1. Marañón, E., Salter, A.M., Castrillón, L., Heaven, S., Fernández-Nava Y.: Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Manag. 31, 1745-1751 (2011)
2. Stahel, W.R.: The circular economy. Nature, 531, 435-438 (2016). doi: 10.1038/531435a.
3. Blades, L., Morgan, K., Douglas, R., Glover, S., De Rosa, M., Cromie, T., Smyth, B.: Circular Biogas-Based Economy in a Rural Agricultural Setting. Energy Procedia 123, 89–96 (2017). https://doi.org/10.1016/j.egypro.2017.07.255
4. Benato, A., Macor, A.: Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. Energies 12(6), 979 (2019). https://doi.org/10.3390/en12060979.
5. Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., Sghir, A.: Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3, 700–714 (2009). https://doi.org 10.1038/ismej.2009.2.
6. Enzmann, F. Mayer, F., Rother, M., Holtmann. D.: Methanogens: biochemical background and biotechnological applications. AMB Express 4, 8 (2018), https://doi.org 10.1186/s13568-017-0531-x.
7. Conrad, R.: Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere 30, 25-39 (2020). https://doi.org/10.1016/S1002-0160(18)60052-9.
8. Yekta, S.S., Ziels, R.M., Björn, A., Skyllberg, U., Ejlertsson, J., Karlsson, A., Svedlund, M., Willén, M., Svensson, B.H.: Importance of sulfide interaction with iron as regulator of the microbial community in biogas reactors and its effect on methanogenesis, volatile fatty acids turnover, and syntrophic long-chain fatty acids degradation, J.Biosci. Bioeng. 123(5), 597-605 (2017). https://doi.org/10.1016/j.jbiosc.2016.12.003.
9. Dai, X.H., Hu, C.L., Zhang, D., Dai, L.L., Duan, N.N.: Impact of a high ammonia- ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion. Bioresour. Technol. 245, 598-605 (2017), doi: 10.1016/j.biortech.2017.08.208.
10. Ziyi, Y., Wen, W., Yanfeng, H., Ruihong, Z., Guangqing, L.: Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renew. Energy 125, 915-925 (2018) https://doi.org/10.1016/j.renene.2018.03.032.
11. Raskin, L., Zheng, D., Griffin, M.E., Stroot, P.G., Misra, P.: Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Van Leeuwenhoek 68, 297–308 (1995). https://doi.org/10.1007/BF00874140.
12. Krause, L., Diaz, N.N., Edwards, R.A., Gartemann, K.H., Krömeke, H., Neuweger, H., Pühler, A., Runte, K.J., Schlüter, A., Stoye, J., Szczepanowski, R., Tauch, A., Goesmann, A.: Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J. Biotechnol. 136, 91–101 (2008),
13. Yu, Y., Lee, C., Kim, J., Hwang, S.: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction, Biotechnol. Bioeng. 89, 670–679 (2005). https://doi.org/10.1002/bit.20347.
14. Sundberg, C., Al-Soud, W.A., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J., Karlsson, A.: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol., 85, 612–626 (2013). https://doi.org/10.1111/1574-6941.12148.
15. Ma, S., Jiang, F., Huang, Y., Zhang, Y., Wang, S., Fan, H., Liu, B., Li, Q., Yin, L., Wang, H., Liu, H., Ren, Y., Li, S., Cheng, L., Fan, W., Deng. Y.: A microbial gene catalog of anaerobic digestion from full-scale biogas plants. Gigascience, 10 giaa164 (2021). https://doi.org/10.1093/gigascience/giaa164.
16. Luton, P.E., Wayne, J.M., Sharp, R.J., Riley, P.W.: The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148 3521–3530 (2002). https://doi.org/10.1099/00221287-148-11-3521.14 S.
17. Rastogi, G., Ranade, D.R., Yeole, T.Y., Patole, M.S. Shouche, Y.S.: Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes, Bioresour. Technol. 99 5317–5326 (2008). https://doi.org/10.1016/j.biortech.2007.11.024
18. Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., Nazaret, S.: Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints. Appl. Environ. Microbiol. 67, 4479-87 (2001). https://doi.org/10.1128/aem.67.10.4479-4487.2001
19. Tao, Y., Ersahin, M.E., Ghasimi, D.S.M., Ozgun, H., Wang, H., Zhang, X., Guo, M., Yang, Y., Stuckey, D.C., van Lier, J.B.: Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota, Chem. Eng. J. 380, 122425 (2020). https://doi.org/10.1016/j.cej.2019.122425.
20. Hewson, I., Fuhrman, J.A.: Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol. 70, 3425–3433 (2004). https://doi.org/10.1128/AEM.70.6.3425.
21. Kovacs, A., Yacoby, K., Gophna, U.: A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Res. Microbiol. 161, 192–197(2010). https://doi.org/10.1016/j.resmic.2010.01.006
22. Milani, C., Hevia, A., Foroni, E., Duranti, S., Turroni, F., Lugli, G.A., Sanchez, B., Martín, R., Gueimonde, M., van Sinderen, D., et al.: Assessing the fecal microbiota: An optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE, 8, e68739, (2013), https://doi.org/10.1371/journal.pone.0068739
23. Fischer, M.A., Güllert, S., Neulinger, S.C., Streit, W.R., Schmitz, R.A.: Evaluation of 16S rRNA gene primer pairs for monitoring microbial community structures showed high reproducibility within and low comparability between datasets generated with multiple archaeal and bacterial primer pairs. Front. Microbiol. 7, 1297-1311 (2016). https://doi.org/10.3389/fmicb.2016.01297
24. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Gonzalez Peña, A., Goodrich, J.K., Gordon J.I., et al.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7, 335-336 (2010). https://doi.org/10.1038/nmeth.f.303.
25. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., Holmes, S.P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods 13, 581–583 (2016). https://doi.org/10.1038/nmeth.3869.
26. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O.: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res. 41, D590–D596 (2013). https://doi.org/10.1093/nar/gks1219.
27. Liu, T., Sun, L., Müller, B., Schnürer, A.: Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour. Technol. 245, 768–777 (2017). https://doi.org/10.1016/j.biortech.2017.08.213.
28. Cardinali-Rezende, J., Colturato, L.F.D.B., Colturato, T.D.B., Chartone-Souza, E., Nascimento, A.M.A., Sanz, J.L.: Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour. Technol. 119, 373–383 (2012). https://doi.org/10.1016/j.biortech.2012.05.136.
29. Kröber, M., Bekel, T., Diaz, N.N., Goesmann, A., Jaenicke, S., Krause, L., Miller, D., Runte, K.J., Viehöver, P., Pühler, A., Schlüter, A.: Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J. Biotechnol. 142, 38–49 (2009). https://doi.org/10.1016/j.jbiotec.2009.02.010.
30. Wei, J., Ge, T., Wah, Y.: Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation. Waste Manag. 71, 334–341 (2018). https://doi.org/10.1016/j.wasman.2017.10.007.
31. Calusinska, M., Goux, X., Fossépré, M., Muller, E.E.L., Wilmes, P., Delfosse, A.: A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems, Biotechnol Biofuels. 111–19 (2018). https://doi.org/10.1186/s13068-018-1195-8.
32. Pelletier, E., Kreimeyer, A., Bocs, S., Rouy, Z., Gyapay, G., Chouari, R., Rivière, D., Ganesan, A., Daegelen, P., Sghir, A., Cohen, G.N., Médigue, C., Weissenbach, J., Le Paslier, D.: “Candidatus Cloacamonas acidaminovorans”: Genome sequence reconstruction provides a first glimpse of a new bacterial division, J. Bacteriol. 190, 2572–2579 (2008). https://doi.org/10.1128/JB.01248-07.
33. Dyksma, S., Gallert, C.: Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion, Environ. Microbiol. Rep. 11, 558–570 (2019). https://doi.org/10.1111/1758-2229.12759.
34. Conklin, A.S., Stensel, H.D., Ferguson, J.F.: The growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Proc. Water Environ. Fed. 2005, 100–121(2012). https://doi.org/ 10.2175/193864705783867792.
35. Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I.: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 72, 5138–5141 (2006). https://doi.org/10.1128/AEM.00489-06.
36. Powell, J.M., Broderick, G.A., Misselbrook, T.H.: Seasonal diet affects ammonia emissions from tie-stall dairy barns, J. Dairy Sci. 91857–869 (2008). https://doi.org/10.3168/jds.2007-0588.
37. Minato, K., Kouda, Y., Yamakawa, M., Hara, S., Tamura, T., Osada, T.: Determination of GHG and ammonia emissions from stored dairy cattle slurry by using a floating dynamic chamber, Anim. Sci. J. 84, 165–177(2013). https://doi.org/10.1111/j.1740-0929.2012.01053.x.
38. Nobu, M.K., Narihiro, T., Kuroda, K., Mei, R., Liu, W.T.: Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen, ISME J. 10, 2478–2487 (2016). https://doi.org/10.1038/ismej.2016.33.
39. D. Wilkins, X-Y. Lu, Z. Shen, J. Chen, P.K.H. Lee, Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters, Appl. Environ. Microbiol. 81, 604–613 (2015). https://doi.org 10.1128/aem.02566-14
40. Shakeri Yekta, S., Liu, T., Axelsson Bjerg, M., Safaric, L., Karlsson, A., Bjorg, A., Schnurer, A.: Sulfide level in municipal sludge digesters affects microbial community response to long-chain fatty acid loads, Biotechnol. Biofuels 12, 259-273 (2019). https://doi.org/10.1186/s13068-019-1598-1
41. Yang, J., Wang, D., Luo, Z., Zeng, W., Huang, H.: The role of reflux time in a leach bed reactor coupled with a methanogenic reactor for anaerobic digestion of pig manure: Reactor performance and microbial community, J. Clean Prod. 242, 118367(2020). https://doi.org/10.1016/j.jclepro.2019.118367
42. Ozbayram, E., Ince, O., Ince, B., Harms, H., Kleinsteuber, S.: Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters, Microorganisms 6, 15 (2018). https://doi.org 10.3390/microorganisms6010015.
43. Ciotola, R.J., Martin, J.F., Castańo, J.M., Lee, J., Michel, F.: Microbial community response to seasonal temperature variation in a small-scale anaerobic digester. Energies 6, 5182–5199 (2013). https://doi.org 10.3390/en6105182.
44. Wahid, R., Mulat, D.G., Gaby, J.C., Horn, S.J.: Effects of H2:CO2 ratio and H2 supply fluctuation on methane content and microbial community composition during in-situ biological biogas upgrading. Biotechnol Biofuels 12, 104 (2019), https://doi.org/10.1186/s13068-019-1443-6.
45. Lang, K., Schuldes, J., Klingl, A., Poehlein, A., Daniel, R., Brune, A.: New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”, Appl. Environ. Microbiol. 81, 1338–1352 (2015). https://doi.org/10.1128/AEM.03389-14
46. Langer, S.G., Ahmed, S., Einfalt, D., Bengelsdorf, F.R., Kazda, M.: Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage. Microb. Biotechnol. 8, 828-836 (2015)
47. Cardinale, M., Brusetti, L., Quatrini, P., Borin, S., Puglia, A.M., Rizzi, A., Zanardini, E., Sorlini, C., Corselli, C., Daffonchio, D.: Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl. Environ. Microbiol. 70, 6147-6156 (2004). https://doi.org/10.1128/AEM.70.10.6147-6156.2004
48. Klocke, M., Nettmann, E., Bergmann, I., Mundt, K., Souidi, K., Mumme, J., Linke, B.: Characterization of the methanogenic Archaea within two-phase biogasreactor systems operated with plant biomass. Syst. Appl. Microbiol. 31, 190–205 (2008). https://doi.org/10.1016/j.syapm.2008.02.003