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Abstract

Background

Aging is a complex biological process accompanied by a time-dependent functional decline that affects
most living organisms. We aimed to obtain an integrated aging-associated profile of the mouse liver
using a multi-omics approach.

Results

We performed a combined transcriptome, proteome, acetylome, and metabolome analysis of liver tissues
from young and old mice under physiological conditions. Old mice were frequently obese with a fatty
liver, and the observed profile changes in different omics were generally moderate. Specifically,
transcriptome, proteome, and acetylome analyses revealed different patterns in old and young mice, but
metabolome analysis did not. Functional enrichment analysis showed that metabolic pathways were
broadly altered during normal aging. Notably, the genes, proteins, and metabolites involved in pyrimidine
and glutathione metabolisms were significantly affected in all these four omics. Moreover, we observed
increased arachidonic acid metabolism and decreased complement and coagulation cascades in old
mice, suggesting an alteration in the immune function during normal aging.

Conclusions

We conducted a multi-omics investigation of normal liver aging in mice and generated comprehensive
datasets for aging research. Further analysis revealed that impairment of pyrimidine and glutathione
metabolisms and immune function may be critical for hepatic aging and may provide targets for aging
interventions.

Background

Aging is a complex biological process accompanied by a time-dependent functional decline that affects
most living organisms [1]. Aging and aging-associated diseases have brought great suffering and
economic burden to individuals and society [2]. Aging-associated alterations include genomic instability,
epigenetic alterations, loss of proteostasis, and metabolic manipulation [1, 3]. Several interventions,
including rapamycin, senolytics, NAD precursors, sirtuin-activating compounds, metformin, exercise, and
calorie restriction, can potentially increase the health span and/or lifespan [4]. However, pivotal methods
for interventions in aging are still deficient as our global view of normal aging is rather incomplete.

Omics analyses offer the advantage of obtaining an overall profile of biological processes.
Transcriptome [5], proteome [6], metabolome [7], single-cell transcriptome [8], and many other omics
analyses have been utilized alone or in combination to study aging and present an increasingly detailed
landscape of the aging process in different species. The liver is the biggest metabolic organ in mammals.
Liver aging deserves adequate research, as metabolism and epigenetics are intricately linked and work
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together to influence aging [3]. Although the physiological aging of the liver shows relatively modest
changes [9, 10], omics studies have discovered some significant molecular alterations. During aging, DNA
methylation in the liver is largely remodeled, can be accelerated by obesity, and may affect downstream
gene expression [11, 12]. In the aged mouse liver, inflammation is common [13, 14], and disruption of
metabolic homeostasis and circadian metabolism are observed [15, 16]. As aging is a highly complex
process spanning gene expression to metabolism, we expect that a comprehensive multi-omics analysis
would improve our understanding of liver aging.

In this study, we performed a multi-omics analysis of the transcriptome, proteome, acetylome, and
metabolome of livers from 2-month-old and 18-month-old mice under normal physiological conditions.
We found that old mice frequently had obesity and a fatty liver. Transcriptome, proteome, and acetylome
profiles distinguished young and old livers, but metabolome profiles did not. Further analysis revealed
that dysregulation of pyrimidine and glutathione metabolisms and immune function might be critical for
hepatic aging, which may provide targets for aging interventions. In addition, our results provide
comprehensive multi-omics datasets for future aging research.

Results
Liver fat deposition in mice increases during aging

Fourteen 2-month-old young mice (1-14) and ten 18-month-old aged mice (1-10) were euthanized, and
their livers removed for multi-omics analyses. Transcriptome and metabolome analyses were performed
with individual liver samples, and proteomics and acetylomics analyses were performed on pooled ones
(Fig. TA). Old mice weighed 32.72 + 1.937 g and were significantly heavier than young mice (25.79 +
0.482 g; Fig. 1B). The liver index (liver weight/body weight) of old mice was 5.055 + 0.2444%, slightly
higher than that of young mice (4.459 + 0.1218%; Fig. 1C). H & E and Masson staining showed no
obvious differences between the livers of old and young mice (Fig. 1D). Qil red O staining showed clear
fat accumulation in old livers but not in young ones (Fig. 1D), consistent with a previous report [17]. In
summary, the old mice seemed susceptible to fatty liver.

Transcriptome profiles distinguish old and young mice
livers

We carried out high-throughput RNA-Seq on old and young mice livers to assess transcriptional changes
during aging (brief quality information in Table S1). Over 50% FPKM > 1 in at least one group enabled the
identification of 13,275 transcripts. Replicate correlation calculation revealed that the transcriptomic
expression mode between samples was highly similar (Pearson correlation coefficient above 0.92, Fig.
S1A). Hierarchical clustering analysis (unsupervised Euclidean distance) clearly separated livers of the
old and young mice (Fig. 2A), and the same classification was supported by principal component
analysis (PCA,; Fig. 2B). The aged liver transcriptomes were more individually variable than the young
ones, as the Euclidean distance values between old mice were higher (Fig. 2A). FC and adjusted p-value
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were calculated for differential expression analysis using the edgeR R package. A total of 1,439
transcripts were assigned as differentially expressed (810 up-regulated and 629 down-regulated in old
mice), as shown in the volcano plot (Fig. 2C). We considered transcripts with over 50% FPKM > 1 in young
mice, but less than 50% FPKM > 1 in old mice as young-unique, and transcripts with the contrary feature
were considered old-unique. Up-regulated transcripts in old mice contained 169 old-unique ones, and
down-regulated transcripts contained 130 young-unique ones (Fig. 2D). To predict localization, total, up-,
and down-regulated transcripts were submitted to Ingenuity Pathway Analysis (IPA). Compared to the
total transcriptome, up-regulated transcripts contained a reduced proportion of nuclear genes and
increased plasma membrane genes, and down-regulated transcripts contained a reduced proportion of
cytoplasm genes (Fig. S1B). For functional enrichment analysis, up- and down-regulated transcripts in old
mice were submitted to KOBAS, a web server, to perform KEGG analysis. Notably, differentially expressed
transcripts during aging were enriched in various metabolic pathways, some of which both contained up-
and down-regulated transcripts (Fig. 2E, 2F). Cytochrome P450, glutathione S-transferase, and UDP
glucuronosyltransferase 2 family genes were enriched in both up- and down-regulated pathways (Table
S2). Several lysosome-associated and oncogenic genes, such as Prkca (PKCa) and Wnt5a, were up-
regulated, whereas multiple histones and innate immune system-associated proteins decreased during
aging (Table S2).

Proteomic profiling of young and old mouse livers

Proteome data were obtained using LC-MS/MS. A total of 541,511 spectra were submitted to MaxQuant,
and 77,726 (14.35%) were matched to 70,092 peptides (of which 40,796 were unique). This study
identified 5,831 proteins and quantified 4,712 (Fig. S2A). For quality control, we assessed peptide length
(Fig. S2B), spectra count per peptide (Fig. S2C), Andromeda score distribution (Fig. S2D), and Pearson
correlation coefficient between samples (Fig. S2E). After ID conversion (Ensemble IDs of transcripts and
SwissProt IDs of proteins were both converted to Symbol IDs), 4,316 proteins were matched to mRNAs,
the expression of which revealed a low positive expression correlation (Spearman correlation coefficient
=0.366829). Both hierarchical clustering analysis (Fig. 3A) and PCA (Fig. 3B) of the quantified proteins
showed that the hepatic proteome of young mice clearly differed from that of old mice. We performed
Significance A analysis using Perseus (both sides, Benjamini-Hochberg FDR < 0.05) to define differentially
expressed proteins and found 114 increased and 81 decreased proteins in old livers. Similar to the
transcriptome analysis, we assessed cellular localization of the total, up-, and down-regulated proteins.
Generally, the proportion of cytoplasm genes in the proteome was higher than that in the transcriptome
and differentially expressed proteins contained a greater proportion of extracellular proteins than the total
proteome (Fig. 3C). KEGG enrichment analysis showed that differentially expressed proteins were
especially enriched in metabolic pathways (Fig. 3D, 3E). At the protein level, cytochrome P450 and
glutathione S-transferase family proteins were also found in both up- and down-regulated pathways. The
levels of cytochrome c oxidase subunits, prostamide/prostaglandin F synthase, and leukotriene-B(4)
omega-hydroxylase 2 tended to increase, and those of glutaminase tended to decrease in the mouse liver
during aging (Table S3).
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Extensive acetylation of histones and metabolic pathway
proteins

Acetylome data were also obtained using LC-MS/MS. A total of 146,519 spectra were submitted to
MaxQuant, and 18,601 (12.7%) were matched to 13,808 peptides (1,690 proteins). A total of 13,606
peptides (6,626 of which unique) in 1,669 proteins were recorded as acetylated, and 5,640 unique
acetylated sites were identified (Fig. S3A). For quality control, we assessed peptide length (Fig. S3B),
spectral count per acetyl peptide (Fig. S3C), mass error (Fig. S3D), and Andromeda score distribution (Fig.
S3E). Each acetylated peptide could contain at most four acetylation sites, but most acetylated peptides
contained only one (Fig. S3F). The localization probabilities of acetylation sites ranged from 0 to 1, and
every quantile was grouped into one class. Class | sites (localization probability > 0.75) occupied 99.4% of
all the acetylated ones (Fig. S3G), and 4,818 of them (1,367 proteins) were quantifiable. Pearson
correlation coefficient showed a high similarity between samples (Fig. S3H). Hierarchical clustering
analysis (Fig. 4A) and PCA (Fig. 4B) of the quantifiable

Class | acetylation sites revealed that acetylome profiles distinguished livers of old and young mice. Motif
analysis showed that glutamate or aspartate was frequently adjacent to an acetylated lysine (Fig. 4C).
Acetylated proteins were mostly located in the cytoplasm. Compared to all acetylated proteins, the down-
regulated ones contained no plasma membrane proteins, and up-regulated ones contained a smaller
proportion of nuclear proteins (Fig. 4D). The proteome and acetylome shared 1,262 proteins (Fig. 4E),
which were enriched in multiple metabolic pathways and ribosomal proteins (Fig. 4F). Except for
metabolic pathways, non-acetylated proteins were mainly enriched in spliceosome, endocytosis, protein
processing in the endoplasmic reticulum (ER), and lysosome, which are associated with intracellular
macromolecular homeostasis (Fig. 4G). Histones were the major proteins with altered profiles identified
only in the acetylome (Fig. 4H). However, histone profiles in the transcriptome, proteome, and acetylome
analysis showed no consistent alteration (Table S4). The Spearman correlation coefficient was only
0.38168 between proteome and acetylome profiles. We thus performed Significance A analysis for
acetylome alone to define differentially expressed acetylated sites and proteins, finding 60 acetylation
sites in 39 proteins increased, and 53 sites in 38 proteins decreased during aging. KEGG analysis showed
that proteins containing differentially expressed acetylation sites were predominantly enriched in
metabolic pathways and protein processing (Fig. S4A, S4B). Proteins in the enriched metabolic pathways
are associated with fatty acid, amino acid, and nucleic acid metabolism, but contained only one
cytochrome (cytochrome P450 4A14) whose family members broadly changed in the transcriptome and
proteome profiles (Table S5).

Transcriptome, proteome, acetylome, and metabolome
profiles show dysregulated pyrimidine and glutathione
metabolisms during hepatic aging
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To identify the key alteration in the mouse liver during aging, we obtained the intersection of enriched
pathways (corrected p-value < 0.05) differentially regulated in the transcriptome, proteome, and
acetylome. Up-regulated transcripts and up-regulated proteins were both enriched in 16 KEGG pathways,
5 of which contained differentially expressed acetylation sites (Fig. 5A). Down-regulated transcripts and
proteins shared 17 KEGG pathways, 7 of which contained differentially regulated acetylation sites

(Fig. 5B). Considering that metabolites reflect the results of complex biological processes, we performed
metabolome analysis of the liver samples using LC-MS/MS to further narrow the functional alterations
during hepatic aging.

In this study, 242 and 399 metabolites were identified in negative- and positive-ion modes, respectively.
Pearson correlation coefficients between the four samples for quality control (QC samples) were nearly
1.00, and those between testing samples were all greater or equal than 0.80 (Fig. S5A, S5D), suggesting
high-quality metabolome data. PCA showed that QC samples were condensed, but neither negative- or
positive-ion mode could distinguish young and old livers (Fig. 6A, 6B). Although OPLS-DA analysis barely
separated the two groups (Fig. S5B, S5E), permutation test results revealed that the metabolite profiles of
young and old mouse livers were similar (Fig. S5C, S5F). More metabolites with reduced than increased
levels were identified by negative-ion mode and metabolites identified in positive-ion mode were
distributed more symmetrically (Fig. 6C, 6D). We selected metabolites based on MS2 score and FC, 43 of
which were up-regulated and 63 down-regulated (Table S6). MetaboAnalyst pathway analysis suggested
that up-regulated metabolites were significantly (p < 0.05) associated with riboflavin, starch, sucrose,
fructose, and mannose metabolisms (Fig. 6E), whereas down-regulated metabolites were significantly
associated with pyrimidine, glycerophospholipid, and glutathione metabolisms (Fig. 6F). Taking all the
four omics results into consideration, dysregulated pyrimidine and glutathione metabolisms are
especially notable during aging.

Discussion

In this study, we performed the first combined transcriptome, proteome, acetylome, and metabolome
analyses of young and old mouse livers under physiological conditions. Transcriptome, proteome, and
acetylome profiles revealed different expression patterns in old and young mice, in contrast to
metabolomic profiles. Although many metabolic alterations were observed in all four omics, pyrimidine
and glutathione metabolisms were clearly dysregulated during hepatic aging.

Aging is commonly accompanied by a progressive decline of cellular functions, but the aging liver
appears to preserve its function relatively well [9, 18, 19]. In this study, the aging-related alterations in the
four omics were generally mild, although fat accumulation was clearly observed in the liver.
Transcriptome analysis identified changed levels of cytochrome P450 family members, whereas
proteome analysis found alterations of both cytochrome P450 and cytochrome ¢ family member levels.
However, cytochromes are involved in many metabolic processes of endogenous or exogenous
compounds [20, 21]. Although aging is a risk factor for NAFLD [9, 22], lipid metabolism may not be the
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critical pathway during hepatic aging. We, therefore, sought additional lines of evidence to further explore
hepatic aging using acetylome and metabolome analyses.

Acetylation is a post-translational modification that integrates key physiological processes with gene
regulation [23]. Acetylation is sensitive to intracellular metabolic alterations because acetyl-CoA derived
from nutrient metabolism, especially lipid-derived acetyl-CoA, is its major carbon source [24]. The
metabolome represents the collection of small molecules involved in metabolism, and improvements in
the relevant analytical technologies provide significant information for biomarker and mechanism
analyses [25, 26]. In this study, transcriptome, proteome, acetylome, and metabolome analyses each
presented characteristic changes during aging. However, alterations in pyrimidine and glutathione
metabolisms were especially notable because they were observed in all four omics results in the aging
liver.

Down-regulation of nucleic acid metabolism occurs in Caenorhabditis elegans and mouse heart during
aging [7, 27]. Intermediates of pyrimidine or purine metabolism, such as uridine, cytidine, and
hypoxanthine, extend the lifespan of C. elegans[7, 28]. Our metabolome data identified increased levels
of deoxycytidine, D-ribose 5-phosphate, AMP, and adenine, and decreased levels of dihydrofolate,
dihydrouracil, deoxyuridine, uracil, cytidine, thymidine, xanthine, AICAR, IMP, and GMP in the aging mouse
liver. Disruption of nucleic acid metabolism is associated with increased mutagenesis, genomic
instability, and tumorigenesis. Alterations of intracellular deoxyribonucleoside triphosphate (ANTP) pools
may impair DNA synthesis and DNA replication, causing cell cycle dysregulation and double-stranded
DNA breaks [29-31]. During hepatic aging, we observed down-regulation of Cdk7, Cdkn2c, Ccnd2 (cyclin
D2), Ccne2 (cyclin E2), CenlT (cyclin L1), Ccnl2 (cyclin L2), and Ccnt2 (cyclin T2), and up-regulation of
IncaT (inhibitor of CDK, cyclin A1 interacting protein 1) in the transcriptome. In the proteome of the aging
liver, we observed decreased levels of cyclin-dependent kinase inhibitor 1B (Cdkn1b). These changes in
the levels of cell cycle-associated transcripts and proteins indicate that cell cycle dysregulation is likely to
happen in the mouse liver during aging [32, 33], and may partially contribute to pyrimidine metabolism
dysregulation. Moreover, down-regulation of histones, together with dysregulated pyrimidine metabolism,
may exacerbate aging-associated genomic instability. Considering that the liver is the major organ for
nucleic acid metabolism in mammals, a dysregulated pyrimidine metabolism in the liver is likely to
change the levels of nucleic acids in the whole body and accelerate systemic aging.

The decrease in glutathione levels during aging was found decades ago [34, 35]. Glutathione deficiency
increases the cellular risk for oxidative damage, and glutathione imbalance is observed in a wide range of
pathological conditions [36]. In this study, however, metabolome analysis only identified decreased levels
of glutathione disulfide, 5-L-glutamyl-L-alanine, gamma-L-glutamyl-L-valine, and gamma-L-glutamyl|-L-
glutamic acid in the aging mouse liver. We expect that improvements in metabolome technology may
help to identify more metabolites and detect variations in glutathione levels directly in future studies.

This study also revealed that immunological function is altered during hepatic aging. Previous studies
reported broadly up-regulated interferon signaling with aging across tissues and species [13, 14]. In this
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multi-omics aging study, transcriptome analysis revealed up-regulated arachidonic acid metabolism,
including prostamide/prostaglandin F synthase and leukotriene-B(4) omega-hydroxylase 2, during aging,
and metabolome analysis confirmed increased arachidonic acid levels in the aging liver. In addition, the
complement and coagulation cascades were decreased in both the transcriptome and proteome.
Decreased complement may contribute to decreased hepatic protein synthesis ability and/or
inflammation-associated complement consumption. As Xia et al. have summarized, aging-associated
adaptive immunity decline is called immunosenescence, and an increase in the body’s proinflammatory
status with advancing age is called inflamm-aging [37, 38]. Thus, inflamm-aging and immunosenescence
may simultaneously occur during hepatic aging.

Mammalian aging is a highly complex process spanning gene expression to metabolism, and thus multi-
omics analysis can strongly support aging research. However, although each omics analysis provided
abundant information, integrated analysis among them is quite a challenge. In this study, we pooled the
liver samples and performed proteome and acetylome analyses using an MS2-based TMT strategy and
the Significance A algorithm. MS2-based TMT can identify peptides precisely but introduce ratio
compression [39]. We probably obtained a shortlist of differentially expressed proteins and excluded the
interference of individual differences to some extent. We calculated Spearman correlation coefficients
and found that the correlation between transcriptome and proteome and between proteome and
acetylome were both low. Differences between each omics brought obstacles to reconstruct complete
biological processes and signaling pathways but also prompted us to view aging from new perspectives.
We expect technical and analytical improvements to increase identification accuracy and help future
multi-omics analyses. We also hope that more omics methods can be applied and integrated for aging
research. It is important to investigate other organs and both sexes in future studies to avoid biases [40]
and obtain a comprehensive profile of liver aging and systematic aging.

Conclusions

In summary, we provide the first integrated transcriptome, proteome, acetylome, and metabolome
profiling of mouse liver during normal aging, offering a comprehensive data resource for future aging
research. The transcriptome, proteome, and acetylome profiles were clearly different in young and old
livers, but metabolome profiles were not. Metabolic alterations in the mouse liver during aging were
extremely complex, but dysregulated pyrimidine and glutathione metabolisms seemed notable. In
addition, we found increased arachidonic acid metabolism and decreased complement and coagulation
cascades in the aging mouse liver, suggesting that inflammatory and immune responses change during
aging. Hepatic aging may contribute to systematic aging, may be a target for aging interventions, and
deserves further exploration.

Methods
Animals
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Wild-type C57BL/6 male mice were allowed to take food and water ad libitum. Colony rooms were
maintained at a constant temperature and humidity with a 12:12 light/dark cycle. All animal protocols
were approved by the Animal Care and Use Committee of the Institute of Basic Medical Sciences, Chinese
Academy of Medical Sciences, and Peking Union Medical College.

Sample preparation

Two-month-old mice were defined as young and eighteen-month-old mice as old. Mice were sacrificed by
massive bloodletting from the orbital vessels after anesthesia with tribromoethanol. Next, the whole liver
was detached from each mouse, immediately dissected, and stored separately. Samples acquired for
metabolome, transcriptome, proteome, and acetylome analyses were immediately frozen in liquid
nitrogen and transferred to -80 °C until use. Samples for H & E and Masson analyses were quickly placed
in 4% paraformaldehyde (PFA). Samples for oil red O analysis were appropriately embedded into optimal
cutting temperature compound (OCT) and stored at -80 °C until use.

Morphological analysis
H & E and Masson staining

Liver samples were fixed in 4% PFA overnight. Fixed tissues were dehydrated by placing in 75% ethanol
for 4 h, followed by 85% ethanol for 2 h, 90% ethanol for 2 h, 95% ethanol for 1 h, absolute ethanol for

30 min twice, ethanol-dimethylbenzene for 5 min, and dimethylbenzene twice for 10 min. Dehydrated
tissues were embedded in paraffin and cut into 4 pm-thick sections. The paraffin-embedded sections were
successively placed in dimethylbenzene twice for 20 min each, absolute ethanol for 10 min twice, 95%
ethanol for 5 min, 90% ethanol for 5 min, 80% ethanol for 5 min, 70% ethanol for 5 min, and washed with
distilled water.

For H & E staining, hydrated sections were placed in hematoxylin solution for 3-8 min, 1% hydrochloric
acid/ethanol differentiation solution for seconds, 0.6% ammonia for seconds, and eosin solution for 1—
3 min.

For Masson staining, hydrated sections were processed according to the manufacturer’s protocol of the
Masson staining kit (Wuhan Goodbio Technology Co., Ltd, G1006).

Stained sections were subsequently transferred into 95% ethanol for 5 min twice, absolute ethanol for
5 min twice, and dimethylbenzene for 5 min twice. Next, the sections were dried and sealed with neutral
gum. Pictures were taken with a Nikon Eclipse Cl imaging system.

Oil Red O staining

Liver samples embedded in OCT were moved to a freezing microtome and cut into 8 um-thick sections at
-20 °C. The sections were dried at room temperature for 10 min, fixed with 4% paraformaldehyde (PFA)
for 15 min, and washed with phosphate-buffered saline (PBS) for 5 min three times. Sections were
transferred into oil red O solution (G1016, Goodbio Technology Co., Ltd) for 10 min, followed by 75%
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ethanol for 2 s, and then washed with water for 1 min. Next, the sections were transferred to hematoxylin
solution for 1 min, 1% hydrochloric acid/ethanol differentiation solution for 3 s, and 0.6% ammonia for
3 s, after which they were washed with water. Excess water was removed, and glycerin gelatin was used
to seal the sections. Pictures were taken using a Nikon Eclipse Cl imaging system (Japan).

RNA sequencing and analysis

RNA isolation, library preparation, and sequencing were performed by Novogene Bioinformatics
Technology Co., Ltd (Tianjin, China). Briefly, a total of 3 pg RNA per sample was used as input material
for RNA sample preparation. First, ribosomal RNA was removed with the Epicentre Ribo-zero™ rRNA
Removal Kit (RZH1046, Epicentre, USA), and rRNA free residue was cleaned up by ethanol precipitation.
Subsequently, sequencing libraries were generated using the rRNA-depleted RNA by NEBNext® Ultra™
Directional RNA Library Prep Kit for lllumina® (NEBE7770, NEB, USA) following the manufacturer’s
recommendations. Fragmentation was carried out using divalent cations under elevated temperature in
NEBNext First-Strand Synthesis Reaction Buffer (5x). First-strand cDNA was synthesized using random
hexamer primer and M-MuLV Reverse Transcriptase (RNase H). Second strand cDNA synthesis was
subsequently performed using DNA Polymerase | and RNase H. In the reaction buffer, dTTP was replaced
by dUTP. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities.
After adenylation of 3' ends of DNA fragments, NEBNext Adapter with hairpin loop structure was ligated
to prepare for hybridization. To select cDNA fragments of preferentially 150 ~ 200 bp in length, library
fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Next, 3 uL USER
Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 min, followed by

5 min at 95 °C before PCR. PCR was performed with Phusion High-Fidelity DNA polymerase, Universal
PCR primers, and Index (X) Primer. At last, products were purified (AMPure XP system), and library quality
was assessed on an Agilent Bioanalyzer 2100 system. Clustering of the index-coded samples was
performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (lllumina)
according to the manufacturer’s instructions. After cluster generation, the libraries were sequenced on an
lllumina HiSeq 4000 instrument, and 150 base pair and paired-end reads were generated. For quality
control, raw data in fastq format were first processed using Novogene Perl scripts. Clean data were
obtained by removing reads containing adapters, reads containing poly-N, and low-quality reads from the
raw data. In addition, the Q20, Q30, and GC contents of the clean data were calculated. All downstream
analyses were based on the clean data with high quality. RNA sequencing data were deposited in the
Sequence Read Archive under the BioProject ID PRIJNA609589.

Reference genome and gene model annotation files were downloaded from the Ensembl website
(genome: ftp://ftp.ensembl.org/pub/release-
97/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.fa.gz; gtf:
ftp://ftp.ensembl.org/pub/release-97/gtf/mus_musculus/Mus_musculus.GRCm38.97.gtf.gz). HISAT2
(v2.0.5) was used to build the reference genome index and align paired-end clean reads to the reference
genome. Then, StringTie (v1.3.3) was used to assemble the mapped reads of each sample and calculate
FPKMs of coding genes. FPKM means fragments per kilo-base of exon per million fragments mapped,
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calculated based on the length of the fragments, and reads count mapped to this fragment. Transcripts
with FPKM values > 1 in over 50% of the samples in either group were considered validated. The edgeR R
package (v3.243) provided statistical routines for determining differential expression in digital transcript
or gene expression data using a model based on a negative binomial distribution. Transcripts with
adjusted p-values < 0.05 were considered to be differentially expressed. Up- and down-regulated
transcripts were determined based on the log2 fold-change (FC) (generated by edgeR, old mice/young
mice) >0 or < 0, respectively.

Proteome and acetylome analyses
Protein extraction

Samples stored in -80 °C were separately ground into a powder after submersion in liquid nitrogen and
transferred to individual 5-mL centrifuge tubes. Four volumes of lysis buffer (8 M urea, 2 mM
ethylenediaminetetraacetic acid (EDTA), 3 uM trichostatin A, 50 mM nicotinamide, 10 mM dithiothreitol,
and 1% Protease Inhibitor Cocktail) were added to the cell powder, followed by sonication for three times
on ice using a high-intensity ultrasonic processor. Cell debris was removed by centrifugation at 12,000 x g
at 4 °C for 10 min. Each supernatant was collected, and protein concentrations were determined with a
BCA Kit (P0011, Beyotime, Shanghai, China) according to the manufacturer's instructions. Total protein
samples were split into four groups and then pooled into Young 1 (1-7 of young mice), Young 2 (8—14 of
young mice), Old 1 (1-5 of old mice), and Old 2 (6—10 of old mice) groups.

Protein digestion

For digestion, 3.7 mg protein was reduced with 5 mM dithiothreitol for 30 min at 56 °C and alkylated with
11 mM iodoacetamide for 15 min at room temperature in the dark. The protein sample was then diluted
by adding 100 mM triethylammonium bicarbonate (TEAB) to less than 2 M urea. Next, trypsin (V5280,
Promega, Madison, WI, USA) was added at a 1:50 trypsin-to-protein mass ratio for the first digestion
overnight and a 1:100 trypsin-to-protein mass ratio for a second digestion for 4 h.

Tandem mass tag (TMT) labeling

After trypsin digestion, peptides were desalted using a Strata X C18 SPE column (Phenomenex, Torrance,
CA, USA) and vacuum-dried. Peptides were reconstituted in 0.5 M TEAB and processed according to the
manufacturer’s instructions for TMT labeling (90068, Thermo Fisher Scientific, Rockford, IL, USA). Briefly,
one unit of TMT reagent was thawed and reconstituted in ACN. Peptide mixtures were then incubated for
2 h at room temperature and pooled, desalted, and dried by vacuum centrifugation.

High pH reversed-phase pre-fractionation of peptides

TMT labeled peptides (10% for proteome analysis, and the remaining 90% for acetylome analysis) were
fractionated by high pH reversed-phase high-performance liquid chromatography. For proteome analysis,
a 300 Extend C18 column (5 pm particles, 4.6 mm inside diameter [ID], and 250 mm length; Agilent) was
used. Peptides were separated into 60 fractions by stepwise increases in ACN concentration (8—32% in
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60 min, T mL/min) at pH 9.0. Total fractions were split into nine groups and then pooled and vacuum-
dried. For acetylome analysis, a Betasil C18 column (5 um particles, 10 mm ID, and 250 mm length;
Thermo Fisher Scientific) was used. The gradient and mobile phase times were the same as those used
for the proteome. The obtained 60 fractions were split into four groups, pooled, and vacuum-dried.

Acetylated peptide enrichment

To enrich for acetylated peptides, pre-fractionated peptides for acetylomics analysis were dissolved in
NETN buffer (100 mM NaCl, T mM EDTA, 50 mM Tris-HCI, 0.5% NP-40, pH 8.0) and incubated overnight at
4 °C with 20 pL pre-washed antibody beads (PTM104, PTM Biolabs, Hangzhou, China) with gentle
shaking. Beads were washed four times with NETN buffer and twice with H,0. Bound peptides were

eluted from the beads with 0.1% trifluoroacetic acid, desalted, and vacuum-dried.
Liquid chromatography (LC) tandem mass spectrometry
(MS) analysis of peptide mixtures

A Q Exactive™ HF-X mass spectrometer interfaced with an EASY-nLC 1200 nanoflow LC system (Thermo
Fisher Scientific) was used for LC-MS analysis. Samples for proteome and acetylome analysis were
separately resuspended in mobile phase A (0.1% formic acid and 2% ACN in water) and loaded onto the
EASY-nLC 1200 nanoflow LC system at a constant flow rate of 400 nL/min. Mobile phase B contained
0.1% formic acid and 90% ACN in water. For proteome analysis, the following gradient was used: 8%-22%
B for 0—38 min, 22%-32% B for 38—52 min, 32-80% B for 52—-56 min, and 80% B for 56—60 min. For
acetylome analysis, the following gradient was used: 9%-23% B for 0—24 min, 23%-35% B for 24—32 min,
35%-80% B for 32—-36 min, and 80% B for 36—40 min. For proteome analysis, a data-dependent strategy
was used by first obtaining MS1 data in the Orbitrap at a resolution of 120,000 (at an m/z ratio of 200
and a maximum injection time of 50 ms for target values of 3e6 ions in the 350-1600 m/z mass range).
For the MS2 scan, the top 30 precursor ions (charge state from + 2 to + 5) were selected for fragmentation
by higher-energy collision dissociation with a normalized collision energy (NCE) of 28%. A total of 5e4
ions were accumulated over 40 ms as the maximum permitted filling time for each scan. Dynamic
exclusion time was set to 30 s to reduce the repeated fragmentation of precursor ions. For acetylome
analysis, the data-dependent strategy was also used. MS1 was measured in the Orbitrap at a resolution
of 120,000 (at an m/z ratio of 200 and a maximum injection time of 50 ms for target values of 3e6 ions
in the 350—-1600 m/z mass range). For MS2 scan, the top 20 precursor ions (charge state from + 2 to + 5)
were selected for fragmentation by higher-energy collision dissociation with an NCE of 28%. A total of
1e5 ions were accumulated over 100 ms as the maximum permitted filling time for each scan. Dynamic
exclusion time was set to 10 s.

Database searches

Raw MS/MS data were analyzed using the MaxQuant search engine (v.1.5.2.8) [41] against the Swiss-

Prot Mouse database (updated on June 24, 2019; 17,014 entries) concatenated with the reverse decoy

database. Trypsin/P was specified as the cleavage enzyme. Two missing cleavages were allowed for

proteome analysis, and four missing cleavages were allowed for acetylome analysis. The mass tolerance
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for precursor ions was set to 20 ppm in the first search or 5 ppm in the main search, and the mass
tolerance of fragment ions was set to 0.02 Da. A carbamidomethyl group on a Cys residue was specified
as a fixed modification. Oxidation of Met and protein N-terminal acetylation were set as variable
modifications for proteome analysis, and acetylation of Lys, oxidation of Met, and protein N-terminal
acetylation were set as variable modifications for acetylome analysis. The false discovery rate (FDR) was
adjusted to < 1%, and the minimum score for modified peptides was set to >40. The MS-proteomics data
were deposited in the ProteomeXchange Consortium via the iProX partner repository [42] under the
dataset identifier PXD018003 (subproject ID of proteome: IPX0002001001; subproject ID of acetylome:
IPX0002001002).

Data management

Proteins/peptides in the reverse decoy database and potential contaminant database were excluded for
both proteomics and acetylomics analyses. In addition, the localization probability of acetylation in the
acetylome ranged from 0 to 1. Peptides with localization probabilities of >0.75 were grouped into Class |
and were selected for further analysis. Normalization of the proteome and acetylome data was performed
with Perseus (v.1.6.5.0) [43] by dividing the intensity by the median of each group. Significance A
analysis was performed using Perseus, and a protein/site with Benjamini-Hochberg FDR < 0.05 was
considered differentially expressed [41, 43]. Up- and down-regulated proteins/peptides were determined
as FC (mean values of old mice/mean values of young mice) >1 or < 1, respectively.

Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) [44] enrichment analysis was performed using
KOBAS [45]. We chose the hypergeometric test/Fisher's exact test as the statistical method and QVALUE
as the FDR correction method. KEGG terms with a corrected p-value of <0.05 were considered as
significantly enriched.

Motif analysis

To obtain the sequence characteristics of acetylated peptides, Class | acetylated peptides were submitted
to MoMo modification motifs (http://meme-suite.org/tools/momo) [46] for motif analysis using the
motif-x algorithm.

Metabolome analysis

Sample preparation, LC-MS analysis, peak extraction, and compound identification were performed in Dr.
Zheng-Jiang Zhu's laboratory, as previously described [47]. Briefly, 20 mg tissue per liver sample was
homogenized with 200 pL H,0 using cooled nitrogen gas flow from liquid nitrogen. Each 200 pL
homogenate solution was mixed with 800 uL methanol/acetonitrile (volume ratio, 1:1) and incubated for
1 h at-20 °C. Afterward, the samples were centrifuged for 15 min at 13,000 rpm and 4 °C. The
supernatants were evaporated to dryness at 4 °C using a vacuum concentrator. Then, each sample was
reconstituted with 100 pL acetonitrile/H,0 (volume ratio, 1:1) and centrifuged for 15 min at 13,000 rpm
and 4 °C. The samples were stored at -80 °C before LC-MS analysis.
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For liquid chromatography, a Waters ACQUITY UPLC BEH Amide column (1.7 pm particles, 2.1 mm ID, and
100 mm length) was used. Mobile phase A was 25 mM ammonium acetate and 25 mM ammonium
hydroxide in 100% water (pH 9.6), and mobile phase B was 100% acetonitrile (ACN). The following linear
gradient was used for elution: 95% B (0.0—1.0 min), 95% B to 65% B (1.0-14.0 min), 65% B to 40% B
(14.0-16.0 min), 40% B (16.0-18.0 min), 40% B to 95% B (18.0-18.1 min), and 95% B for 4.9 min. The
flow rate was 0.30 mL/min, and the sample injection volume was

2 uL.

A TripleTOF 6600 mass spectrometer (AB Sciex) was used for information-dependent acquisition (IDA) of
MS/MS spectra. In IDA mode, the acquisition software (Analyst TF 1.7, AB Sciex) continuously evaluated
the full-scan survey of MS data as it was collected and triggered the acquisition of MS/MS spectra
depending on predefined criteria. In each cycle, the most intensive 12 precursor ions with a signal
intensity above 100 were chosen for MS/MS at a collision energy of 30 eV. The cycle time was 0.56 s.
The following electrospray ionization conditions were used: ion source gas 1, 60 pounds per square inch
(psi); ion source gas 2, 60 psi; curtain gas, 35 psi; source temperature, 600 °C; declustering potential, 60 V;
ion spray voltage floating, 5000 V or -4000 V in positive or negative mode, respectively. The data obtained
in positive-ion mode (POS) and negative-ion mode (NEG) were separately submitted for informatics
analysis.

Raw data in wiff format were analyzed using an in-house software program developed in Dr. Zheng-Jiang
Zhu's laboratory to perform peak extraction and compound quantification. Peaks appearing in over 50%
of all samples were considered to represent true feature hits. The mass error tolerance for MS1 matches
was set to £ 25 ppm, and the mass error tolerance for MS2 matches was set to + 35 ppm. MS2 spectral
similarity scores were set to range from 0 to 1, and compounds with a score of > 0.6 were further
analyzed.

Data management was initially implemented by Shanghai Biotree Biotech Co., Ltd. Briefly, missing values
were inserted as half of the minimum value, and the data were normalized by the total ion current. The
collated data were entered into the SIMCA14 software program (v14.1, Sartorius Stedim Data Analytics
AB, Umea, Sweden) for supervised orthogonal projections to latent structures-discriminate analysis
(OPLS-DA), and the first principal component of variable importance in the projection (VIP) was obtained.
FC (mean values of old mice/mean values of young mice) was calculated, and Student’s ttest was used
to determine p-values. Compounds with both a VIP >1 and a p-value < 0.05 were preliminarily selected as
differentially expressed metabolites and as candidates for pathway analysis.

Compounds identified in POS and NEG mode were combined to obtain the overall set. For compounds
identified in both POS and NEG mode, those with higher MS2 spectrum similarity scores were retained if
they displayed consistent changing trends, whereas those with contradictory FC were discarded. Up- and
down-regulated compounds were determined as those with FC >1 or < 1, respectively. An arranged
compound dataset was submitted to the MetaboAnalyst website (https://www.metaboanalyst.ca/) [48,

49] for pathway analysis (over-representation analysis: Fisher's exact test; pathway topology analysis:
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relative-betweenness centrality; pathway library: Mus musculus KEGG). The MS-based metabolomics
data were deposited in the ProteomeXchange Consortium under the dataset identifier PXD018003
(subproject ID: IPX0002001003).

Abbreviations

ER Endoplasmic reticulum

FC Fold-change

FDR False discovery rate

ID Inside diameter

IDA Information-dependent acquisition
IPA Ingenuity Pathway Analysis

KEGG Kyoto Encyclopedia of Genes and Genomes
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NCE Normalized collision energy

OCT Optimal cutting temperature

PBS Phosphate-buffered saline

PCA Principal component analysis
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TMT Tandem mass tag

VIP Variable importance in the projection
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Figure 1

Mouse phenotype during normal aging. (A) Brief workflow of multi-omics analysis. The 2-month-old mice
were defined as young and 18-month-old mice as old. Transcriptome and metabolome analyses were
performed using individual liver samples. Proteome and acetylome analyses were performed using
pooled samples. The number of mice is shown in the figure. (B) Bodyweight of mice (young: n =14; old: n
= 10; mean t standard error of the mean shown; ***t-test, p < 0.001). (C) Liver index of mice (young: n =
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14; old: n = 10; mean + standard error of the mean shown; *t-test, p < 0.05). (D) Morphological analysis of
young and old mouse livers. Left panel: H & E staining. Middle panel: Masson staining. Right panel: oil
red O staining.
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Figure 2

Hepatic transcriptome of young and old mice. (A) Hierarchical clustering analysis of young and old livers
(transcripts with over 50% FPKM > 1 in at least one age group were used; clustering distance =
Euclidean). (B) PCA of young and old livers. (C) Volcano plot of transcripts with over 50% FPKM > 1 in at
least one age group. (D) Venn diagram of up-regulated, down-regulated, old-unique, and young-unique
transcripts. Up: transcripts with over 50% FPKM > 1 in at least one group; edgeR adjusted p-value < 0.05
and log2 FC > 0. Down: transcripts with over 50% FPKM > 1 in at least one group; edgeR adjusted p-
values < 0.05 and log2 FC < 0. Transcripts with over 50% FPKM > 1 in the young mice but less than 50%
FPKM > 1 in the old mice as Young_unique, and transcripts with the contrary feature were considered as
Old_unique. (E) Top 10 enriched KEGG pathways in up-regulated transcripts during aging. (F) Top 10
enriched KEGG pathways in down-regulated transcripts during aging.
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Figure 3

Hepatic proteome of young and old mice. (A) Hierarchical clustering analysis of young and old livers
(4,712 quantifiable proteins were used; clustering distance = Euclidean). (B) PCA of young and old livers.
(C) Location of the total, up-, and down-regulated proteins. Total: 4,712 quantifiable proteins. Up: 114 up-
regulated proteins. Down: 81 down-regulated proteins. (D) Top 10 enriched KEGG pathways in up-
regulated proteins during aging. (E) Top 10 enriched KEGG pathways in down-regulated proteins during

aging.
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Figure 4

Hepatic acetylome of young and old mice. (A) Hierarchical clustering analysis of young and old livers
(4,818 quantifiable Class | acetylated sites were used; clustering distance = Euclidean). (B) PCA of young
and old livers. (C) Moatif analysis of all 4,818 sequences with Class | acetylated sites. Top five identified
motifs are listed. (D) Location analysis of the acetylated proteins. Total: All 1,367 acetylated proteins. Up:
proteins with up-regulated acetylated sites. Down: proteins with down-regulated acetylated sites. (E) Venn
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diagram of all quantifiable proteins in the proteome and all acetylated proteins in the acetylome. (F) Top
5 enriched KEGG pathways in proteins identified in both the proteome and acetylome. (G) Top 5 enriched
KEGG pathways in proteins only identified in the proteome. (H) Top 5 enriched KEGG pathways in

proteins only identified in the acetylome.
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Up-regulated Drug metabolism - other enzymes Down-regulated Drug metabolism - other enzymes
in the transcriptome Sulfur metabolism in the transcriptome Pyrimidine metabolism
& & Fatty acid degradation
Up-regulated 5 Metabolic pathways Down-regulated 7 PPAR signaling pathway
in the proteome Valine, leucine and isoleucine degradation in the proteome Fluid shear stress and atherosclerosis
& & Metabolic pathways
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Up-regulated Drug metabolism - cytochrome P450 in th gt Complement and coagulation cascades
in the proteome Chemical carcinogenesis in ihe profeome Steroid hormone biosynthesis
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Vitamin digestion and absorption Linoleic acid metabolism
Inflammatory mediator regulation of TRP channels
Figure 5

Integration of enriched pathways among the transcriptome, proteome, and acetylome. (A) Upper panel
shows the Venn diagram of Transcriptome_Up, Proteome_Up, and Acetylome. Lower panel shows the
specific pathway list. Transcriptome_Up: enriched pathways in up-regulated transcripts in the
transcriptome. Proteome_Up: enriched pathways in up-regulated proteins in the proteome. Acetylome:
enriched pathways in differentially regulated acetylated proteins. (B) Upper panel shows the Venn
diagram of Transcriptome_Down, Proteome_Down, and Acetylome. Lower panel shows the specific
pathway list. Transcriptome_Down: enriched pathways in down-regulated transcripts in the
transcriptome. Proteome_Down: enriched pathways in down-regulated proteins in the proteome.
Acetylome: enriched pathways in differentially regulated acetylated proteins. A pathway with an adjusted
p-value < 0.05 (calculated by KOBAS) is considered an enriched pathway.
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Hepatic metabolome of young and old mice. (A) PCA of metabolites identified in negative-ion mode. (B)
PCA of metabolites identified in positive-ion mode. (C) Volcano plot of metabolites identified in negative-
ion mode. (D) Volcano plot of metabolites identified in positive-ion mode. (E) Pathway analysis of the 43
up-regulated metabolites. (F) Pathway analysis of the 63 down-regulated metabolites.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

2Supplementarymaterial.docx
S1supplementAginglivermultiomicstrans.tif
S2supplementAginglivermultiomicsTQ.tif
S3supplementAginglivermultiomicsTPAc.tif
S4supplementAginglivermultiomicsTPAc.tif
S5supplementAginglivermultiomicsmetabo.tif

TableS1Qualitycontrolmetricsfortranscriptome.xlsx
Page 25/26


https://assets.researchsquare.com/files/rs-104808/v1/12bf3cf70230b39f195b4062.docx
https://assets.researchsquare.com/files/rs-104808/v1/ca83ebd6265947f595e4836f.tif
https://assets.researchsquare.com/files/rs-104808/v1/66cd27170bc128cec08f2a06.tif
https://assets.researchsquare.com/files/rs-104808/v1/f89dd3b3bab751b822d61575.tif
https://assets.researchsquare.com/files/rs-104808/v1/5a4a7b9d193926b3c8132a6a.tif
https://assets.researchsquare.com/files/rs-104808/v1/7389f781b690f7019f130d03.tif
https://assets.researchsquare.com/files/rs-104808/v1/7c8cb67c4562669431994e32.xlsx

TableS2TopenrichedKEGGpathwaysandtranscripts.xlsx
TableS3TopenrichedKEGGpathwaysandproteins.xlsx
TableS4Alterationofhistones.xlsx
TableS5TopenrichedKEGGpathwaysandacetylatedproteins.xlsx

TableSéDifferentiallyregulatedmetabolites.xlsx

Page 26/26


https://assets.researchsquare.com/files/rs-104808/v1/287c8bd24ffa79dde381fdd2.xlsx
https://assets.researchsquare.com/files/rs-104808/v1/e3681f71b0013fa3d06177a2.xlsx
https://assets.researchsquare.com/files/rs-104808/v1/0d50abf86fb3d032c3aef24c.xlsx
https://assets.researchsquare.com/files/rs-104808/v1/1601a806797c1eff4eaf0ea6.xlsx
https://assets.researchsquare.com/files/rs-104808/v1/651cdfd4ae54b1e4b363b9be.xlsx

