1. Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).
2. Gauthier, S. et al. Vulnerability of timber supply to projected changes in fire regime in Canada’s managed forests. Can. J. For. Res. 45, 1439–1447 (2015).
3. Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U. S. A. 105, 1551–1555 (2008).
4. Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).
5. D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 1–10 (2018).
6. Loehle, C. & Solarik, K. A. Forest growth trends in Canada. For. Chron. 95, 183–195 (2019).
7. Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, (2018).
8. Boisvenue, C. & Running, S. W. Impacts of climate change on natural forest productivity - Evidence since the middle of the 20th century. Glob. Chang. Biol. 12, 862–882 (2006).
9. Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D. & Volney, W. J. A. An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues1. Environ. Rev. 21, 207–226 (2013).
10. Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).
11. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R. & Kauppi, P. E. A large and persistent carbon sink in the world’s forests. Science (80-. ). 333, 988–993 (2011).
12. FAO. Global forest resources assessment - 2020 key findings. (2020).
13. Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M. & Dosio, A. Linking Global to Regional Climate Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. (2021).
14. Taylor, A. R. et al. A review of natural disturbances to inform implementation of ecological forestry in nova scotia, canada. Environ. Rev. 28, 387–414 (2020).
15. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).
16. Kurz, W. A. et al. Carbon in Canada’s boreal forest — A synthesis. Environ. Rev. 21, 260–292 (2013).
17. Brecka, A. F. J. et al. Sustainability of Canada’s forestry sector may be compromised by impending climate change. For. Ecol. Manage. 474, 118352 (2020).
18. D’Orangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science (80-. ). 352, 1452–1455 (2016).
19. Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: An analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, (2018).
20. Kurz, W. A., Stinson, G. & Rampley, G. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos. Trans. R. Soc. B Biol. Sci. 363, 2261–2269 (2008).
21. Babst, F. et al. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 22, 706–717 (2013).
22. Girardin, M. P., Raulier, F., Bernier, P. Y. & Tardif, J. C. Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches. Ecol. Modell. 213, 209–228 (2008).
23. Rollinson, C. R. et al. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Glob. Chang. Biol. 23, 2755–2767 (2017).
24. Tei, S. et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob. Chang. Biol. 23, 5179–5188 (2017).
25. Zhang, Z. et al. Converging climate sensitivities of European forests between observed radial tree growth and vegetation models. Ecosystems 21, 410–425 (2018).
26. Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).
27. Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A. & Burlando, P. Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues. J. Geophys. Res. Biogeosciences 118, 505–528 (2013).
28. Trouillier, M. et al. Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees - Struct. Funct. 33, 183–192 (2019).
29. Mérian, P. & Lebourgeois, F. Size-mediated climate-growth relationships in temperate forests: A multi-species analysis. For. Ecol. Manage. 261, 1382–1391 (2011).
30. Chen, H. Y. H., Luo, Y., Reich, P. B., Searle, E. B. & Biswas, S. R. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. Ecol. Lett. 19, 1150–1158 (2016).
31. Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, 1–11 (2021).
32. Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
33. Buechling, A., Martin, P. H. & Canham, C. D. Climate and competition effects on tree growth in Rocky Mountain forests. J. Ecol. 105, 1636–1647 (2017).
34. Zhang, J., Huang, S. & He, F. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc. Natl. Acad. Sci. U. S. A. 112, 4009–4014 (2015).
35. Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).
36. D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Change 60, 289–305 (2008).
37. Hember, R. A., Kurz, W. A. & Girardin, M. P. Tree ring reconstructions of stemwood biomass indicate increases in the growth rate of black spruce trees across boreal forests of Canada. J. Geophys. Res. Biogeosciences 124, 2460–2480 (2019).
38. Babst, F. et al. When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
39. Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 1–9 (2018).
40. Nehrbass-Ahles, C. et al. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Chang. Biol. 20, 2867–2885 (2014).
41. Brienen, R. J. W., Gloor, M. & Ziv, G. Tree demography dominates long-term growth trends inferred from tree rings. Glob. Chang. Biol. 23, 474–484 (2017).
42. Duchesne, L. et al. Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Sci. Rep. 9, 6832 (2019).
43. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).
44. Way, D. A. & Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30, 669–688 (2010).
45. Kauppi, P. E., Posch, M. & Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS One 9, 1–6 (2014).
46. McMahon, S. M., Parker, G. G. & Miller, D. R. Evidence for a recent increase in forest growth. Proc. Natl. Acad. Sci. U. S. A. 107, 3611–3615 (2010).
47. Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Chang. Biol. 19, 3167–3183 (2013).
48. Berner, L. T., Beck, P. S. A., Bunn, A. G. & Goetz, S. J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Chang. Biol. 19, 3449–3462 (2013).
49. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795 (2016).
50. Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
51. Zhang, X. et al. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Glob. Chang. Biol. 25, 3462–3471 (2019).
52. Luo, Y., Chen, H. Y. H., McIntire, E. J. B. & Andison, D. W. Divergent temporal trends of net biomass change in western Canadian boreal forests. J. Ecol. 107, 69–78 (2019).
53. Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl. Acad. Sci. U. S. A. 109, 2423–2427 (2012).
54. Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 1–7 (2014).
55. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
56. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).
57. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, 1–13 (2019).
58. Berner, L. T., Law, B. E. & Hudiburg, T. W. Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US. Biogeosciences 14, 365–378 (2017).
59. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
60. Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-. ). 349, 528–532 (2015).
61. Clark, J. S. et al. The impacts of increasing drought on forest dynamics , structure , and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).
62. Hember, R. A., Kurz, W. A. & Coops, N. C. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America. Glob. Chang. Biol. 23, 1691–1710 (2017).
63. Hember, R. A. et al. Accelerating regrowth of temperate-maritime forests due to environmental change. Glob. Chang. Biol. 18, 2026–2040 (2012).
64. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science (80-. ). 300, 1560–1563 (2003).
65. Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Chang. Biol. 22, 627–643 (2016).
66. Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
67. Soja, A. J. et al. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Change 56, 274–296 (2007).
68. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
69. Huang, J. A. et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob. Chang. Biol. 16, 711–731 (2010).
70. Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl. Acad. Sci. U. S. A. 113, E8406–E8414 (2016).
71. Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Global Biogeochem. Cycles 31, 134–158 (2017).
72. Barber, V. A., Juday, G. P. & Finney, B. P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668–673 (2000).
73. Hogg, E. H., Michaelian, M., Hook, T. I. & Undershultz, M. E. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Glob. Chang. Biol. 23, 5297–5308 (2017).
74. D’Arrigo, R. D. et al. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem. Cycles 18, 1–7 (2004).
75. Juday, G. P., Alix, C. & Grant, T. A. Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift. For. Ecol. Manage. 350, 46–61 (2015).
76. Chen, L. et al. Drought explains variation in the radial growth of white spruce in western Canada. Agric. For. Meteorol. 233, 133–142 (2017).
77. Hynes, A. & Hamann, A. Moisture deficits limit growth of white spruce in the west-central boreal forest of North America. For. Ecol. Manage. 461, 117944 (2020).
78. Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. For. Ecol. Manage. 448, 355–363 (2019).
79. Girard, F., Payette, S. & Gagnon, R. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. J. Biogeogr. 35, 529–537 (2008).
80. Girard, F., Payette, S. & Gagnon, R. Origin of the lichen-spruce woodland in the closed-crown forest zone of eastern Canada. Glob. Ecol. Biogeogr. 18, 291–303 (2009).
81. Jasinski, J. P. P. & Payette, S. The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecol. Monogr. 75, 561–583 (2005).
82. Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 1–12 (2019).
83. Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang. Biol. 17, 2084–2094 (2011).
84. Brice, M. H. et al. Moderate disturbances accelerate forest transition dynamics under climate change in the temperate–boreal ecotone of eastern North America. Glob. Chang. Biol. 26, 4418–4435 (2020).
85. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science (80-. ). 353, 1113 (2016).
86. Burrill, E. A., Wilson, A. M., Turner, J. A., Pugh, S. A. & Menlove, J. The Forest Inventory and Analysis Database: Database Description and User Guide for Phase 2. 2, (2015).
87. Direction des inventaires forestiers du ministère des Forêts de la Faune et des Parcs. Inventaire écoforestier placettes-échantillonspermanentes Québec. (2018).
88. Forestry branch of Manitoba. Manitoba Permanent Sample Plot Manual. (2008).
89. Nova Scotia Department of Natural Resources. Forest Inventory Permanent Sample Plot Field Measurement Methods And Specifications. (2002).
90. Ontario Ministry of Natural Resources and Forestry. Ontario Growth and Yield Program PSP and PGP Reference Manual. (2016).
91. Porter, K. B., Maclean, D. A., Beaton, K. P. & Upshall, J. New Brunswick permanent sample plot database (PSPDB v1.0): User’s guide and analysis. (2001).
92. Public Lands and Forests Division. Alberta permanent sample plot (PSP) field procedures manual. (2005).
93. Saskatchewan Ministry of Environment Forest Service. Saskathewan Permanent Sample Plots. (2011).
94. Wykoff, W. R., Crookston, N. L. & Stage, A. R. User’s guide to the stand prognosis model. USDA Forest Service Gen.Tech.Rep. (1982).
95. Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).
96. McKenney, D. W. et al. Customized Spatial Climate Models for North America. Am. Meteorol. Soc. 1612–1622 (2011).
97. Harvey, J. E. et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 26, 2505–2518 (2020).
98. Renard, S. M., Mcintire, E. J. B. & Fajardo, A. Winter conditions - not summer temperature - influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec. J. Veg. Sci. 27, 29–39 (2016).
99. R Core Team. R: A language and environment for statistical computing. (2021). Available at: https://www.r-project.org.
100. Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).
101. Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. For. Meteorol. 178–179, 173–182 (2013).
102. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
103. Caruana, R. & Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. in In: Proceeding of the 23rd International Conference on Machine Learning (2006).
104. Greenwell, B., Boehmke, B. & Cunningham, J. gbm: Generalized boosted regression models. (2020).
105. Kuhn, M., Weston, S., Williams, A. & Keefer, C. caret: classification and regression training. 1–224 (2021).
106. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics (2009).
107. Greenwell, B. pdp: Partial Dependence Plots. (2018).
108. Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954 (2008).
109. van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).
110. Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).
111. Marshall, I. B., Schut, P. H. & Ballard, M. A national ecological framework for Canada: Attribute Data. (1999).
112. Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18, 2255–2261 (2009).