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Abstract 

Cognitive dysfunction related to opioid use disorder (OUD) requires investigation of the 

interconnected network of cognitive domains through behavioral experiments and graph data 

modeling. Here, we conducted n-back, selective and divided attention, and Wisconsin card 

sorting tests and then reconstructed the interactive cognitive network of subscales or domains 

for opioid users and non-users to identify the most central cognitive functions and their 

connections using graph model analysis. Then, each network was analyzed topologically 

based on the betweenness and closeness centrality measures. Results from the opioid users’ 

network show that in the divided attention module, the reaction time and the number of 

commission errors were the most central subscales of cognitive function. Whereas in non-

users, the number of correct responses and commission errors were the most central cognitive 

measure. These findings corroborate that opioid users show impaired divided attention as 

higher reaction time and errors in performing the tasks. Divided attention is the most central 

cognitive function in both OUD subjects and non-users, although differences were observed 

between the subscales of the two groups. Therefore, divided attention is a promising target 

for future cognitive therapies, treatments and rehabilitation as its improvement may lead to an 

enhancement of overall cognitive domain performance. 

Keywords: Opioid use disorder; Graph model; Cognitive network; Centrality; Divided 

attention  

 

 

 

 



3 
 

1. Introduction 

Substance use disorder (SUD) is defined as a condition which leads to an inability to 

control the use of a legal or illegal drug or medication. It usually begins with recreational use 

of a drug in social situations or with exposure to prescribed medications. As time passes by, 

larger doses of the drug may be needed to produce hedonism, and over a longer term the drug 

will be needed just to create euphoric effects. Attempts to quit can often cause withdrawal 

symptoms and induce physical or mental indications of anxiety, irritability, fatigue, 

depression, difficulty concentrating and mood disturbances 1,2.  

Reports show that the number of drug users has grown by about 33% from 1990 to 2017, 

reaching about 7.7 million people worldwide. The latest report published by the United 

Nations Office on Drugs and Crime (UNODC) in 2021 reveals that around 275 million 

people use drugs worldwide, while over 36 million people suffered from drug use disorders 3. 

This increase has occurred mostly in the regions with low, low-middle and middle socio-

demographic index. Meanwhile, opioid use disorder accounted for most of the cases with its 

proportion increasing from 47.18% in 1990 to 53.1% in 2017 4, and continues to account for 

the largest burden of disease attributed to drug use 3. 

The class of opioids includes opium and heroin which are extracted directly from the 

poppy plant (Papaver somniferum), synthetic opioids such as fentanyl, and pain relievers 

available legally by prescription such as oxycodone, hydrocodone, codeine, methadone, and 

morphine 5. All opioids have the same core structure and affect the same receptors in the 

brain and body. The most common side effects of opioid use are drowsiness, confusion, 

nausea, constipation, euphoria, and slowed breathing 6. However, in case of overdose it can 

also lead to death. According to the World Health Organization (WHO), more than 70% of 

about 500,000 drug-associated deaths are related to opioids 3. 

In addition to opioid agonists such as buprenorphine, methadone and naltrexone which 

are the most common medications used to treat opioid use disorder 7, non-pharmacological 

treatments such as exercise therapy, cognitive behavioral therapy (CBT), group support 

activities, mindfulness, stress reduction, and patient education have also been administered 

for many years 8,9. Furthermore, as it has been reported that opioid use is associated with 

impaired cognitive functions, cognitive rehabilitation has also been the focus of attention in 

recent years 10. 

A large body of evidence demonstrates that opioid users suffer from substantial deficits in 

working memory 11, attention 12, cognitive flexibility and speed of mental processing 13, and 

problem-solving skills 14. However, it is still unclear that which cognitive domain is most 

affected by opioid use, or which cognitive domain should be prioritized if a cognitive 

rehabilitation approach is used. Also, not enough evidence is available to justify enhancement 

of other cognitive domains in opioid users if only a single specific cognitive domain shows 

improvement. 

In this study, we first evaluated and compared the basic cognitive functions of a group of 

opioid users and a group of non-users. Then, correlation analysis has been conducted between 

each two estimated subscales of different cognitive tests and showed every significant 

correlation between each two subscales by a link shown as edges of an interactive network 
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that we reconstructed for each group. These networks were analyzed topologically and the 

most important nodes of each network were identified by betweenness and closeness 

centrality values. This approach which is mainly based on graph theory in mathematics has 

previously been employed to analyze interactive gene networks in studies on different 

psychiatric disorders 15,16 to identify the nodes such as genes or test subscales that play the 

most important role in controlling the flow of information in that network. In fact, the 

topology of the entire network can be notably modified through adjusting the activity of these 

most central nodes. Therefore, by identifying the most prominent cognitive domains that 

might be susceptible or impaired in opioid users compared to non-user individuals, it is 

possible to understand the differences in cognitive networks between the two groups and to 

target the most important cognitive function in users in order to potentially improve their 

whole cognitive profile. 

2. Materials and methods 

2.1. Subjects 

In this study, 53 subjects including 50 males and 3 females were assigned into two groups 

of control (n=20) and opioid users (n=33), and were selected based on the beta power of 95% and 

alpha of 0.05. The age of the participants was between 18 and 60 years old, and their level of 

education was between primary school and master’s degree (Table S1). All subjects were screened 

for neurological conditions or medical history, and none of them had major psychiatric 

comorbidities or acute physical disabilities, and any intellectual disability was also considered as 

exclusion criteria. All procedures performed were in accordance with the ethical criteria of the 

APA, institutional and/or national research committee and with the 1964 Helsinki declaration and 

its later amendments or comparable ethical standards. All participants entered the study with 

informed consent, and the study was approved by the Ethics Committee of the Iran University of 

Medical Sciences, No. IR.IUMS.FMD.REC.1400.108. 

Opioid users were all selected based on the diagnosis of two experienced psychiatrists and 

according to the criteria in the Diagnostic and Statistical Manual of Mental disorders (DSM-V). 

All users were Persian native speakers and all had a history of opioid substance use for at least 6 

months. Following the examination of our two psychiatrists, subjects in the control group were not 

diagnosed for any major mental disorders and none of them had obvious physical disabilities. 

After recording demographic information such as age, gender, level of education and 

marital status, all participants underwent cognitive assessment using the n-back test, the 

Wisconsin Card Sorting Test (WCST), and the Selective and Divided Attention (SDA) test. 

2.2. The n-back test 

The n-back task is one of the most classical and well-established cognitive paradigms 

for studying working memory (WM). WM is defined as a cognitive system of limited-

capacity that provides temporary storage space as well as required information for cognitive 

functions such as learning, reasoning and language comprehension 17. The n-back task was 

originally introduced by Kirchner as a visuo-spatial test of four load factors (“0-back” to “3-

back”) 18, and then by Mackworth as a visual letter task with up to six load factors that 

present letters or pictures as stimulus sequences 19. Basically, n-back task engages multiple 

processes, such as selection, decision making, suppression and interference separation 20. For 

each item in the sequence, the participant must decide whether the current stimulus matches 

the one displayed “n” trials ago 21. Thus, the subject not only needs the storage and 

continuous information updating in WM, but also requires interference resolution 22. In fact, 
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the participant requires to monitor a series of stimuli and then to respond once the stimulus 

(i.e. letters, numbers or pictures) is similar to that of the previous n trials, where n is a pre-

specified integer as 1, 2, or 3. Responses such as wrong response, no response and correct 

response as well as the reaction time (ms) were selected as four subscales of n-back task in 

this study. 

2.3. The Wisconsin Card Sorting Test (WCST) 

Developed by David Grant and Esta Berg, the WCST is a neuropsychological test that 

is mainly used to measure executive function and higher-level cognitive abilities such as 

perseverance, abstract thinking, cognitive flexibility, and set shifting 23,24. The WCST 

consists of four stimulus cards and 64 response cards and there are various geometric shapes 

in different dimensions (colors, forms and numbers). The participants are expected to identify 

the specific sorting rule and accurately match every response card with one of four stimulus 

cards through the feedback based on a rule 23. The sorting rule that the participants identify 

through a process of trial and error is the dimension that each card should be correctly 

matched. For instance, a response card with three red stars can be matched according to color 

(red), form (star), or number (three). Following each response, the subject receives feedback 

(i.e. ‘correct’ or ‘incorrect’) that is employed to establish the correct sorting rule. Normally, 

the sorting rule changes without previous warning after ten correct responses in a row which 

is referred as completing a category and the subject should start the task again to establish the 

new sorting rule for the next category. Different subscales that were studied in this task 

include number of categories completed, perseverative errors, other types of errors, correct or 

wrong responses, number of total tries and tries to complete the first level, total time (s), 

conceptual level responses, and failure to continue on a specific pattern. The WCST ends 

when either all of the six categories are completed or 128 trials are done.  

2.4. The Selective and Divided Attention (SDA) test 

Here, the SDA test which is a continuous performance task (CPT), is divided into two 

modules. In the selective attention module, participants need to press a special key on the 

keyboard at maximum speed if they see a predetermined item, and to restrain their response if 

they see other stimuli 25. In the divided attention module, participants are requested to press 

specific keys if they see one or both of the predetermined items in their prespecified 

locations, and if they see other stimuli or if they see the predetermined items in the location 

other than their prespecified locations, they need to restrain their response 26.  

2.5. Statistical analysis and cognitive network reconstruction 

The statistical indices of centrality and dispersion of the distribution, including mean 

and standard deviation were used to describe the demographic characteristics as well as the 

performance results of each group in the cognitive tests. In order to compare the nominal 

demographic variables between the two groups, the Fisher's exact test was applied. 

The multivariate generalized linear model (MGLM) was used to compare the 

dependent variables between the two groups. This model provides a regression analysis and 

analysis of variance for multiple dependent variables by one or more factor variables or 

covariates. 

In order to find possible functional interactions between subscales, the correlations 

between each two subscales were calculated by the non-parametric Spearman test in the two 

groups (Table S2, S3). To reconstruct the cognitive interactive network, the correlation tables 

were loaded in the Cytoscape, version 3.8.2. Cytoscape is an open source platform for 
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visualizing interactive cognitive networks and biological pathways in an integrative manner 
27. Functional interactive networks were reconstructed in such a way that each node 

represents one of the evaluated subscales and each edge represents a statistically significant 

correlation.  

2.6. Topological analysis of the reconstructed network 

In order to analyze the networks topologically and to determine the size of each node, 

the betweenness centrality was calculated for each node, using “igraph” package in R ver. 

3.4.0 28. Betweenness centrality, 
B

C , is an invariant of graph that indicates the number of 

times a node acts as a bridge along the shortest path between two other nodes. In other words, 

for a vertex ( )v V G  

( )

( )
( ) st

B

s v t V G st

v
C v


  

   

where 
st

  is the total number of shortest paths from node s  to node t  and ( )
st

v  is the 

number of those paths that pass through v  29. Size of each node in the networks were 

adjusted to display its centrality magnitude. The larger the size of a node, the more central 

role it plays in transmitting information between more pairs of nodes. Based on edge 

betweenness, thickness of edges is adopted to represent the difference in betweenness 

centralities and to better differentiate the most central values. 

Furthermore, closeness centrality (CC) is shown as assigned colors to each of the 

nodes and was used as an index of importance of a vertex within a given complex network 

that measures how close a vertex is to all other vertices in the graph as an index of average 

node distance. Nodes whose color shifted to the red spectrum have a higher CC value, 

meaning that they are closer to other nodes in terms of network topography. However, nodes 

whose color changed to the blue spectrum have a lower CC value, meaning that they are 

farther in relation to other nodes. Thus, the centrality of a node's closeness indicates how far 

that node is on average from other associated nodes and in fact, how much they are involved 

in effectively directing connections in a network. The CC is calculated through the following 

formula: 

( )
( , )

y

N
C x

d y x

  

where ( , )d y x is the distance between nodes x and y , and N is the number of nodes. The 

node properties including mean 
B

C  (Fig. S1) and CC (Fig. S2) for each of the subscales are 

estimated separately for each group. Thickness of each edge was considered proportional to 

their betweenness. The red spectrum indicates positive correlations between nodes and the 

blue spectrum shows negative correlations. In order to find the most important links 

represented as edges, B
C of each link was multiplied by its correlation coefficient and thus its 

weight was calculated (Table S5).  

3. Results 

3.1. Demographic data analysis 

Fisher’s exact test indicated that there is no significant difference between the two 

groups in terms of demographic variables including education level (p=0.549), female to 

male ratio (p=0.338), and marital status (p=0.059) (Table S1). The mean age of the opioid 



7 
 

users and non-user controls was 29.94±9.19 and 36.05±7.75 respectively, and following the 

U Mann-Whitney test, there was a statistically significant difference between the two groups 

[z=-2.55, p =0.011]. Therefore, age was considered as a covariate in other analyzes. 

3.2. MGLM analysis of n-back, SDA and WCST scores 

The MGLM analysis showed that the two groups differed significantly in a number of 

subscales including the number of tries in the WCST [F (1, 53) =7.452, p-value=0.009, 2

p


=0.0171], and divided attention omission errors [F (1, 53)=11.270, p-value=0.002, 2

p


=0.184], and divided attention correct responses [F (1, 53)=7.902, p-value=0.007, 2

p
 =0.170] 

in the SDA test (Fig. 1, Table S4). Significant number of tries in the WCST for opioid users 

compared to non-user controls indicates potential difficulty or dysfunction in higher-level 

cognitive abilities such as perseverance, abstract thinking, cognitive flexibility, and set 

shifting. Furthermore, remarkably more omission errors in divided attention module during 

the SDA task show a potentially diminished divided attention for opioid users compared to 

the control group. This is also corroborated by notably more correct responses in the same 

task and the same module performed by non-user controls.  

3.3. Cognitive function analysis through interactive network reconstruction 

Following the psychological test score analysis for different task subscales and different 

cognitive functions, interactive network of those cognitive domains was reconstructed for 

both groups to illustrate the most central links and cognitive domains with significant 

contribution to changes in cognitive state of the opioid users compared to non-user controls. 

In the reconstructed cognitive network for the subjects with opioid use disorder (Fig. 2A), the 

reaction time (
B

C =0.39, CC=0.58) and the number of commission errors (
B

C =0.37, 

CC=0.56) in the divided attention module of the SDA test show the highest betweenness 

centrality (Fig. S1) and closeness centrality (Fig. S2), meaning that these two subscales are 

the most central for opioid users. These data from the centrality measures of the cognitive 

network support the results from MGLM analysis implying that the opioid users had a 

significant increase in reaction time or a much lower speed during tasks and more errors 

indicative of a potential loss of divided attention. Following the calculation of weight of the 

edges for each of the two linking nodes through multiplication of the B
C  measures and 

correlation coefficients of every two linked subscales, the most important positive link with 

the largest weight was between the number of tries in the WCST and the reaction time in the 

divided attention module of the SDA test (43.87). This highly significant positive link 

between the number of tries and the reaction time justifies the more attempts in performing a 

certain module of the task in relation to the higher reaction time in SDA and potential loss of 

attention in the opioid users. Further, the most important negative link with lowest weight 

was found to be between the number of commission errors and the reaction time of the 

divided attention module in SDA test (-58.03). This largely significant negative link between 

the number of errors and the reaction time also justifies the more errors in performing a 

certain module of the task in relation to the higher reaction time in SDA and potential loss of 

attention in the opioid users. 

On the other hand, in the reconstructed cognitive network for the non-user control 

subjects (Fig. 2B), the number of correct responses ( B
C =0.18, CC=0.64) had the highest 

betweenness centrality (Fig. S1), and the number of commission errors ( B
C =0.14, CC=0.65) 

indicated the highest closeness centrality (Fig. S2) in the divided attention module of the 

SDA task, meaning that these two subscales are the most central for non-user controls. These 



8 
 

results from the centrality measures of the cognitive network also corroborate the data from 

MGLM analysis implying that the non-user controls had significant correct responses 

indicative of a better divided attention. Following the estimation of weight of the edges for 

each of the two linking nodes for every two linked subscales, the most important positive link 

with the largest weight was between the reaction times of the selective and the divided 

attention modules in the SDA test (27.27). This largely significant positive link between the 

reaction times of the attention module justifies the importance of reaction time in both 

selective and divided modules in maintaining attention during the SDA task. Further, the 

most important negative link with lowest weight was found to be between the number of tries 

to complete the first level in the WCST and the reaction time in the divided attention module 

of the SDA test (-18.43). This highly significant negative link between the number of tries in 

WCST and the reaction time in SDA also justifies the fewer attempts in performing a certain 

module of a task such as the first level of the WCST in relation to the lower reaction time in 

the divided attention module of the SDA test which indicates intact divided attention skills in 

non-users. 

4. Discussion 

In this study, we first evaluated basic cognitive functions including selective and 

divided attention, working memory and cognitive flexibility; and then compared the subscale 

scores between subjects with opioid use disorder and non-users. The results showed that the 

total number of tries in the WCST, and the number of omission errors in the divided attention 

module in substance users were significantly higher than the control group. This is while, 

subjects with opioid use disorder had a notably lower number of correct responses in the 

divided attention module compared to the control group, implying a remarkable impaired 

divided attention in drug users. 

The negative impact of opioid use on cognitive functions has been proven in several 

studies. For example, Pau et al. found that heroin addiction has a negative effect on impulse 

control 30. Hekmat et al. reported that subjects with opioid addiction had significantly lower 

cognitive flexibility, attention and speed of mental processing compared to the controls 31. 

Furthermore, Yan et al. found that subjects with heroin addiction had remarkably impaired 

working memory and performed poorly in affective decision-making tasks in comparison 

with non-user controls 32; and Huili et al. also revealed that switching attention is 

significantly impaired in opioid users which may be related to the impairment of their 

sustained attention function 33. Opioid-induced cognitive impairment can be elaborated 

through its destructive effect on brain structure and function, as opioids may exert various 

neurotoxic mechanisms in the brain such as neuronal apoptosis, gray matter loss, 

mitochondrial and synaptic dysfunctions as well as disruption in neurogenesis 34. 

Additionally, through using different imaging modalities such as structural magnetic 

resonance imaging (MRI), diffusion tensor imaging (DTI) and resting-state functional MRI, 

Upadhyay et al. demonstrated that individuals with opioid use disorder display bilateral 

volumetric loss in the amygdala and has significantly decreased anisotropy in ventral 

amygdalo-fugal axonal pathway and uncinate fasciculus as well as the internal and external 

capsules, and significant decreases in functional connectivity in the anterior insula, nucleus 

accumbens and amygdala 35.  

Subsequently, we reconstructed cognitive interactive networks for both groups based 

on the correlations between the acquired subscale scores. In the topological network 

reconstruction for opioid users, the reaction time and the number of commission errors had 

the highest centrality meaning that the higher reaction time and commission errors are the 

most important parameters indicative of attention deficits in that particular cognitive domain. 
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Whereas in the control group, the number of correct responses and commission errors in the 

divided attention module was marked as the most central subscales showing their normal 

performance within that particular cognitive domain. 

Divided attention could be defined as the brain's ability to attend to two or more 

different stimuli at the same time, and respond to the multiple demands simultaneously 36. In 

other words, divided attention is the ability to process different information sources 

successfully and carry out multiple tasks at a time 36,37. It is believed that a widespread 

bilateral network, including dorso- and ventrolateral prefrontal cortex, superior and inferior 

parietal cortex, and anterior cingulate gyrus are highly involved in divided attention 38. With 

regards to the divided attention, we found that the most important links shown with larger 

edge thickness are between the subscales of the divided attention module with the subscales 

of other tests. In the cognitive network reconstructed for opioid users, the most significant 

positive link was between the number of tries in the WCST and the reaction time in the 

divided attention module, while the most notable negative correlation was between the 

number of commission errors and the reaction time of the divided attention module 

corroborating the significant link between the higher reaction time and errors in response to 

the WCST task. In the control group network, the most notable positive link was between the 

reaction time of the selective and the divided attention modules, while the most significant 

negative correlation was between the number of tries to complete the first level in the WCST 

and the reaction time in the divided attention module. Based on almost all memory models, 

including the multi-store model of memory 39, the working memory model 40 and the 

attention to memory model 41, attention is the gateway of information to memory processing. 

Therefore, poor attention interferes with the flow of information needed for memory 

processing at higher levels. 

From the structural point of view, divided attention requires the coordinated and 

integrated functioning of different regions of both hemispheres of the brain. As we also 

indicated, the regions involved in divided attention largely overlap with the regions involved 

in other cognitive functions. Therefore, dysfunction of the brain regions involved in divided 

attention can also be associated with dysfunction in other cognitive domains.  

5. Conclusions 

Given these two perspectives, and also with respect to the cognitive networks 

reconstructed in our study, it seems that improving divided attention may moderate the entire 

cognitive network in both opioid user and non-user groups. With follow-up experimental 

investigations, it is possible to identify the target cognitive functions related to these 

cognitive domains in different groups of drug users to be able to establish more affordable, 

time-effective and clinically efficient cognitive therapies in future. In addition, future studies 

may consider larger and more homogeneous populations, with equal proportions of males and 

females, and take into account other factors such as dose and duration of drug use. Other 

cognitive domains, such as planning and problem-solving abilities, risky decision-making, 

and the level of anxiety or depression can also be assessed to reconstruct far more 

comprehensive cognitive networks. 
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Figure Legends 

Fig. 1. Comparison of the mean score of different test subscales between subjects with opioid 

use disorder and non-user controls. Multivariate generalized linear model (MGLM) was used 

to compare the dependent variables of subscales in different tasks between the opioid users 

and non-users. Significant differences are observed in the number of tries, omission errors 

and correct responses between opioid users and non-user controls. P< 0.05 was considered 

statistically significant. Bars represent mean scores ± SD. ** (P<0.01) significant for mean 

score of subscales between the two groups.  

Fig. 2. Representation of the interactive cognitive domain networks for opioid users and non-

user controls. Following n-back, WCST and SDA tests, subscale scores were collected and 

after series of correlation and MGLM analyses, cognitive domain networks were 

reconstructed for (A) subjects with opioid use disorder and (B) non-user controls. The 

circular nodes represent the cognitive functions or different subscales within every task. The 

size of the nodes represents betweenness centrality (CB) and larger nodes mean greater 

centrality magnitudes. Colors to each of the nodes indicate the closeness centrality (CC), as 

an index of importance of a vertex within a given complex network. Nodes whose color 

shifted to the red spectrum have a higher CC value, meaning that they are closer to other 

nodes in terms of network topography. However, nodes whose color changed to the blue 

spectrum have a lower CC value, meaning that they are farther in relation to other nodes. The 

centrality of a node's closeness indicates how far that node is on average from other 

associated nodes and in fact, how much they are involved in effectively directing connections 

in a network. Thickness of each edge was considered proportional to their betweenness. The 

red spectrum indicates positive correlations between nodes and the blue spectrum shows 

negative correlations. To find the most important links represented as edges, 
B

C of each link 

was multiplied by its correlation coefficient and thus its weight was calculated. (A) In the 

reconstructed cognitive network for the subjects with opioid use disorder, the reaction time (

B
C =0.39, CC=0.58) and the number of commission errors (

B
C =0.37, CC=0.56) in the 

divided attention module of the SDA test show the highest betweenness centrality and 

closeness centrality, meaning that these two subscales are the most central for opioid users. 

(B) In the reconstructed cognitive network for the non-user control subjects, the number of 

correct responses ( B
C =0.18, CC=0.64) had the highest betweenness centrality, and the 

number of commission errors ( B
C =0.14, CC=0.65) indicated the highest closeness centrality 

in the divided attention module of the SDA task, meaning that these two subscales are the 

most central for non-user controls. 



Figures

Figure 1

Comparison of the mean score of different test subscales between subjects with opioid use disorder and
non-user controls. Multivariate generalized linear model (MGLM) was used to compare the dependent
variables of subscales in different tasks between the opioid users and non-users. Signi�cant differences
are observed in the number of tries, omission errors and correct responses between opioid users and non-
user controls. P< 0.05 was considered statistically signi�cant. Bars represent mean scores ± SD. **
(P<0.01) signi�cant for mean score of subscales between the two groups.



Figure 2

Representation of the interactive cognitive domain networks for opioid users and non-user controls.
Following n-back, WCST and SDA tests, subscale scores were collected and after series of correlation and
MGLM analyses, cognitive domain networks were reconstructed for (A) subjects with opioid use disorder
and (B) non-user controls. The circular nodes represent the cognitive functions or different subscales
within every task. The size of the nodes represents betweenness centrality (CB) and larger nodes mean
greater centrality magnitudes. Colors to each of the nodes indicate the closeness centrality (CC), as an
index of importance of a vertex within a given complex network. Nodes whose color shifted to the red
spectrum have a higher CC value, meaning that they are closer to other nodes in terms of network



topography. However, nodes whose color changed to the blue spectrum have a lower CC value, meaning
that they are farther in relation to other nodes. The centrality of a node's closeness indicates how far that
node is on average from other associated nodes and in fact, how much they are involved in effectively
directing connections in a network. Thickness of each edge was considered proportional to their
betweenness. The red spectrum indicates positive correlations between nodes and the blue spectrum
shows negative correlations. To �nd the most important links represented as edges, of each link was
multiplied by its correlation coe�cient and thus its weight was calculated. (A) In the reconstructed
cognitive network for the subjects with opioid use disorder, the reaction time (CB =0.39, CC=0.58) and the
number of commission errors (CB =0.37, CC=0.56) in the divided attention module of the SDA test show
the highest betweenness centrality and closeness centrality, meaning that these two subscales are the
most central for opioid users. (B) In the reconstructed cognitive network for the non-user control subjects,
the number of correct responses (CB =0.18, CC=0.64) had the highest betweenness centrality, and the
number of commission errors (CB =0.14, CC=0.65) indicated the highest closeness centrality in the
divided attention module of the SDA task, meaning that these two subscales are the most central for non-
user controls.
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