based motion analysis system without markers; VMCS,  Vicon  motion capture system with

markers;  SD, standard deviation; ICC, intraclass correlation coefficient based on the model (3) and type (the mean of k

raters/measurements); *p<0.05; †p<0.01; CI, confidence interval; CV, coefficient of variation.

Table 2 Angle-trajectory validity between the novel multi-view image-based motion analysis system and Vicon motion capture system

  Knee flexion (sitting) Knee flexion (standing) Hip flexion (squatting) Knee flexion (squatting)

Subjects ICC (3,

1)

95% CI ICC (3,

1)

95% CI ICC (3,

1)

95% CI ICC (3,

1)

95% CI

1 0.988† 0.984–

0.990

0.998† 0.998–

0.998

0.991† 0.989–

0.993

0.988† 0.984–

0.990

2 0.938† 0.923–

0.950

0.998† 0.998–

0.999

0.994† 0.993–

0.996

0.994† 0.992–

0.995

3 0.991† 0.988–

0.993

0.995† 0.994–

0.996

0.975† 0.969–

0.980

0.968† 0.960–

0.974

4 0.988† 0.986–

0.991

0.971† 0.963–

0.976

0.984† 0.980–

0.987

0.985† 0.982–

0.988

5 0.955† 0.944–

0.964

0.992† 0.990–

0.994

0.993† 0.991–

0.994

0.946† 0.932–

0.956

6 0.948† 0.935–

0.958

0.990† 0.987–

0.992

0.970† 0.963–

0.976

0.953† 0.941–

0.962

7 0.989† 0.986–

0.991

0.993† 0.991–

0.994

0.995† 0.994–

0.996

0.986† 0.982–

0.989

8 0.985† 0.981–

0.988

0.993† 0.991–

0.994

0.987† 0.984–

0.990

0.926† 0.908–

0.941

9 0.998† 0.998–

0.999

0.990† 0.988–

0.992

0.986† 0.982–

0.989

0.978† 0.972–

0.982

10 0.950† 0.938–

0.960

0.859† 0.826–

0.886

0.992† 0.991–

0.994

0.966† 0.957–

0.973
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ICC, intraclass correlation coefficient based on the model (3) and type (single measurement); †p<0.01; CI, confidence interval; CV,

coefficient of variation.

Table 3 Intra-trial reliability of the novel multi-view image-based motion analysis system and Vicon motion capture system

Motion Measurement Mean±SD (°)

(Test 1)

Mean±SD (°)

(Test 2)

ICC (3,

1)

95%

CI

CV

(%)

SEM MDC

Knee

flexion 

(sitting)

MI-based

MAS

88.64.00±9.52 91.23±10.89 0.918† 0.705–

0.979

2.83 4.59 12.71

VMCS 81.94±11.04 83.80±12.46 0.969† 0.879–

0.992

1.78 4.72 13.07

Knee

flexion 

(standing)

MI-based

MAS

110.99±6.94 111.65±8.42 0.773† 0.321–

0.938

2.21 3.66 10.14

VMCS 99.30±11.99 101.64±12.81 0.879† 0.587–

0.968

3.14 4.31 11.96

Hip flexion

 (squatting)

MI-based

MAS

104.16±15.12 106.99±15.24 0.887† 0.611–

0.971

3.13 5.10 14.15

VMCS 102.17±14.30 103.84±12.65 0.974† 0.898–

0.993

1.43 2.17 6.02

Knee

flexion 

(squatting)

MI-based

MAS

103.65±18.23 104.57±14.65 0.908† 0.673–

0.976

1.82 4.99 13.82

VMCS 116.76±16.63 116.70±15.24 0.970† 0.885–

0.992

1.20 2.76 7.65

MI-based MAS,  multi-view image-based motion analysis system without markers; VMCS,  Vicon  motion capture system with

markers;  SD, standard deviation; ICC, intraclass correlation coefficient based on the model (3) and type (single

measurement);  † p<0.01; CI, confidence interval; CV, coefficient of variation; SEM, standard error of measurement; MDC, minimal

detectable change.

        

Figures
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Figure 1

Multi-view image-based motion analysis system



Page 12/12

Figure 2

Representative joint angle graphs indicating the angle-trajectory validity of the multi-view image-based motion analysis
system


