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ABSTRACT12

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the

spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated,

it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention

plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan

the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-

learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from literature and expert

knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is

modular and easily adjustable to a real-world situation, it is trained and tested with data collected from almost all countries

of the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of

infections and intervention costs.

13

Introduction14

The first line of defence against the spread of the SARS-CoV-2 virus was the introduction of Non-Pharmaceutical Interventions15

(NPIs) by national governments. With the virus being aerosol-borne, some of the key measures included the use of face masks16

and restrictions on gatherings, which have often resulted in partial or full lockdowns. While efficient in reducing the numbers17

of infections1, 2, restrictive NPIs also presented immense Socio-Economic Costs (SECs) to the population3. Policy-makers were18

faced with an almost impossible task of carefully balancing NPI costs against the predicted NPI benefits, largely without having19

appropriate tools and data for evidence-based decisions.20

To further add complexity to the problem, in a typical intervention plan adopted by policy-makers, a combination of NPIs21

would be used, each of them taking place for different periods of time. These plans were usually prepared by expert panels who22

had the challenge of selecting intervention plans without assurance that they would really flatten the infection curve enough23

to be lifted within the expected period4, 5. Moreover, the full extent of SECs was unpredictable until a few months into the24

pandemic; until then, the intervention plans were primarily focused on containing the spread of the virus. While the SECs have25

now started affecting the decisions of policy-makers6, they are still not sufficiently explored.26

The prediction of daily infections and the impact of NPIs on the spread of the pandemic has been researched quite well1, 2,27

but little work has been done regarding the prescription of intervention plans. Few of the published approaches have proposed28

frameworks to find good intervention plans that also consider NPI costs and how to best combine NPIs. Yousefpour et al.7, for29

example, proposed a framework based on SEIRD models and multi-objective optimization to prescribe NPIs. However, the30

optimization did not operate on real-life NPIs, and as such, this approach cannot be directly used by policy-makers. Chen et31

al.8 created a linear programming tool to explore the trade-off between the expected mortality rate of COVID-19 and return to32

normal activities, while Yaesoubi et al.9 developed a decision tool to determine when to trigger, continue, or stop physical33

distancing intervention in order to minimize both the deaths from COVID-19 and intervention duration. Both studies combined34

the objectives into a single function and the final result was a single intervention plan. Such approaches require a strong35

predefined preference on how to balance the objectives, which is often difficult to define in practice. In addition, none of the36



three approaches was extensively tested on various epidemiological scenarios. For this reason, their generalization to real-world37

situations is unpredictable.38

A more structured attempt to research the possibility of using artificial intelligence (AI) to automatically prescribe39

intervention plans was made by the $500K Pandemic Response Challenge10, organized by XPRIZE and sponsored by40

Cognizant. The participants were tasked to find good trade-offs between the costs of NPIs and their benefits – and assemble41

three-month intervention plans for each territory (all countries and some sub-country regions). An approach proposed by the42

sponsor (Miikkulainen et al.11) involved the use of evolutionary algorithms to evolve neural networks that prescribe intervention43

plans. This approach was intended to point the way for the competitors, who would go on to develop better-performing44

approaches. The competition ended with two “Grand Prize Winners.” One of them12 combined two prescriptors: the first45

selected the most cost-effective intervention plans from a subset of possible plans with precomputed effectiveness, and the46

second greedily composed intervention plans from most cost-effective individual NPIs. The other winning submission –47

submitted by some of this paper’s authors – was the starting point for the approach described here.48

In this study, we developed a framework to help policy-makers design reasonable intervention strategies by dynamically49

adjusting NPIs. The framework is comprised of three components: a predictor based on the SEIRD epidemiological model50

that predicts infection trends, a compilation of SECs of NPIs, as found in the literature, and a prescriptor that finds diverse51

optimized intervention plans. The main methodological novelty of the predictor is that the key parameters of the SEIRD model52

can be dynamically adapted to any set of given NPIs using a machine learning model. Intuitively, the machine learning model53

decreases the disease transmission rate in the SEIRD model when strict NPIs are in place, and vice versa. In contrast to most54

related work, our prescriptor uses multi-objective optimization and does not combine the objectives into a single function.55

As such, it can find near-optimal trade-offs between the costs (SEC) and benefits (reduced number of infections) of NPIs,56

and presents the results in the form of a Pareto front approximation (i.e., a set of near-optimal intervention plans where no57

objective can be improved without making the other worse). Ideally, the obtained Pareto front approximation ranges from costly58

intervention plans, which significantly decrease infections, to cheap but not as effective ones – presenting a set of plans for the59

policy-maker to choose from. Our methodology was extensively tested: the predictor was tested on data from 194 territories60

and the prescriptor on data from 50 territories. It yields semantically sensible results, achieves similar or better prediction61

accuracy than previously proposed models, and furthermore, proposes better plans – at least based on our simulations – than62

those actually implemented by policy-makers in the studied period (March 2020 to April 2021).63

Results64

The framework is presented as a sum of its components. First, we discuss the algorithm that predicts the trends in the number65

of infections, taking into account the historic data together with the NPIs that were in place – for this study we consider 1266

NPIs listed in Table 1, and we denote this set as OxNPIs as it is derived from Oxford’s OxCGRT dataset13. Then, based on the67

literature data, the SECs of the OxNPIs are estimated. Bringing these two aspects together, multi-objective optimization is used68

to find the best trade-offs between the number of infections and the SEC of the intervention plan. Finally, we discuss a typical69

structure of these plans, the NPIs most/least often used in them, and both strengths and limitations of the proposed approach.70

Predicting infections71

The basis of the prediction model for infections is the SEIRD epidemiological model, which considers the dynamics between the72

pools of Susceptible, Exposed, Infectious, Recovered, and Deceased individuals14. This model consists of a set of differential73

equations where the key parameters are β , related to the probability of disease transmission per contact; the incubation period σ ;74

and the mortality rate µ . These values can be obtained for a specific time-period/territory by fitting the model to the historical75

infection and mortality data (Figure 1a).76

While the SEIRD model on its own is accurate in predicting the future in a “status-quo” situation (see Supplementary77

Information – Estimating the prediction error), it does not correctly predict the infection trends following a change of the NPIs –78

which is essential if the framework is to propose which NPIs to use in the future. Ideally, as the NPIs change, the parameters79

of the SEIRD system would be adjusted accordingly, taking into account their changed impact on the disease transmission80

rate. An example of such behavior can be seen in Figure 1b, as generated by our Hybrid Machine-Learning Epidemiological81

(HMLE) method. To achieve this dynamic forecast of infections, different machine-learning models were built to find the82

relations between the (β , σ , µ) parameters and OxNPIs. The details of combining the machine-learning predictions and the83

SEIRD model into the HMLE method are explained in the Methods section.84

To assess the performance of the HMLE method, we show in Figure 2 that our predictor significantly outperforms the85

“standard predictor” provided by Cognizant in the second phase of the XPRIZE competition10 (for details of this test, see86

Supplementary Information). The mean average error (MAE) is 5.9 times lower on day 70. To explore what contributes to87

the increased performance, we compared the full implementation to two additional versions of our method: 1) one that relies88

only on machine learning to set the parameter values of the SEIRD model without normalizing them using the last known89
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Figure 1. a) Daily infections for Italy over 20 months (purple) together with the predictions using best fitted SEIRD model

(green). Fitting was conducted by first splitting the data into segments, represented by dashed vertical lines, where at least two

NPIs were changed with respect to the previous segment. b) Daily infection predictions for Norway, made both by using only

fitted parameters (green) and by using adapted parameters, which reflect the change to more strict NPIs (yellow).

fitted parameter values, and 2) one that retains the last known fitted parameter values throughout the forecast period, without90

using machine learning to account for NPI changes. The experimental results showed that the parameters predicted by the91

machine-learning model are less appropriate on average, than the last known fitted parameters; when normalized, however, they92

outperform the last known fitted parameters. The benefit of machine learning does not appear to be huge, but it is significant in93

case of important NPI changes, as demonstrated in Figure 1b.94

Of all machine learning algorithms tested (see Supplementary Information), the Ridge classifier (a type of linear model)95

had the highest accuracy. Aside from prediction accuracy, the model has an additional advantage – it is easily interpretable.96

Figure 3 lists the coefficients corresponding to the normalized OxNPI strictness values. Given this normalization, the model’s97

coefficient size can indicate relative NPI importance. Our model’s most important intervention is the cancellation of public98

events, which is consistent with the related work that typically ranks it among the top NPIs15. Next is school closure, which99

additionally results in some parents staying at home, so its importance is not surprising. These two are followed by contact100

tracing – which is difficult to execute well, and other sources do not rate this NPI as high. In the fourth place are international101

travel controls, which played a big role in some countries, particularly in the early stages of the pandemic. The importance of102

this NPI was corroborated by Haug et al.15 Other NPIs have notably lower coefficient values. This may come as a surprise for103

“C2: Workplace closing,” “C4: Restrictions on gatherings,” and “C6: Stay at home requirements,” but it should be noted that104

1) these three NPIs have a large overlap with each other and with other NPIs, and 2) they were usually instituted when the105

epidemiological situation was grave, with many NPIs in force simultaneously, thus making it very difficult to properly isolate106

the importance of each of them. This is why in these cases the assigned regression coefficient do not necessarily correctly reflect107

their relative importance. Nonetheless, their sum is close to the largest single coefficient. Of note, the NPI features were not the108

only ones included in the model, but the coefficient values of the others were an order of magnitude lower than those listed here.109

Finally, for a direct comparison with related work, the HMLE model described here is an improved version of the one used110

in the XPRIZE challenge, which was ranking between the 1st and 4th place during the two month prediction period on real data111

for 235 territories16.112

Intervention costs113

The implementation of each NPI incurs both economic and social costs. At the time of the research, no exhaustive list of114

economic costs was available. Thus, we surveyed the literature to compile the costs for each OxNPI. The economic cost values115

are scaled to represent the percentage of GDP loss incurred. For example, if the “C3: Cancel public events” NPI is active for116

one month and it has the cost of 1.4, then our method assumes that the GDP in this month is 1.4% lower than usual – note that117

this is not the yearly GDP loss but that for the predicted period.118

The estimation of social costs (i.e., the decrease in wellbeing of the general population due to social isolation, restriction of119

freedom, and similar caused by different NPIs), is difficult as no reliable and exhaustive paper has been found on the topic.120

Instead, we relied on estimates made by a domain expert, making an aggregation of domain knowledge and available scientific121
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Figure 2. Different versions of the HMLE method compared to the “standard predictor”10. Testing was conducted on 50

random time intervals for each of the selected 194 territories.
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Figure 3. Coefficients from the linear model corresponding to OxNPIs. We use the terminology of Oxford’s COVID-19

Government Response Tracker13, with containment (C) and health (H) categories. Relative values of NPIs can signify their

importance for reducing the number of infections – the larger the negative value, the more they suppress the infection spread.
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OxNPI Economic cost Social cost Combined

C1: School closing 3.9 11 0.55

C2: Workplace closing 22.0 11 0.96

C3: Cancel public events 1.4 7 0.32

C4: Restrictions on gatherings 1.4 10 0.45

C5: Close public transport 0.1 2 0.09

C6: Stay at home requirements 5.2 12 0.62

C7: Restrictions on internal movement 7.8 10 0.59

C8: International travel controls 4.9 2 0.20

H1: Public information campaigns 0.0026 1 0.04

H2: Testing policy 0.4 1 0.05

H3: Contact tracing 0.1 1 0.04

H6: Facial coverings 0.01 10 0.41

Table 1. Social and economic costs for OxNPIs. Economic costs are shown as % of GDP loss in the period the NPI was

implemented. The social costs are based on domain knowledge and expressed on a 1–12 scale. The combined column is the

average of the two costs, when both are normalized to the [0,1] range.

literature, however partial. Justifications for these estimates are given in the Methods section.122

The expert-chosen costs are given for the case in which the NPI is implemented with its maximum strictness. For example,123

for H6, it would mean requiring to wear a mask all the time, including outdoors. For other cases, the costs were linearly scaled124

down (in rare cases, a custom social cost was defined and used instead of the linearly scaled value). In addition, the “C6: Stay125

at home requirements” NPI requires the implementation of the C1, C2, C3, C4, C5, and C8 NPIs. Thus, even if it did not have126

the highest cost, the overall cost implicitly includes the costs of all other listed NPIs.127

The results in Table 1 show that “C2: Workplace closing” is the most significant contributor to GDP loss, followed by “C7:128

Restrictions on internal movement” and “C6: Stay at home requirements.” The same NPIs are also listed as the most socially129

disruptive, together with “C1: School closing” and “H6: Facial coverings”. The social cost of “H6: Facial coverings” is one of130

the previously mentioned exceptions to linear scaling, and it is much lower (2-5) when its strictness is not maximal and masks131

are not required to be worn outdoors.132

One can argue that some of these weights could vary between territories because of differences in their economy, culture, or133

NPI implementation. In a practical setting, however, these parameters can be freely adjusted by the policy-maker. In addition,134

the results of our empirical tests revealed that reasonable modifications of the SEC values did not affect the performance (result135

quality, convergence speed, etc.) of the multi-objective optimization.136

Proposing interventions137

The proposed intervention plans are composed of OxNPIs which can vary over time, but are restricted to last at least g days in a138

row, where g is a predetermined parameter we refer to as granularity. An NPI, for example, “C2: Workplace closing”, can be139

applied with different levels of strictness (0 – no policy, 1 – closure recommended, 2 – closure for specific sectors, 3 – closure140

for all-but-essential workplaces).141

Figure 4 shows two trade-off intervention plans consisting of NPIs changing in time (g = 14), to provide a better intuition142

for the end goal of this work. They list all 12 NPIs (OxNPIs) we considered in this study, their maximum value, and some143

sample values. For example, the intervention plan depicted in Figure 4a proposes no restriction for workplaces, while that144

shown in Figure 4b suggests to close all all-but-essential workplaces from November 24, 2020, to December 20, 2020.145

Such intervention plans are then evaluated based on how many COVID-19 infections are likely to occur given their146

implementation, as well as their SECs. These evaluations are, in turn, used by optimization to find plans that minimize147

both objectives simultaneously – generating intervention plans with different trade-offs between them, i.e., Pareto front148

approximations. See section "Intervention plan interpretation" for examples of such Pareto front approximations.149

We tried to identify the best value for granularity and we compared five values: 1, 3, 7, 14, and 30. Theoretically, with a finer150

granularity, we can achieve at least as good intervention plans as with a coarser granularity. However, with finer granularity,151

aside from being impractical in real-life use, the search space of the optimization problem increases significantly, and the152

optimization cannot always find the best solutions. Then, we compared the two ways of representing intervention plans during153

optimization: full vs. condensed. The full representation describes the complete intervention plan (i.e., what NPIs to use in154

each time slot). The condensed representation, on the other hand, contains only the aggregate strictness for each time slot,155

which must then be decoded into concrete NPIs with the best benefit vs. strictness ratio before the evaluation (see Methods –156

Proposing interventions for more details).157

5/24



Max

H6: Facial Coverings 
H3: Contact tracing 

H2: Testing policy 
H1: Public information campaigns 

C8: International travel controls 
C7: Restrictions on internal movement 

C6: Stay at home requirements 
C5: Close public transport 

C4: Restrictions on gatherings 
C3: Cancel public events 

C2: Workplace closing 
C1: School closing 

Dec 6
2020

Dec 20 Jan 3
2021

Jan 17

0

1

2

3

4

0

1

2

3

4

Plan 2
 France, 2020-11-24, infections falling steeply, combined, granularity 14 

(a)

Max

H6: Facial Coverings 
H3: Contact tracing 

H2: Testing policy 
H1: Public information campaigns 

C8: International travel controls 
C7: Restrictions on internal movement 

C6: Stay at home requirements 
C5: Close public transport 

C4: Restrictions on gatherings 
C3: Cancel public events 

C2: Workplace closing 
C1: School closing 

Dec 6
2020

Dec 20 Jan 3
2021

Jan 17

0

1

2

3

4

0

1

2

3

4

Plan 7
 France, 2020-11-24, infections falling steeply, combined, granularity 14 

(b)

Figure 4. Sample intervention plans for France between November 24, 2020, and January 24, 2021, with a granularity value

of 14 days. Refer to Figure 6f to see how these two plans compare against other proposed plans in the same period.

In all cases, the optimization was tested on 50 representative territory/time interval examples (see Methods – Dataset).158

Due to the stochastic nature of the employed optimization approach, the presented results were obtained after running the159

optimization 31 times on each example, as this is enough to obtain statistically relevant results. To measure the effectiveness of160

the multi-objective optimization, we used the well-known hypervolume indicator17 – the volume of the area bounded by the161

Pareto front approximation and a user-defined reference point. Note that higher hypervolume values correspond to better results.162

The medians of the obtained hypervolumes were used for testing the statistical significance of one granularity/representation163

being better than the other.164

We first compared different granularity values when using the condensed representation. According to the Friedman test,165

we observed statistically significant differences between granularity values: χ2(3)≈ 150.678 and p < 0.01 for social weights,166

χ2(3)≈ 119.309 and p < 0.01 for GDP weights, and χ2(3)≈ 106.139 and p < 0.01 for combined weights. Post hoc analysis167

with Wilcoxon signed-rank test and Holm’s correction to adjust the p-values indicated that the granularity of 14 days was the168

most effective among the tested values (see Supplementary Information).169

Our results confirm that the optimization algorithm struggles to find near-optimal interventions plans with fine granularity170

values, due to the increase in search space dimensionality. For example, Figure 5a shows the hypervolume progress – the171

improvement of the results during the optimization – averaged over 31 optimization runs where the number of intervention plan172

evaluations was experimentally increased from the default 50k to 300k. This was done to estimate the optimization behavior173

and convergence when using a large number of evaluations. As we can see, although the results obtained with a granularity174

value of 7 days eventually surpassed those results obtained with a granularity value of 14 days (at around 230k evaluations),175

the computational time required to obtain better results using finer granularity values was almost five times longer, and the176

gain in the solutions’ quality was negligible compared to the additional computational resources spent (Figure 5a). In addition,177

the extremely small differences between the granularity value of 7 or 14 days are practically irrelevant since, in a real-world178

scenario, the objectives cannot be measured and predicted with such accuracy. Moreover, it is easier to implement intervention179

plans that change with coarse granularity values18; therefore, a granularity value of 14 days seems to be a reasonable choice.180

A similar investigation was devoted to finding the best granularity value for the full representation. The results of the181

statistical analysis revealed significant differences in hypervolume values and showed that the granularity of 30 days is the best182

performing value for this representation. The complete results can be found in the Supplementary Information.183

Finally, we compared the full and condensed representations with the best performing granularity values. According to the184

Wilcoxon signed-rank test, the condensed representation outperformed the full representation for all types of weights (p < 0.01).185

Moreover, Figure 5b compares the hypervolume progress between the two representations on a typical problem instance, where186

a much faster convergence can be observed with the condensed representation. This was not unexpected since the applied187

optimization approach performs significantly faster for low-dimensional search spaces (see Methods – Proposing interventions).188

The results provided in the following sections were obtained using the condensed representation with a granularity of 14 days189

since this was the best performing setting.190
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Figure 5. a) Hypervolume progress for different granularity values using condensed representation, and b) hypervolume

progress for full and condensed representations with the best performing granularity values. A logarithmic scale is used for the

horizontal axis (number of evaluations).

Intervention plan interpretation191

To better understand how different intervention plans compare, we generated 10 different intervention plans for the same192

territory/time interval as that shown in Figure 4 (among all intervention plans obtained by the optimization, we selected the 10193

that are the furthest from each other in the objective space). Figure 6 shows for each pan 1) the strictness of the interventions194

over time, 2) the resulting infection curve, and 3) the comparison of the 10 plans in terms of the number of infections and195

strictness. This example was done with the granularity of 14 days using the “combined” cost for the interventions. However,196

we generated plans using all different intervention costs and both 7 and 14 granularities for the same 50 test cases that were197

used for testing multi-objective optimization. This complete set of results can be found on the results webpage19. For a subset198

of these results, see Supplementary Information.199

The proposed plans present a wide range of trade-offs between the two objectives, and policy-makers can choose the one200

most suited to their needs. In addition, they can change a portion of the plan if deemed necessary and evaluate it again. This201

whole framework is available as a web tool20, currently implemented for Slovenia.202

The proposed solutions were compared with the real-life solution implemented in the same territory/time. This real-life203

solution was estimated in two ways, (real) using the actual number of infections recorded and (predicted) using the predicted204

number of infections given the implemented NPIs. As the real SEC was, in most cases, unknown, we used the same estimation205

function for the real case as for the proposed plans. In all 50 test cases, the proposed solutions compared favourably against the206

predicted case, and in 47 test cases, the proposed solutions compared favourably against the real case. On average, we could207

find a solution with the same number of infections but with 47.1% lower SEC, or a solution with the same SEC but 68.8% lower208

number of infections (for details, see Supplementary Information – Comparison of the proposed and implemented solutions).209

Trends in the proposed intervention plans210

Figure 6 shows the similarities between the proposed intervention plans made in Italy and France. One can reason that – since211

the NPIs tend to have similar cost/benefit ratio regardless of the current epidemiological picture, and the prescriptor is designed212

to create solutions with a wide range of costs – the resulting plans will, in most cases, share a common structure that will be213

somewhat adjusted for different territories/time intervals. Another way of looking at it is to consider that reducing the number214

of infections when there are, for example, 1000 daily infections has the same importance to the algorithm as reducing the215

number when there are 3000 daily infections. It is up to the policy-maker to consider when the situation merits selecting a216

different proposed intervention plan with a lower/higher SEC.217

To explore the trends in the structure of the intervention plans, we considered two experiments. First, we averaged the218

OxNPIs costs across all plans in all test examples, aggregated on a daily basis. The results in Figure 7a show that, on average,219

the intervention plans are the strictest at the beginning and then gradually become more relaxed. It also shows that in test220

intervals where the infections were falling, the overall strictness is lower than in cases where infections were raising. The221

difference might not be as big as expected, again due to the optimizer providing a wide range of intervention plans.222
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Figure 6. Comparing different intervention plans for Italy and France. a) shows the GDP loss over time, while similarly, b)

shows the SEC (GDP loss + social cost) over time. c) and d) show the predicted number of infections, e) and f) show the

trade-offs between the two criteria (NPI cost and the number of infections) for different plans.
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Figure 7. a) Average SEC across all 500 proposed intervention plans (50 test cases, 10 plans on each), given the number of

days since the intervention has started. b) Average OxNPI strictness (normalized to 0-1 range) across all 500 proposed

intervention plans, given the number of days since the intervention has started.

In the second experiment in Figure 7b, we show the average strictness of individual OxNPIs, again averaged across all223

intervention plans in all test cases. The NPIs with high average intensities can be considered to provide good trade-offs between224

their cost and effect.225

Discussion226

The presented framework can generate efficient intervention plans against COVID-19 and can evaluate their effect and costs.227

This can greatly help policy-makers to pursue sensible intervention strategies and reason about their strengths and weaknesses.228

It has been shown that AI-generated intervention plans – at least when evaluated with our methodology – are better than past229

interventions generated by policy-makers.230

Intervention plan insights231

In general, the most effective NPIs were school closing, canceling of public events, workplace closing, contact tracing, and232

international travel controls. This list is not surprising as it is similar to the findings in the literature1, 2. When accounting233

for cost (which is usually not done), the most efficient NPIs were information campaigns, canceling of public events, and234

international travel controls, followed by school closing. The least efficient were the restrictions on internal movement, facial235

coverings, stay-at-home requirements and workplace closing. The latter two are on the list due to their high cost; in particular,236

the former can usually be substituted with a combination of other more socially acceptable NPIs. The low placement of “H6:237

Facial covering” was surprising. Perhaps this is due to masks being somehow inconsistently applied, which may result in bad238

training data – or alternatively due to “H6: Facial covering” NPI being almost always active, which made it difficult to isolate239

its effect. Finally, it could be the case that its social cost was overestimated in this study and it should be reduced in potential240

future analysis.241

An additional benefit of the framework, aside from calculating the cost benefit of individual NPIs, is that it can present a242

timeline of NPI changes that adapts to the current epidemiological situation. In most cases, the approach “start with a strict243

policy and reduce it over time” seems to be the most effective. We have also shown that adapting the NPI policy every 14 days244

is enough to get almost ideal cost/benefit as with finer granularities (e.g., adapting every three days provides negligible benefits).245

Intervention plans made and changed on a monthly basis were found still acceptable; however, using a granularity value of246

14 proved to be generally more robust. This could be a valuable finding as frequent changes in NPI policy make adherence247

difficult and can probably increase socio-economic costs (although we did not model this explicitly).248

Technical advantages249

The following are the key innovations introduced: 1) combining machine learning and SEIRD models in a way that allows250

the SEIRD parameters to be adapted to different NPIs and, thus, simulate their effect on infections; 2) using historically251

fitted parameters to normalize the values output by machine learning in order to adapt predictions for each territory; 3) using252
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multi-objective optimization for finding the best intervention plans in combination with a “condensed” solution representation –253

facilitating a highly efficient search.254

We argue our predictor to be state-of-the-art. However, it was designed and trained for the whole world, and it is almost255

certain that for many specific territories, a better predictor could be developed. Similarly, while the proposed OxNPI costs are256

carefully considered, they can certainly be improved upon, especially for specific territories. To account for this, we have made257

our whole methodology highly modular, where each part can be substituted by a similar one if necessary – or one can simply258

adjust the parameter values of the current components.259

Limitations260

A drawback of the proposed framework is the negligible effect of vaccinations in the models. While we used some vaccination261

data, the vaccinations were not widespread at the time of data collection. This can be remedied in future work by using more262

recent data and probably adding another compartment that models vaccinations to the epidemiological model. Nonetheless, due263

to vaccination rollout in some countries being slow, NPIs may remain an important defense for a while longer.264

Second, the infection predictor can sometimes become unreliable when predicting for two or more months in advance. We265

thus recommend that it should be mostly used for shorter periods (30–45 days in advance) and then the predictions should be266

updated in real time as new data become available. The predictor also becomes unreliable when the number of infections is267

growing very quickly. Due to the nature of exponential growth, even a small misprediction of a parameter of the SEIRD model268

can quickly lead the model astray. The problem is compounded by people spontaneously behaving more cautiously during269

severe disease breakouts, which affects the infections but is not recorded in NPI data. This effect is difficult to avoid, so it270

should be taken into consideration when analyzing the proposed plans.271

Methods272

To find intervention plans with good trade-offs between the number of COVID-19 infections and the SECs, we had to solve the273

following three problems: 1) how to estimate the number of infections in a specific territory, given an intervention plan; 2) how274

to estimate the SEC of an intervention plan; and 3) how to use both these estimators to generate good intervention plans. We275

start by describing the dataset used and then our solution to each of the listed problems in the following subsections.276

Dataset277

The NPIs used in this study are derived from the “COVID-19 Government response tracker” database, collected by Blavatnik278

School of Government at Oxford University13. This database defines the periods in which different NPIs (e.g., “C1: School279

closing” and travel restrictions) were implemented in each territory (entities such as countries, US states, or countries of the280

UK). They also define their “strictness” in the form of numbers usually ranging from 0 to 3 or 4, which can represent, for281

example, if all or only some schools were closed. From the NPI list available, we selected 12 for analysis in this study: H1,282

H2, H4, H6, C1-C8 (we denote them as OxNPIs). Their description and the reasoning for their selection can be found in the283

Supplementary Information – Non-Pharmaceutical Interventions.284

The number of infections and deaths was queried from the same database for the period between March 1, 2020, and April285

14, 2021. This database contained 235 territories, of which different subsets were used in different stages of our methodology.286

For fitting the epidemiological model, all 235 territories were used. Then, some territories were excluded as their data could287

not be accurately fit with an epidemiological model (e.g., if the number of infections were too low or data was missing). This288

resulted in 194 territories on which we evaluated the predictive model. For each of them, we chose fifty 70-day time intervals,289

thus generating 9700 test cases for the task.290

In addition to the already described OxNPIs and infection numbers, the following attributes were used to train the291

machine learning models: vaccination21 (one shot, two shots), strains22, 23 of concern and interest as defined by the World292

Health Organization24 testing rate25, number of hospitalized patients26, number of patients in intensive care26, mask use27,293

mobility28, 29, weather30, holidays27, and 93 static features characterizing countries and regions (e.g., development, culture, and294

health) from our previous study31. “Duration” features were also constructed to capture how long each NPI had been active to295

date and how much time had elapsed since the first recorded infection case.296

Finally, for the prescriptive model evaluation, we chose a representative sample of 50 cases, each consisting of a 60-day297

interval. This sample was selected by first defining the “category” for each time interval: the categories were created based298

on the size of the territory (small/large) and the derivative of increase/decrease in number of infections (slope). The slopes299

were either constant, moderately steep (falling/raising), or very steep (falling/raising). Altogether, we had 10 categories, and300

we randomly selected five intervals from each. An additional condition for an interval to be selected was to have at least 0.5301

average number of daily new cases per 100k of population.302
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Hybrid machine-learning epidemiological model (HMLE)303

Epidemiological model304

We used the SEIRD14 model, which originates from the SIR family of standard epidemiological models used to study the305

dynamics of infectious diseases. The model consists of a set of differential equations (Equation 1). Letters represent the size306

of a given compartment (e.g., S for the number of people in the “Susceptible” compartment), β is the infection rate, σ is the307

incubation period (1/days), γ is recovery rate, and µ is the mortality rate.308

dS

dt
=−β

SI

N
dE

dt
= β

SI

N
−σE

dI

dt
= σE − (γ +µ)I

dR

dt
= γI

dD

dt
= µI

(1)

In a standard SEIRD model, the parameters (β ,µ,σ ) are constant. In reality – especially in the case of COVID-19 – they309

are highly dependant on various factors, including NPIs. In related work, there have been several attempts at modeling β as a310

function of interventions. In the DELPHI model developed by COVID Analytics32, the effect of interventions is modeled using311

an arctan function33. Zou et al.34 used machine learning to learn the epidemiological model parameter values from the number312

of infected and removed (deceased and recovered) cases at time t. In our model, we used machine-learning models that used313

several different features to achieve this task – allowing us a greater flexibility in dynamically changing the parameters, as314

opposed to what could be achieved with other methods from related work.315

The first step of the process was to fit the parameters to different territory/time intervals. The fitted values were then used as316

prediction targets for the three machine-learning models (one per parameter). When trained, these models were used to predict317

the parameters given “alternative” intervals – the same time/territory but with different NPIs. The whole time series of data318

were first split into intervals based on two criteria: NPI change (two or more NPIs change on the same day) and infection trend319

(a 7-day moving-average number of infections that was previously raising, starts falling – or vice versa). Each of the splits was320

fitted separately for each of the 235 territories using the least squares method. To decide which splitting approach worked better321

for each territory, a relative error (Equation 2) was computed from the cumulative true, and predicted infection numbers and322

parameters that yielded a smaller error were considered as ground truth of the machine learning.323

error =

∣

∣

∣

∣

∣

1−
Itrue

Ipred

∣

∣

∣

∣

∣

. (2)

Predicting the model parameters with machine learning324

The machine learning part of the pipeline consisted of three separate regression models – one for each of the three parameters325

from the SEIRD model. For the prediction of each parameter, we used the features described in the Dataset section, and some326

of their subsets.327

We performed an initial feature selection on the available dataset by employing Recursive Feature Elimination (RFE) with a328

10-fold cross-validation. We evaluated both 1) straightforward feature selection (i.e., running the algorithm on all available329

features), and 2) including the OxNPIs in the selected features and running the RFE only on the remaining features. However,330

the results showed no significant improvement after the RFE algorithm. For the sake of model interpretability, we next selected331

features presenting the strongest negative correlation with the number of infections, and ended up with OxNPIs, duration332

features, historical infections, COVID-19 strains, and vaccination features.333

We tested linear regression35, ridge regression35, decision tree35, LGBM36, XGB37, CatBoost38, Elastic Net35, Bayesian334

ridge35, SVR35, and Random Forest35 models. The models were compared with 10-fold cross-validation where the train/test335

splits were performed territory-wise, meaning that all instances of a territory were in either the test or train set. Keeping all336

instances of one territory in the same set was important since consecutive instances were typically similar.337

In the cases of linear and ridge regression, the regression coefficients for the final model were calculated as the mean values338

of the coefficients generated in the 10-fold cross-validation. The “H1: Public information campaigns” regression coefficient339

initially had an excessive value because the corresponding NPI was essentially always present (and was thus used by the model340

almost as the intercept). We, therefore, manually adjusted it based on Haug et al.’s study15. Specifically, we used the four NPIs341

for which there was a good match between our categorisation and the one presented by Haug et al.: “C1: School closing,”342

“C7: Restrictions on internal movement,” “C3: Cancel public events,” and “C5: Close public transport.” We computed the343

ratio between the decrease in reproduction rate (β/γ) for these four NPIs15, and the decrease for “H1: Public information344
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campaigns”. We then multiplied our coefficients for the same NPIs with these ratios, which yielded four possible values for the345

H1 coefficient. We used the average of these. We then re-ran the regression with fixed relations between the NPI coefficients,346

so that the relation between them and other coefficients could be readjusted.347

Prediction pipeline348

The input to the pipeline is an intervention plan, which prescribes OxNPIs for each day. Based on that, a feature vector is349

created by joining the OxNPI data with the remaining features. Then, for each day, a prediction of all three parameters is made350

with the three respective machine learning models.351

Next, for the time interval leading to (but not including) the prediction interval, the fitted parameters are queried. We assume352

that the parameters at the beginning of the prediction interval should be the same as the fitted parameters at the end of the last353

one. Thus, the machine-learning predictions are normalized as βi = βlast/β0, where βi is the value of the predicted parameter β354

on the i-th day, and βlast is the last known fitted value of β preceding the prediction interval. Parameters σ and γ are normalized355

similarly.356

If the parameters for any day are such that the reproduction rate exceeds five, then the value of β is reduced until the357

reproduction rate falls to this threshold value. This is done because such high reproduction rates do not appear in real-life data,358

but they might be predicted due to some edge case in machine learning. All parameters are smoothed using weighted decay359

(α = 0.2), as we assume that all parameters are changing smoothly.360

When the parameters are estimated for each day, they are inserted into the SEIRD model, which can then produce the361

number of infections for each day. Of note, the starting value of the “Exposed” compartment is set in a way such that the362

predicted and reported numbers of infections match on day zero.363

Socio-economic costs of different NPIs364

Socio-economic costs of individual OxNPIs were derived from a set of costs from related work and from the opinion of a365

domain- expert. Due to the available literature, the costs are likely to contain a bias toward Western countries. Most data is366

based on reports and gray literature. In the absence of evidence that corresponded exactly to the definition of each NPI, some367

assumptions had to be made.368

While economic costs were available for most OxNPIs, the literature on social costs was far more scarce. We thus placed369

the ranking of OxNPIs by social costs on a theoretical foundation, but we could not justify the numerical costs as solidly. In370

addition, according to the literature, these costs may vary across countries (e.g., collectivistic versus individualistic countries);371

however, we applied standard levels for all WEIRD countries (i.e., for Western, Educated, Industrialized, Rich, and Democratic,372

a common grouping in psychological studies).373

In the study, we used the values listed in Table 1, but the methodology is rather general and a policy-maker can easily adapt374

it to produce a set of SECs for a specific territory – possibly also implicitly expressing their preferences on what NPIs to avoid375

(by assigning them higher costs). The combined SEC cost is made simply by normalizing both costs to the [0,1] range and then376

averaging both. While this number does not have a good interpretation, it does rank the OxNPIs according to their SECs.377

GDP loss378

Because the available findings differ in terms of the setting and time, they were normalized to represent the % of GDP loss379

caused by the NPI while it was in effect. Country-specific GDP values (US $) were used39. A complete overview of the cost380

data used can be found in Table 2, while the resulting economic costs are presented in Table 1. The strictness of the NPI381

corresponding most closely to each NPI cost estimate is also reported in the same table. While there is some overlap between382

the NPIs, we have explicitly modelled this only in case of C6: when this NPI is active, so must be C1, C2, C3, C4, C5, and C8.383

Social impact384

To estimate the social costs, we focused on the perceived strain, dread and loss, perceptions of restricted freedoms, and385

constraining behaviors ( i.e., on the negative impact of each measure on behavior, attitudes, and one’s well-being). We ranked386

interventions from the highest to the lowest based on the absolute levels of perceived dread and loss. Using the rational choice387

theory, we assumed that the higher the perception of dread, strain, and loss, the more negative is the impact and the higher are388

the social costs. Understanding human behavior and risk perception is central to effective pandemic management, and thus we389

apply insights from social and behavioral sciences to inform our assumptions on social impact.390

Individuals make decisions by weighing the costs and benefits of NPIs, with emotions driving risk perceptions and making391

human behavior less predictable51. Using this insight, we estimate that stay-at-home requirements (when not sick) impose the392

highest social costs (cost of 12). Namely, humans are social beings; when introduced over a longer period, lockdown represents393

the ultimate human challenge. Trumping all other interventions, its harmful effects (on well-being, domestic violence, and394

society at large) make it the most costly NPI.395

Once lockdown is lifted, school and workplace closing, as well as restrictions on internal movement and gatherings, closely396

follow in cost (11 and 10) because they have similar effects: they limit social relationships, including child’s development,397
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OxNPI Stringency Assumption Country Source

C1: School closing 3 Closing of all schools UK 40

C2: Workplace closing 3 Mandatory closures US 41

C3: Cancel public events 2 Cancellation of public events US 42

C4: Restrictions on gatherings 2 Same cost as C3 US 42

C5: Close public transport 1 Closing or significantly reduced NL 43

C6: Stay at home requirements 3 Confinement/shelter in place FR 44

C7: Restrictions on internal movement 3 Total cessation of domestic

tourism

EU 45, 46

C8: International travel controls 3 Travel & tourism restrictions All 47

H1: Public information campaigns 2 Communications related to

COVID-19

UK 48

H2: Testing policy 2 Policy of 30 million tests per

week

US 49

H3: Contact tracing 2 Targeted to contacts of identified

cases

US 49

H6: Facial coverings 2 EU import of face masks EU 50

Table 2. Sources for GDP loss for each OxNPI. Assumptions made, the country source analyses, and the NPI stringency in

the source country are also listed.

and personal and family income (i.e., household purchasing power). There is a time trade-off with these interventions, with398

longer and more frequent closures and travel restrictions increasing the costs. Moreover, longer workplace closures and travel399

restrictions are likely to result in the breakdown of general compliance. Hence, for these interventions to be effective, timing400

and length are key.401

By contrast, public information campaigns as key to compliance have the highest social benefit. Elaboration of risks and402

severity of possible implications motivate cooperative behavior, which is central to managing the pandemic. Thus, the smarter403

the campaign, the higher the compliance and the benefit. Similar underlying logic applies to the test and trace policy; targeting404

high-risk individuals, it is an essential component of pandemic management. The cost of these NPIs is thus the lowest (1).405

We arranged the costs of the remaining NPIs between these extremes. Cancelling of public events is a milder version of406

restrictions on gatherings (7). Closing of public transport was typically in force together with other NPIs, which reduced the407

need for public transport, so it was not a major inconvenience; and international travel controls also did not impact a large408

fraction of the population (both 2).409

Proposing interventions410

The task of proposing intervention plans can be mathematically formulated as a multi-objective optimization problem with411

two objectives that need to be minimized: the total number of infections ( f1) and the SECs of the proposed plan ( f2). The two412

objectives are conflicting since an efficient way to slow down the spread of infections requires a stringent intervention plan with413

expensive NPIs. The first objective is expressed as the total number of infections predicted from the HMLE model, while the414

second objective is the cost of NPIs averaged over the plan’s duration. The problem is constrained by limiting the number415

of new daily infections to 1500 per 1M residents. This is done as the cases with more infections are not considered useful to416

policy-makers and almost never appear in real-life data.417

Formally, an intervention plan – a solution to the proposed optimization problem – is represented by a 12×n integer-valued418

matrix, P, where its 12 rows correspond to the 12 OxNPIs and n is the number of time slots determined by the given granularity419

value and the whole period (e.g., Figure 4 contains n = 4 time slots resulting from a granularity value of 14 days and an interval420

length of 60 days). In detail, Pi j indicates the strictness of the i-th NPI in the j-th time slot. In particular, we tested five values421

for granularity: 1, 3, 7, 14, and 30.422

Based on the multi-objective formulation of the proposed optimization problem, the experimental evaluation aimed at423

finding sets of trade-off intervention plans representing approximations for Pareto fronts. For this purpose, we used the424

Nondominated Sorting Genetic Algorithm II (NSGA-II)52 equipped with a Constrained Dominance Principle (CDP)52 to handle425

the constraint. NSGA-II belongs to the group of evolutionary algorithms, and as such, it imitates the biological evolution to426

search the space of possible intervention plans and find plans with good trade-offs between the two objectives.427

The optimization problem was solved using two NSGA-II internal solution representations: the full representation defined428

by the matrix P and the condensed representation defined by a vector of length n where the j-th variable corresponds to the429
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overall SEC at the j-th time slot. The second representation was considered due to the significant reduction in the search430

space dimensionality (from 12n to n), allowing for much faster convergence than the high-dimensional search space for the431

full representation. While the full representation can be used without modifications, the condensed representation needs to432

be decoded to the intervention plan before evaluation. This is achieved by replacing the total SECs with OxNPI values. The433

OxNPI combination to replace each SEC is selected as the one with the lowest projected infections out of those within the434

allowed SECs. This mapping is computed in advance, by having all OxNPIs combinations sorted based on their effectiveness435

(by using linear model’s coefficients for each NPI), and when the exact SECs of different NPIs are known, the most effective436

combinations that do not exceed the cost threshold is chosen from that list.437

The experimental setup was defined equally for both representations and was established based on some initial experiments.438

NSGA-II was run with a population of 100 solutions for 500 generations (50k plan evaluations in total). This number of439

evaluations proved to be sufficient for convergence using coarser granularity values. Moreover, increasing function evaluations440

did not significantly improve the results, even for fineer granularity values. For this reason, 50k evaluations represented a good441

trade-off between the framework’s effectiveness and efficiency. The one-point crossover was used as the crossover operator442

and the random resetting as the mutation operator. Additionally, the crossover probability was set to 0.9 and the mutation443

probability to 1/D, where D equals 12n for the full representation and n for the condensed representation.444

Data availability445

Data used in this research was taken from public repositories13, 21–23, 25, 26, 28–30. All data used to generate the figures is available446

in our repository19. The same repository also contains all final results.447

Code availability448

All code used in the production of the results is available in our code repository53.449
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