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Abstract

Purpose

Coronary artery microembolization (CME) is a severe clinical complication that can cause myocardial
infarction, induce myocardial inflammation and apoptosis, ultimately lead to cardiac dysfunction. Human
Urinary Kallidinogenase (HUK), a glycoprotein found in human urine, its role and underlying mechanism
in CME are still unclear. Therefore, our goal is to explore the effect of HUK on the PI3K/Akt/FoxO1 axis of
CME in rats, determine whether it can restrain myocardial inflammation and apoptosis, and alleviate
CME-induced myocardial injury.

Methods

We split 40 Sprague-Dawley (SD) rats into CME, CME + HUK, CME + HUK + LY294002 (CME + HUK + LY),
and sham operation groups randomly (10 animals in each group). The dosage of HUK was 0.016
PNA/kg/day. Also, 42um inert plastic microspheres were injected into the left ventricle of rats to establish
the CME model. Notably, rats in the CME+HUK+LY group were injected 10 mg/kg of LY294002 (a
particular inhibitor of PI3K) intraperitoneally 30 minutes before modeling. We measured cardiac function
12 hours after the operation. Besides, the serum of myocardial injury biomarkers and myocardial
inflammation, as well as apoptosis-related genes were measured, the myocardial histopathological
examination was also performed.

Results

Our results indicated that CME induced myocardial inflammation and apoptosis, also caused myocardial
infarction. HUK mainly activated PI3K/Akt/FoxO1 signal transduction, effectively reducing myocardial
inflammation, apoptosis, and myocardial infarction area and improving CME-induced myocardial injury.
In addition, these cardioprotective effects can be reduced by PI3K specific inhibitor LY294002, suggesting
that the above protective effects may be related to the process of activation of the PI3K/ Akt /Fox01 axis.

Conclusion

Our findings revealed that HUK might restrain myocardial inflammation and apoptosis by activating the
PI3K/Akt/Fox01 axis, thus ameliorating CME-induced myocardial injury.

Introduction

Coronary artery microembolism (CME) is a spontaneous event that rises from atherosclerotic plaque
rupture in acute coronary syndrome (ACS) or coronary intervention [1, 2]. It is considered to be the main
complication of percutaneous coronary intervention (PCI) [3]. CME may cause no-reflow of the
myocardium, leading to severe cardiac dysfunction and arrhythmia [4]. Besides, a study by Gerd Heusch
et al. indicated that repetitive CME could cause progressive loss of functional cardiomyocytes and induce
heart failure [5]. It is also reported that the rat CME has a local myocardial infarction, and there are a large
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number of apoptotic and necrotic cells in the corresponding area [6]. In summary, the existing studies
indicate that myocardial inflammation and apoptosis may play a vital part in CME-induced myocardial
damage. So, if targeted interventions on these aspects might be critical to the treatment of myocardial
protection [7-9].

Recently, the potential protective mechanism of the PI3K/ Akt axis in CME has received extensive
attention. For example, previous studies have shown that gustazine can inhibit oxidative stress and
inflammation by influencing the PI3K/Akt pathway, thereby reducing myocardial damage caused by CME
in rats [10]. Human Urinary Kallidinogenase (HUK), a glycoprotein found in male urine, as a modulator of
the kallikrein-kinin system, has been used in a wide range of patients diagnosed with ischemic stroke [11].
Ning Ma et al. confirmed that HUK acts as the factor of anti-inflammatory and anti-apoptotic through
PI3K/Akt/FoxO1 signaling pathway, thereby reducing brain damage in rats with persisting middle cerebral
artery occlusion [12]. However, whether HUK can reduce myocardial damage and improve cardiac
function caused by CME has not been fully elucidated, and further research is still needed.

Hence, our study aims to explore the effect of HUK on myocardial inflammation and apoptosis and
explore its role in the PI3K/Akt/FoxO1 pathway to determine whether it is related to reducing myocardial
damage caused by CME and improving cardiac function.

Materials And Methods

Grouping and CME model establishment

All experimental animals were procured from the Experimental Animal Center of Guangxi Medical
University. The Animal Ethics Committee has approved all experimental protocols and procedures of
Guangxi Medical University. First, altogether 40 male adult Sprague-Dawley (SD) rats weighing 250-300g
were divided into CME, CME+HUK treatment, CME+HUK+LY, and sham operation group (Sham group)
randomly (ten in each group). Subsequently, we constructed the CME model according to the methods
reported in previous studies [9]. Briefly, the intraperitoneal injection was performed (pentobarbital sodium,
30-40 mg/kg) to anesthetizes the SD rats. We used a small animal ventilator to assist breathing. We
conducted a left-sided thoracotomy in the position of the incision between the third and fourth ribs of the
rat. The ascending aorta was separated and gripped for 10s. At the same time, we injected 3000 42um
plastic microspheres (BioSphere Medical Inc., USA) suspended in 0.1 mL sodium lauryl sulfate into the
left ventricle through the cardiac apex. As for the Sham group, an equal volume of saline was injected
into the left ventricle in the same way. The CME+HUK group and CME+HUK+LY group were given HUK
0.016 PNA/kg/day through tail vein injection for 7 consecutive days before the operation. Before the
operation, The CME+HUK+LY group was injected 10 mg/kg of LY294002 (a particular inhibitor of PI3K)
(APEXBIO, Houston, USA) intraperitoneally 30 minutes. All animals were injected with penicillin to prevent
infection.

Cardiac-function measurements
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According to a recent study, the cardiac function of rats is at the lowest level after 12h of the modeling
operation[4]. At this time point, in order to evaluate the cardiac function of the rat, we used the Philips
Sonos7500 system (Philips Technologies, USA) to measure the left ventricular fraction shortening (LVFS),
left ventricular ejection fraction (LVEF), left ventricular end-systolic diameter (LVESd) and left ventricular
end-diastolic diameter (LVEDd) respectively. The measurement was repeated 3 times for each rat, and the
average value was taken. The above operations were all done using the S12 probe with a 12 MHz probe.
Experienced cardiac sonographers were used to carry out all ultrasound examinations.

Serum cTnl\ CK-MB\ LDH\ IL-1B\ TNF-a measurement with ELISA assay.

Blood samples were drawn from the abdominal aorta before sacrificing the rats. Then, the levels of serum
cardiac troponin | (cTnl), creatine kinase myocardial band isoenzyme (CK-MB), lactate dehydrogenase
(LDH), IL-1B, and TNF-a were estimated by utilizing an Enzyme-linked immunosorbent assay (ELISA)
based on the instructions from the manufacturer. All the above tests were performed using standardized
ELISA kits (Bio-Swamp Biological Technology Co., Ltd, China)

Sample collection and processing

Twelve hours after the operation, the rats were sacrificed for sampling after the ultrasound examination
was completed. We performed intraperitoneal injection (pentobarbital sodium, 60mg/kg) to anesthetize
the rats. After rats' blood was collected from the abdominal aorta, subsequently, the heart was isolated
shortly after opening the chest. Then the auricle and atrium were excised, and the cardiac tissue was
separated into upper, mid, as well as bottom sections. The upper and mid was transferred to a refrigerator
at -80 °C to prepare for real-time quantitative PCR (RT-qPCR) as well as Western blotting. 4%
paraformaldehyde was used to fix the bottom section for 12 hours. Then, it was embedded with paraffin
and later used for slice preparation. After hematoxylin-eosin (H&E) staining, the condition of
cardiomyocytes after CME was observed via an optical microscope. Hematoxylin-basic fuchsin-picric
acid (HBFP) staining was used to identify myocardial ischemia, and TdT-mediated dUTP nick end
labeling (TUNEL) staining was utilized to identify the apoptosis of cardiomyocyte.

Detection of myocardial microinfarction area

We detected myocardial ischemia via HBFP staining, which enables ischemic cardiomyocytes to turn red
and staining the cytoplasm as well as the nucleus of healthy cardiomyocytes yellow and blue. Besides,
we observed every stained slice with the aid of a DMR + Q550 pathology image analyzer (Leica, Wetzlar,
Germany). We obtained five fields of view from every slice randomly. Leica Qwin software, as well as the
planar method, were applied to calculate the infarct area. Next, the infarct area was divided by the whole
observation size to measure the infarct percentage.

Detection of cardiomyocyte apoptosis

TUNEL assay (Roche, USA) was performed utilizing a TUNEL apoptosis detection kit to detect

cardiomyocyte apoptosis based on the manufacturer's instructions. The apoptotic cell nucleus was
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yellow-brown under the observation of an optical microscope. 40 non-overlapping regions were randomly
selected from each slice (x400 magnification). Then, the total amount of apoptotic cardiomyocytes, as
well as cardiomyocytes, were counted. The rate of apoptotic cardiomyocytes was obtained with the
formula of the count of apoptotic cardiomyocytes/ the gross count of cardiomyocytes.

Immunofluorescence (IF) Staining

We prepared slices with a thickness of 4 ym and performed immunofluorescence staining based on the
instructions provided by the manufacturer. After completing the previous step, the slices were incubated
with the three antibodies (cleaved caspase-3 (#9661, Cell Signaling Technologies, Danvers, MA, USA), Bax
(ab53154, Abcam, Cambridge, UK), and Bcl-2 (ab194583, Abcam) at 4°C all-night. PBS was utilized to
rinsed slices five times after incubation with primary antibodies. Then, slices were incubated with
fluorescent secondary antibodies for 50 min under the temperature of the room. Subsequently, a
fluorescence microscope (Olympus, Tokyo, Japan) was used to acquire the images after using the 4',6-
diamidino-2-phenylindole (DAPI) to counterstain the nuclei for 7 minutes.

Real-time quantitative PCR quantitative measurement

A tissue sample (200 mg) of cardiac tissues was obtained for real-time quantitative PCR (RT-qPCR).
According to the directives of the kit, we extracted the total RNA of inflammation-related genes (IL-1B,
TNF-a) and used RT-gPCR to identify their relative expression levels in CME. Furthermore, we also
measured the relative expression of Bax, Bcl-2, and caspase-3, which were associated with apoptosis in
the same way. The ABI PRISM-7500 machine (CA, USA) was used to perform RT-qPCR using the TB
Green® Premix Ex Taq™ Il (TaKaRa, Japan). We listed the specific primer sequences adopted in this
experiment in Table 1.

Western blotting analysis

Sodium lauryl sulfate-polyacrylamide gel electrophoresis (10% ~ 15%) was utilized to split the total
protein obtained from cardiac tissues and then transferred it to a polyvinylidene fluoride membrane
(PVDF, Millipore, Atlanta, Georgia, United States). Subsequently, 5% bovine serum albumin (BSA) was
used for sealing the membrane for 1 hour under room temperature. Corresponding primary antibodies all-
night (PI3K (ab40776), p-PI3K (Tyr607) (ab182651), Akt (#9272), p-Akt (Ser473) (ab9271), FoxO1
(ab179450), p-Fox01 (ab259337), Bax (ab53154), Bcl-2 (ab194583), GAPDH (#5174), and cleaved
caspase-3 (#9661)) were then incubated at 4°C. After completing the above processing, the membrane
was washed with Tris-buffered saline including 0.1% Tween 20 (TBST) five times. Then, we incubated the
secondary antibody (ab6721, 1:10000, Abcam) coupled with horseradish peroxidase in TBST for 2 hours
at room temperature. All antibodies (1:1000 dilution) used in our study were procured from Cell Signaling
Technology (Beverly, MA, USA). An enhanced chemiluminescence detection system (Pierce, Rockford, IL,
USA) was used to test the signals. The densitometry technique was used to quantify the protein bands
via ImagedJ software (NIH, USA).
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Statistical Analysis

SPSS software (version 23.0, IBM, Chicago, USA) was used to perform statistical data analysis. Obtained
experimental data were shown as mean  SD (standard deviation). Use One-way Analysis of Variance
(ANOVA) to determine the variance of the difference. GraphPad Prism software was applied for all
statistical tests. The statistical difference is regarded as significant when P<0.05.

Result

Effect of HUK on Cardiac Function of SD Rats.

We measured LVEF, LVFS, LVEDd, and LVESd 12 hours after successful CME modeling to evaluate the
cardiac function of rats. Fig. 1 showed the echocardiogram results of each group. Our study indicated
that compared with the Sham group, the values of LVEF and LVFS in the CME group decreased.
Meanwhile, the LVEDd and LVESd increased (all P <0.05), indicating that the myocardial contractility and
left ventricular enlargement of the CME group were significantly impaired. In addition, the CME+HUK
group had an improved cardiac function, higher LVEF, and LVFS, as well as lower LVEDd and LVESd than
the CME group (all P <0.05). What's more, LY294002 counteracted the cardiac function improved by HUK.

Effect of HUK on the microinfarct size after CME.

H&E and HBFP staining showed only a few sporadic ischemic areas in the Sham group, and no infarction
occurred in most areas (Fig. 2A and 2B). In CME, CME+HUK, and CME+HUK+LY groups, micro-infarct
areas could be seen, most of the infarct areas were located in the left ventricle, and embolized
microspheres can be seen in the field of vision. The results of H&E staining indicated that cardiomyocytes
of the micro-infarct area were of no nucleus or ruptured nucleus; the cytoplasm was also red. In addition,
the area around the infarct showed swelling and degeneration of cardiomyocytes, red blood cell effusion,
as well as inflammatory cell infiltration simultaneously. Our HBFP staining results showed that the infarct
area of the CME rat was significantly wider than that in the Sham group (P <0.05). Besides, the infarct
area in the CME rat was also significantly wider than that in the CME+HUK group (P <0.05). Our results
indicated that HUK pretreatment might reduce the myocardial microinfarction area, which was inducted
by CME in rats. Whereas the treatment of combining LY294002 and HUK reduced the effect of HUK on the
myocardial microinfarct area.

Effect of HUK on cardiomyocyte apoptosis in rats via various methods.

TUNEL staining results (Fig. 3) showed that the infarcted and normal physiology cardiomyocyte nuclei
were stained yellow and light blue, respectively. Apoptotic cardiomyocytes are mainly distributed in the
area around myocardial microinfarction. The apoptosis rate of cardiomyocytes in the CME group was
higher than that in the Sham and CME+HUK groups significantly (both P <0.05), and the therapy with an
alliance of LY294002 and HUK balanced out the anti-apoptotic function of HUK. Besides, we measured
the expression levels of apoptosis-associated genes from the mRNA and protein by RT-qPCR as well as
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Western blotting. RT-qPCR analysis (Fig. 4A) results showed that the expression levels of caspase-3 and
Bax in the myocardial tissue of the CME group increased than the Sham and CME+HUK groups
significantly (both P <0.05). On the contrary, the expression level of Bcl-2 in the myocardial tissue of the
CME group reduced than the Sham and CME+HUK groups significantly (both P <0.05). Besides, the
expression levels of Bax and caspase-3 in cardiomyocytes in the CME+HUK+LY group were statistically
significantly higher than that in the CME+HUK group (P <0.05). In contrast, the expression of Bcl-2 in the
CME group was statistically significantly down-regulated (P <0.05). Western blotting analysis (Fig. 4B)
also showed that the relative expression levels of Bax, Bcl-2, and Cleaved caspase-3 at the protein level in
each group of cardiomyocytes were consistent with the above results.

Further, we also found that Bax and Cleaved caspase-3 expression levels significantly decreased in the
Sham and CME+HUK groups than that in the CME and CME+HUK+LY groups based on the results from
immunofluorescence staining, and Bcl-2 in the CME and CME+HUK+LY groups were statistically
significantly down-regulated (Fig. 5). Summarily, above all results showed that preliminary treatment with
HUK could inhibit CME-caused apoptosis in cardiomyocytes effectively. In addition, the effect of HUK can
be eliminated by the pretreatment of LY294002.

Effect of HUK on the inflammation of cardiomyocytes.

To explore the effect of HUK on the cardiomyocyte's inflammation, three methods (Elisa, RT-qPCR, as well
as Western blotting analysis) were applied to identify the relative expression levels of IL-18 and TNF-a of
the different samples (Fig. 6). Interestingly, we finally obtained a consistent result. Briefly, the
measurement results of the above three methods all indicated that the expression levels of IL-1B, as well
as TNF-a in the CME group, were significantly higher than that of the Sham group. Also, compared with
the CME group, the expression levels of IL-1B and TNF-a in the CME+HUK group were statistically
significantly lower (both P <0.05). The expression levels of IL-18 and TNF-a of the CME+HUK+LY group
were significantly higher than of the CME+HUK group (P <0.05). In short, our study revealed that
preliminary treatment with HUK could alleviate CME-caused inflammation in cardiomyocytes efficiently.
However, the effect of HUK on reducing TNF-a and IL-13 levels could be eliminated by LY294002.

Serum Ck-mb\ctni\ldh Levels

In our current study, we measured the serum myocardial injury biomarkers levels (Fig. 7). Briefly, the
degree of myocardial damage was assessed by calculating the serum cTnl, LDH, and CK-MB levels. The
CME group had statistically significantly higher serum CK-MB, cTnl, and LDH levels than the Sham group.
In addition, the serum LDH, cTnl, and CK-MB levels in the CME+HUK group were statistically significantly
lower than those in the CME group. Compared with the CME+HUK group, the serum CK-MB, cTnl, and LDH
levels were statistically significantly lower in the CME+HUK+LY group (all P <0.05).

Effect of HUK on the PI3K/Akt/Fox01 signaling pathway.
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Here, we determined the relative expression levels of PI3K/Akt/Fox01 signaling pathway marker genes(p-
PI3K, PI3K, p-Akt, Akt, p-FoxO1, FoxO1)from the protein level via the method of Western blotting
analysis(Fig. 8). It indicated that the expression levels of p-PI3K, p-Akt, and p-FoxO1 in the CME group
were significantly lower than those in the Sham and CME+HUK groups (all P <0.05). Compared with the
CME+HUK group, the expression levels of p-PI3K, p-Akt, as well as p-Fox01 in the CME+HUK+LY group
were lower significantly (all P <0.05). Also, compared with the CME group, the rates of p-PI3K/PI3K, p-
Akt/Akt, as well as p-FoxO1/Fox01 in the Sham and CME+HUK groups were significantly higher (all P
<0.05). In addition, the rates of p-PI3K/PI3K, p-Akt/Akt as well as p-Fox01/Fox01 in the CME+HUK+LY
group were significantly lower than those in the CME+HUK group (P <0.05). Our results revealed that HUK
participates in the process of activating the PI3K/Akt/FoxO1 signaling pathway.

Discussion

As a common PCI complication, Coronary artery microembolization (CME) can be seen in acute coronary
syndrome (ACS) patients. The incidence of CME during perioperative PCl is 15% ~ 20%, and it is as high
as 45% in patients with high risk. CME may cause postoperative "no flow" or "slow flow" and
microcirculation dysfunction, which in turn may lead to myocardial ischemia, arrhythmia, heart failure,
and other consequences [13]. Given its high incidence, it has been viewed as an independent predictor of
heart disease incidence and mortality [14].

Human Urinary Kallidinogenase (HUK) is the tissue kallikrein extracted from urine. It has been advocated
as a national class | new drug for treating stroke patients in China [15]. Existing studies have shown that
HUK can reduce the formation of atherosclerosis and restrict intimal hyperplasia by down-regulating TGF-
B1 expression and Smad2/3 phosphorylation, and up-regulating eNOS activity [16]. In addition, previous
studies have shown that HUK can effectively inhibit inflammation and prevent ischemic brain damage by
activating the MAPK/ERK pathway or down-regulating the NF-kB pathway [17]. Also, the previous study
conducted by Han et al. indicated that HUK acted neuroprotective functions, including reduce infarct size
and improve neurological deficits via up-regulating VEGF and the apelin/APJ pathway [15]. In short,
existing research showed that HUK might have promising research prospects in coronary atherosclerotic
heart disease.

The PI3K/Akt signaling pathway is associated with regulate physiological functions such as apoptosis
and inflammation. Its activation can reduce myocardial apoptosis and inflammation, thus reducing
myocardial damage effectively [18—20]. The previous study indicated that the PI3K/Akt signaling
pathway was related to the process of various genes transcription, including rapamycin(mTOR), glycogen
synthase kinase 3(GSK-3), forkhead box protein 01/3(Fox01/3), as well as nitric oxide synthase (NOS) et
al. [21]. Fan He et al. found that Lipopolysaccharide could reduce I/R-induced brain damage, inhibit nerve
cell apoptosis, and protect nerve cells via PI3K/Akt/FoxO1 signaling pathway [22]. Another study also
showed that HUK could reduce apoptosis and inflammation in acute ischemic stroke by activating the
PI3K/AKT/Fox01 axis, thereby playing a protective role against brain injury [12]. However, the effect of
HUK on the PI3K/Akt/FoxO1 axis in CME and its role in CME have not been thoroughly studied.
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Our previous studies have shown that CME usually leads to cardiomyocyte apoptosis and inflammation,
which may cause cardiac dysfunction [6, 23]. For cardiomyocyte apoptosis, the previous researches
showed that the significant cardiomyocyte apoptosis and abnormal expression of apoptosis-related
genes (up-regulated Bax and Cleaved caspase-3; down-regulated Bcl-2) in the infarct zone [24, 25]. For
cardiomyocyte inflammation, the expression levels of inflammation-related genes (IL-1B, TNF-a) in the
CME group were statistically significantly up-regulated than those in the Sham group [26, 27]. The above
research results are consistent with ours, which shows that our current experimental results are credible
to a certain extent.

Our study found that CME indeed caused inflammation and increased apoptosis in rat cardiomyocytes,
thus leading to severe damage to the myocardium. And HUK (pretreatment starting 7 days before CME) is
involved in activating the PI3K/Akt/FoxO1 axis, decreasing myocardial inflammation and apoptosis,
thereby exerting a cardioprotective effect in CME. On the contrary, when we treated with PI3K specific
inhibitor LY294002, the essential proteins p-PI3K, p-Akt, as well as p-FoxO1 were statistically significant
down-regulated, indicating that PI3K/Akt/FoxO1 signaling pathway was suppressed. The expression
levels of inflammation-related genes (IL-1B3, TNF-a) and pro-apoptotic genes (Bax, Cleaved caspase-3)
increased significantly, while Bcl-2 was decreased. Thus, the cardioprotective effect of HUK was reduced
by the application of LY294002

The limitations of our study are as follows. Firstly, the pathophysiological changes of the CME rat model
established by using plastic microspheres without biological characteristics (such as thrombosis,
vascular activity, etc.) are different from those caused by atherosclerotic plaque in the clinic. Secondly, we
investigated the effect of HUK on inhibiting myocardial inflammation and apoptosis induced by CME
through the PI3K/Akt/FoxO1 signaling pathway. However, we only used PI3K specific inhibitor
(LY294002) to affect PI3K/Akt/FoxO1 signaling pathway, it is also necessary to use inhibitors or agonists
of PI3K downstream molecules to further and better study the effect of HUK on the PI3K/Akt/FoxO1
signaling pathway. Finally, other signaling pathways are likely to participate, and the influence of other
pathways is not ruled out, which requires more in vitro or in vitro studies.

To sum up, our findings indicated that HUK acts a substantial cardioprotective effect in CME-caused
myocardial injury. This protective effect may be attributed to activating the PI3K/Akt/FoxO1 signaling
pathway, consequently inhibiting myocardial inflammation and apoptosis significantly. Therefore, we
speculate that HUK has promising clinical application potential for pretreating and treating CME-caused
myocardial injury and our study will play a certain reference role for the further research of HUK and guide
clinical decision-making.
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Table 1 Sequences of the used primers for RT-qPCR.
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GENE

TNF-a

IL-18

Bcl-2

Bax

Caspase-

3

GAPDH

Primer Sequence

Forward: 5-CGTCGTAGCAAACCACCAAG-
3I

Reverse: 5-GAGGCTGACTTTCTCCTGGT-
3I

Forward: 5-GGGATGATGACGACCTGCTA-
3I

Reverse: 5-TGTCGTTGCTTGTCTCTCCT-
3I

Forward: 5'-CCTGGCATCTTCTCCTTCCA-
3I

Reverse: 5-GGACATCTCTGCAAAGTCGC-
3I

Forward: 5-AAGAAGCTGAGCGAGTGTCT-
3I

Reverse: 5-CCAGTTGAAGTTGCCGTCTG-
3I

Forward: 5-TGTCGATGCAGCTAACCTCA-
3|

Reverse: 5-GCAGTAGTCGCCTCTGAAGA-
3|

Forward: 5-TGTGAACGGATTTGGCCGTA-
3I

Reverse: 5-GATGGTGATGGGTTTCCCGT-
3I

Abbreviations: RT-qPCR, Real-time quantitative PCR.
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CME+HUK CME+HUK+LY

LVEF (100% )

Figure 1

Cardiac function evaluated by echocardiography in each group (n = 3, per group). The cardiac function
parameters of left ventricle ejection fraction (LVEF), left ventricle fractional shortening (LVFS), left
ventricular end-diastolic diameter (LVEDd), and left ventricular end-systolic diameter (LVESd) were
measured quantitatively. Data were presented as the mean * standard deviation (SD). *P < 0.05 versus
the Sham group; #P < 0.05 versus the CME group; &P < 0.05 versus the CME + HUK group. Abbreviations:
CME, coronary microembolization; HUK, Human Urinary Kallidinogenase; LY, LY294002.
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Figure 2

H&E and HBFP staining of myocardial tissues (x200 magnification; bar = 100 pm) (n = 3, per group). (A)
H&E staining. Microspheres were observed in the CME, CME+HUK, and CME + HUK + LY groups but not in
the Sham group. The arrows indicated the microspheres. (B) HBFP staining. An ischemic myocardium
was highlighted in red. Data were presented as the mean +SD. *P < 0.05 versus the Sham group; #P <
0.05 versus the CME group; &P < 0.05 versus the CME + HUK group. Abbreviations: CME, coronary
microembolization; HUK, Human Urinary Kallidinogenase; LY, LY294002.
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Figure 3

TUNEL staining results of the infarcted and normal cardiomyocyte nuclei and the apoptosis rate of
cardiomyocytes in each group (n = 3, per group). The arrows indicated the microspheres. The nuclei of
normal cardiomyocytes were stained light blue, while apoptotic cardiomyocytes' nuclei were stained
yellow-brown. Data were presented as the mean +SD. *P < 0.05 versus the Sham group; #P < 0.05 versus
the CME group; &P < 0.05 versus the CME + HUK group. Abbreviations: CME, coronary microembolization;
HUK, Human Urinary Kallidinogenase; LY, LY294002.
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Figure 4

Pretreatment with HUK attenuated CME-induced myocardial apoptosis. (A) The mRNA expression levels
of Bcl-2, Bax, and caspase-3 in cardiac tissues (n=3, per group). (B) The protein expression levels of Bcl-2,
Bax, and cleaved caspase-3 in cardiac tissues (n =3, per group). Data were presented as the mean +SD.
*P < 0.05 versus the Sham group; #P < 0.05 versus the CME group; &P < 0.05 versus the CME + HUK
group. Abbreviations: CME, coronary microembolization; HUK, Human Urinary Kallidinogenase; LY,
LY294002.
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Figure 5

Immunofluorescence staining of Bax, Bcl-2, and cleaved caspase-3 in cardiac tissues. (magnification
x400, scale bar=25 pm) (n=3, per group). (A) IF staining detected the expression of Bcl-2. (B) IF staining
detected the expression of Bax. (C) IF staining detected the expression of cleaved caspase-3.
Abbreviations: CME, coronary microembolization; HUK, Human Urinary Kallidinogenase; LY, LY294002;
Immunofluorescence, IF.
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Figure 6

Human Urinary Kallidinogenase reduced the myocardial inflammation (n = 3, per group). (A) The mRNA
expression level of TNF-a and IL-1B in the four groups. (B) The protein expression levels of TNF-a and IL-
1B in the four groups. (C) The serum levels of TNF-a and IL-1pB in the four groups. Data were presented as
the mean zSD. *P < 0.05 versus the Sham group; #P < 0.05 versus the CME group; &P < 0.05 versus the
CME + HUK group. Abbreviations: CME, coronary microembolization; HUK, Human Urinary
Kallidinogenase; LY, LY294002.
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Figure 7

Human Urinary Kallidinogenase reduced the serum levels of myocardial injury markers (n = 3, per group).
(A) The blood levels of cTnl in the four groups. (B) The blood levels of LDH in the four groups. (C) The
blood levels of CK-MB in the four groups. Data were presented as the mean +SD. *P < 0.05 versus the
Sham group; #P < 0.05 versus the CME group; &P < 0.05 versus the CME + HUK group. Abbreviations:
CME, coronary microembolization; HUK, Human Urinary Kallidinogenase; LY, LY294002.
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Figure 8

Effect of HUK on PI3K/Akt/FoxO1-associated protein expression in cardiac tissues (n = 3, per group).
Data were presented as the mean +SD. *P < 0.05 versus the Sham group; #P < 0.05 versus the CME group;
&P < 0.05 versus the CME + HUK group. Abbreviations: CME, coronary microembolization; HUK, Human
Urinary Kallidinogenase; LY, LY294002.
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