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Abstract

Background
Immortal time bias is common in observational studies but is typically described for
pharmacoepidemiology studies where there is a delay between cohort entry and treatment initiation.

Methods
This study used the Clinical Practice Research Datalink (CPRD) and linked national mortality data in
England from 2000–2019 to investigate immortal time bias for a speci�c life-long condition, intellectual
disability. Life expectancy (Chiang’s abridged life table approach) was compared for 33,867 exposed and
980,586 unexposed individuals aged 10+ years using �ve methods: (1) treating immortal time as
observation time; (2) excluding time before date of �rst exposure diagnosis; (3) matching cohort entry to
�rst exposure diagnosis; (4) excluding time before proxy date of entering �rst exposure diagnosis (by the
physician); and (5) treating exposure as a time-dependent measure.

Results
When not considered in the design or analysis (Method 1), immortal time bias led to disproportionately
high life expectancy for the exposed population during earlier calendar periods (additional years expected
to live: 2000–2004: 65.6 [95% CI: 63.6,67.6]; 2005–2009: 59.9 [58.8,60.9]; 2010–2014: 58.0 [57.1,58.9];
2015–2019: 58.2 [56.8,59.7]). Date of entry of diagnosis (Method 4) was unreliable in this CPRD cohort.
The �nal methods (Method 2, 3 and 5) appeared to solve the main theoretical problem but residual bias
may have remained.

Conclusions
We conclude that immortal time bias is a signi�cant issue for studies of life-long conditions that use
electronic health record data and requires careful consideration of how clinical diagnoses are entered
onto electronic health record systems.

Background
Electronic health records are increasingly being used to conduct real-world observational studies to
determine the association between a treatment or exposure and outcome. However, such studies are
prone to a number of biases. In particular, immortal time bias is a recognised limitation of observational
studies [1–3] that has come to the forefront in recent years owing to the increasing complexity of
observational cohort designs [4–8]. This bias occurs where there is a period of time during follow up
where an event or death cannot occur [4]. It is often discussed in the context of pharmacoepidemiology
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where a delay between entering the study and being allocated a given therapy at baseline creates an
‘immortal’ period for the subject thereby creating an apparent advantage for the group that is given the
therapy. In these types of study, immortal time bias can generally be reduced, if not eliminated completely,
by adapting the analysis; for example, through application of prescription time-distribution matching
(PTDM), time-dependent or sequential Cox approaches, or landmark analyses [9–11].

However, immortal time bias is not speci�c to pharmacoepidemiology studies and can represent a
signi�cant problem where the exposure is a life-long condition or disability. Whilst it may be di�cult for
some to consider a life-long condition to be an exposure measure, this is the best way to conceptualise
factors associated with the outcome of interest for epidemiological purposes. Where the exposure is life-
long, it may not be possible to completely control for the effects of immortal time bias in the design or
analysis. We demonstrate this using an example of electronic health record data of life expectancy
among patients with and without intellectual disabilities from the UK Clinical Practice Research Datalink
(CPRD). Our �ndings may also have applicability to long-term conditions with delays in diagnosis or
prolonged latency periods.

Methods

Source of data
For this example, we used the Clinical Practice Research Datalink (CPRD GOLD), linked (person-level) with
hospital episode statistics (HES) and death registrations from the O�ce for National Statistics (approved
study protocol number: 19_267RA3). The CPRD is an electronic health record research database of more
than 11.3 million patients, broadly representative of the national population in terms of age, gender, and
ethnicity [12], from general practice (GP) surgeries in the UK – of which approximately 75% in England
consent to linkage to deaths data. The study followed the Reporting of studies Conducted using
Observational Routinely-collected health Data (RECORD) checklist [13] (see supplementary Table S1).

Diagnostic codes used in this study are reported in supplementary Table S2. The initial extract from the
CPRD has been described previously [14] and was based on the following inclusion criteria: registered at
the GP surgery at any time between 1 Jan 2000 to 29 Sept 2019, and 10 years old or over to account for
delays in reporting of diagnoses of intellectual disability in children [15]. An additional 23 patients with
Angelman or Cockayne syndrome were added in August 2021 after an amendment to the original
protocol (approved March 2020 but delayed during the COVID period). A random sample of people
without intellectual disabilities was used for the comparison group with the same eligibility criteria (but
without a diagnosis of intellectual disability). The initial extract included 33,867 people with intellectual
disabilities (the exposed population) and a random sample of 980,586 people without intellectual
disabilities (the unexposed population), although population sizes varied by the immortal time bias
approach adopted. The baseline characteristics of the study populations under the �ve approaches are
shown in supplementary Table S3.
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Exposure/control de�nitions to handling immortal time bias under �ve different approaches

We present �ve approaches to de�ning cohort entry time when calculating life expectancy in people with
and without intellectual disabilities and describe the impact that each approach has on life expectancy
estimates in the context of immortal time bias. All methods involved changes in the handling of the
exposed population. The second and third method also involved changes to the unexposed (control)
population. The �ve methods compared are summarised in Figure 1.

Method 1: Treating immortal time as observation time
Method 1 involved applying no additional cohort entry criteria to either exposed or unexposed
populations such that both populations are treated in the same way.

Method 2: Excluding immortal time before date of �rst
exposure diagnosis
Method 2 involved adding date of intellectual disability diagnosis to the entry criteria such that date of
entry into the cohort was set to the date of intellectual disability diagnosis if this was after the entry
criteria de�ned for Method 1 (Figure 1). The comparison group patients entered at the date of
registration/start of follow-up, as in Method 1. This approach has been described in
pharmacoepidemiology studies in the context of excluding immortal time prior to treatment initiation in
the treated group [10].

Method 3: Matching cohort entry to �rst exposure diagnosis
The third approach involved excluding immortal time, as in Method 2, but then matching the exposed
individuals to unexposed individuals at a 1:10 ratio by date of cohort entry. This approach was designed
to give a more balanced distribution of cohort entry date than Method 2 (in which entry dates for the
comparison group tended to be earlier by design). The method is similar to the PTDM approach described
for pharmacoepidemiology studies where dates of initiating therapy vary between treatment groups [10,
16, 17]. The difference between this and our approach is that PTDM involves differentiating between the
‘never treated’ and ‘ever treated’ groups such that cohort entry dates in the ‘never treated’ group are shifted
to the date that the ‘ever treated’ group �rst started their treatment [10]. The approach, therefore, requires
conditioning on the future and depends on length of the follow-up period since those in the ‘never treated’
group are allowed to move to the ‘ever treated’ group if the follow-up period is su�ciently long. Instead,
our approach involved matching cohort entry dates against unexposed individuals, which included ‘never
exposed’ individuals (i.e. without intellectual disabilities; PTDM approach) and ‘ever exposed’ individuals
(i.e. people with intellectual disabilities prior to their �rst diagnosis).

Ten matches for each exposed individual were initially selected from the pool of unexposed individuals
who entered the study within 150 days (to balance follow-up time) prior to the index date (i.e. date of
cohort entry for exposed individuals). Where all 10 matches could not be found within this time constraint
(n=24 patients), controls were selected from the pool of unexposed individuals who entered at any time
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prior to the index date and were still at risk. Dates of cohort entry in the unexposed population were then
updated to the index date.

Method 4: Excluding time before proxy date of entering �rst
exposure diagnosis
The fourth approach involved incorporating the date that the exposed population’s diagnosis was
assumed to be entered by the physician onto the GP surgery’s electronic health record system. This is not
typically an issue with pharmacoepidemiology studies because the date of prescribing treatment is
usually close to the date that the individual commences the treatment. However, for a life-long condition
such as intellectual disabilities, physicians may choose to backdate the �rst exposure diagnosis to the
patient’s date of birth. The CPRD provides a linked variable (‘system date’) for each corresponding
diagnosis date which may correspond to the date that the diagnosis was entered. However, this variable
is also updated when a person transfers to the GP surgery, when there is an update in the GP software
system used, or when the record is amended [18] which may lead to erroneous loss of person-years in the
exposed group. To investigate this, date of entry was set to the date attached to the �rst intellectual
disability diagnosis if it was later than the date of entry de�ned in Method 1 or Method 2 (by design;
Figure 1). In this method, the unexposed patients entered at the date of registration/start of follow-up
period as in Method 1.

Method 5: Treating exposure as a time-dependent measure
The �nal approach to handling immortal time bias involved treating the exposure as a time-dependent
variable. This is perhaps the most common approach used in pharmacoepidemiology studies to control
for immortal time bias and involves adapting the analysis so that individuals’ exposure to a therapy is
allowed to change during the follow-up period [10, 17]. It can be used to investigate the effect of
individual therapies where more than one is under investigation [19] and is also advocated as a means of
avoiding immortal time bias caused by temporal variability in the onset of certain conditions, such as the
menopause [3]. In this study, the approach involved allowing individuals in the exposed population to
contribute to the unexposed population until their �rst intellectual disability diagnosis whereupon they
started contributing to the exposed population (Figure 1). The advantage of this method is that people
with intellectual disabilities contribute person years in the same way as those who died before they had
the opportunity to have an intellectual disability diagnosis.

Statistical Analyses
For the purposes of this work, data were split into the following calendar periods: 2000–2004; 2005–
2009; 2010–2014; and 2015–2019. Date of entry into the cohort was de�ned as the latest date according
to the person and practice’s characteristics: 01 Jan 2000; date of registration with the GP practice; date
the practice was de�ned as being up to standard (using the CPRD’s own quality indicators); or date the
individual turned 10 years old (to align with the eligibility criteria). Additional entry cohort criteria were
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speci�ed according to the approach used. Date of exit from each calendar period was calculated in the
same way throughout as: date of death; date of end of calendar period; date of last practice update
(latest 29 Sep 2019); or date of transfer out of practice, whichever was �rst. If the patient died after their
date of exit from the cohort, they were censored on the date of exit.

To calculate life expectancy (additional life years expected to live) in both the exposed and unexposed
populations, the Chiang’s abridged life table approach [20–23] was used. This approach has been
described in detail elsewhere [23], but brie�y involves stratifying by exposed and unexposed status and
constructing a table of probabilities that individuals will survive in a de�ned age interval conditional on
surviving to the start of that age interval. The product of probabilities is then used to calculate survival to
each age interval and life expectancy is estimated as the cumulative number of years lived using
information from all subsequent age intervals divided by the population at the start of the given age
interval. Five-year-period life expectancies were estimated to highlight the immortal bias �ndings,
allowing that there may have been period and cohort effects during each �ve-year calendar period.

Con�dence intervals for the derived life expectancies were calculated using the Chiang II approach as
advocated by Eayres & Williams [24]. This involves adding a correction term to the original Chiang
variance to account for the under-estimation of the ‘true’ variance at the last age interval by assuming
variance is zero rather than basing the estimate on length of survival [25].

Results
Figure 2 summarises the life expectancy �ndings for the exposed population under the �ve methods.
Each of the methods is described in more detail below.

Method 1: Treating Immortal Time As Observation Time
We can see from Figure 2 that there is an apparent survival advantage in the �rst calendar period for the
exposed population using Method 1. At age 10 years, for example, the estimated additional years
expected to live in 2000–2004 was 65.6 (95% con�dence interval [CI] 63.6,67.6) compared with 59.9
(58.8,60.9), 58.0 (57.1,58.9) and 58.2 (56.8,59.7) in the subsequent calendar periods. In the �rst calendar
period and under Method 1, 38.5% of person-time (n=21,506 person years) in the cohort with intellectual
disabilities was before the �rst intellectual disability diagnosis, compared with 23.4%, 9.1% and 4.8% in
the second, third and fourth calendar periods respectively. Therefore, person-time was accrued for the
exposed population during which a death could not occur.

Method 2: Excluding immortal time before date of �rst exposure diagnosis

Under Method 2, we can now see that the life expectancy advantages in the �rst calendar period are not
as apparent. However, life expectancy remains slightly higher compared with the other calendar periods.
This could be a real effect, but we speculate that some of the GP surgeries may have backdated
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intellectual disability diagnoses to date of birth during some key periods in response to policy initiatives
in England (see discussion). In the �rst calendar period, 14.5% of person time (n=8,091 person years) had
a backdated intellectual diagnosis to year of birth. This compares with 16.2% and 17.0% in the second
and third calendar period during which many of the policy initiatives occurred and 14.6% in the �nal
calendar period. We are unable to determine whether these records were updated when the patient was
registered with the practice (when immortal time bias would not present a problem) or at some point
during the registration period (see Method 4 for one approach to handling this).

There is also an additional problem that, by excluding immortal time from the observation period, we
introduce time-related bias by forcing many of the exposed individuals to enter later than the unexposed
population (Figure 1). Under Method 2, the median length of follow-up was shorter in the exposed
population (4.6yrs vs 5.0 yrs; Table S3). The percentage of people with intellectual disabilities in the entire
cohort (i.e. combining the cohort with and without intellectual disability) was also smaller in the �rst year
of cohort entry period, increasing thereafter (see Figure 3). Bias introduced from this approach is believed
to be negligible if the person-years in the exposed cohort is much smaller than the person-years in the
unexposed cohort [10], but this does mean that a smaller sample of people with intellectual disabilities
are investigated in earlier cohort periods. The next method attempts to evaluate this using matching
techniques.

Method 3: Matching Cohort Entry To First Exposure
Diagnosis
It can be seen that matching on cohort entry in addition to excluding immortal time before date of �rst
intellectual disability diagnosis (Method 2) resulted in a more balanced distribution of people in the
exposed population over the observation period (Figure 3). As expected, the life expectancy calculations
for exposed individuals were identical to Method 2 (Figure 2). Life expectancy was also similar in the
unexposed group (Figure 4), although person-time contribution was smaller because 65.5% (n=641,916)
of individuals from this population were discarded from the analysis because they were not matched.

Method 4: Excluding time before proxy date of entering �rst exposure diagnosis

Method 4, implemented under the assumption that the CPRD’s system date represented the date that the
physician entered the intellectual disability diagnosis, produced the lowest life expectancy estimates for
people with intellectual disabilities in the earlier calendar year periods (Figure 2). All calendar periods,
except the last calendar period, showed a markedly lower life expectancy for people with intellectual
disabilities than the other two methods. The graphs show that life expectancy estimates in the general
population for this method increased only slightly over time (Figure 4) with life expectancy in people with
intellectual disabilities showing more dramatic improvements (Figure 2).

However, this method led to a substantial loss in person-year contributions (median follow-up period
2.2yrs vs 5.0yrs) in the earlier cohort periods (Figure 3). During the �rst calendar period (2000–2004),
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almost three-quarters of person-year contributions were lost compared with Method 1 (78.4%,
n=43,787yrs) and two-thirds compared with Method 2 (64.9%, n=22,281yrs). Person-years lost gradually
lowered for the subsequent calendar periods (64.1% and 53.3%, respectively, for 2005–2009, 41.2% and
35.3% for 2010–2014; 24.0% and 20.2% for 2015–2019). We can see, therefore, that people with a good
prognosis (i.e. surviving long enough to have a system update at some later point) may have
systematically been removed. The supplementary Figure S1 shows the distribution of system dates that
were later than the �rst intellectual disability diagnosis. There were clusters of system dates linked to
intellectual disability diagnoses at speci�c times that appeared to correspond to software system
updates, particularly as some (n=623 individuals) occurred after the individual had died or left the
practice (see Figure S1). Moreover, the use of system date as a proxy date for entering the cohort is not
advocated for CPRD data because it is not su�ciently speci�c [26].

Method 5: Treating Exposure As A Time-dependent
Measure
The �nal approach, treating the exposure as a time-dependent variable, showed very similar results to
Method 2 and 3 for the exposed population (Figure 2) and marginal differences to the life expectancy
calculations in the unexposed population (Figure 4) because the additional person-year contribution from
the exposed population was relatively small. As before, this method has similar disadvantages to Method
2 in that we force exposed individuals to enter later than the unexposed population. In fact, the
unexposed group contribute partially more to the earlier time periods than for Method 2.

Discussion
Through the use of electronic health records data, we demonstrate that immortal time presents a
signi�cant problem for time-to-event analyses where one or more of the exposures is a life-long condition
or disability. Treating immortal time as exposure time (Method 1) led to an over-estimation of life
expectancy advantages in the exposed population. Even when immortal time was excluded or treated as
unexposed time (Methods 2, 3 and 5), some residual immortal time bias may have remained where
diagnoses had been backdated to date of birth. Using proxy date of physician’s entry of exposure
diagnosis (Method 4) resulted in a substantial loss of person-time and subjects, and did not appear to be
used in a consistent way in our data source. Our �ndings highlight that interpretation is key for any study
where the exposure can occur after the start of the follow-up period and consideration of immortal time
bias is needed to avoid drawing incorrect conclusions.

To our knowledge, this is the �rst time that the issue of immortal time bias has been studied in detail for
life-long conditions or disabilities, although there is a wealth of literature that discusses immortal time
bias in the context of pharmacoepidemiology studies. This literature largely corresponds with Methods 3
and 5 in our study by recommending the control of immortal time bias through PTDM or time-dependent
approaches that allow exposure status to vary [9, 10, 17]. Time-dependent analyses have also been
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recommended to control for the effects of immortal time bias where time of onset of certain health
conditions varies, such as the menopause [3]. The reason that the issue of immortal time bias for life-
long conditions/disabilities has not been considered before may be that it seems conceptually
inappropriate to consider someone with a life-long condition to be ‘disease-free’ for any period of
observation. However, this is likely to be the best solution for electronic health records that do not follow
up individuals from birth.

The magnitude of immortal time bias is reported to be related to mean interval between date of cohort
entry and date of (recording of) exposure, proportion of exposed study participants, and length of study
follow-up [27]. The prevalence of intellectual disability, as diagnosed in primary care, is approximately
0.5% [28] but the current study population had a larger proportion of exposed individuals (~3%) because
only a proportion of the unexposed population was selected for comparison. The cohort period of almost
20 years also increased the likely bias introduced by immortal time. Similarly, the choice of intellectual
disability as an example may have led to substantially more immortal time bias than some other
conditions or disabilities. Intellectual disability itself does not require treatment so, for administrative
purposes, may not need to be entered onto GP systems if it is already known or reported in the patients’
notes. This changed in 2004, with the introduction of the Quality Outcomes Framework (QOF) and
incentives to report long-term conditions including intellectual disabilities [29, 30], closely followed by
policy drives to maintain practice-level intellectual disability registers in 2006 (adults) and 2014 (children)
[31–33], and annual intellectual disability health checks in 2008 (adults) and 2014 (14–17 year olds) [31,
33]. We cannot identify another condition or disability where a policy drive has been so in�uential in
changing practice in primary care. However, increased awareness is known to ‘arti�cially’ increase
incidence of certain conditions over time, such as autism and coeliac disease [34, 35]. Our �ndings may
also have applications for conditions where there is a delay between onset and diagnosis, such as
Crohn’s disease or rare diseases [36, 37].

Finally, we have shown that attempts to control for immortal time bias in the design or analysis stage
does not guarantee unbiased results. However, treating immortal time as observation time, thereby
ignoring immortal time bias completely, is not recommended as we have shown that this will lead to
spurious results owing to the ‘misclassi�cation of immortal time’ [10]. Methods that start follow-up for
exposed individuals at diagnosis (Methods 2, 3 and 5) all produce fairly similar �ndings and appear to
solve the main theoretical problem, so any of these approaches could be adopted without a reference
standard on which to compare. Although these methods all showed similar results for this study,
Methods 3 and 5 have conceptual advantages over Method 2 because they do not involve conditioning
on the future [38]. In other words, they allow exposed individuals to contribute to the unexposed
population prior to their �rst diagnosis when they are still “at risk”. Incorporating date of assumed entry of
exposure diagnosis by the physician (Method 4) may have potential in some data sources but we would
not recommend this as a primary analysis for studies that use the CPRD owing to the apparent
inconsistent use of the system date �eld that we used to capture date of record entry and substantial loss
to person-time and subjects. Studies of electronic health records where date of entry of diagnosis is more
reliably recorded may be considered for this purpose. This approach may also be valuable for conducting
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sensitivity analyses where immortal time bias is not perceived to be adequately controlled. Finally, we
recommend adding an assessment of immortal time bias as a key component of critical appraisal tools
for electronic health record studies.
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Figures

Figure 1

Diagram of exposed person-time under �ve methods for studies of life-long conditions using electronic
health record data
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Figure 2

Life expectancy by calendar period in people with intellectual disabilities under the �ve methods to
handle immortal time bias
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Figure 3

Percentage of exposed individuals by year of observation a, b. a Method 4 can contain more than one
individual where �rst intellectual disability diagnosis date is greater than the date of entry (e.g. a person
entering the cohort in 2000 but diagnosed �rst with intellectual disability in 2006 enters the cohort
without intellectual disabilities in 2000 and enters again with intellectual disabilities in 2006). b Please
note that, as a random sample of the general population without intellectual disabilities for the
comparison group, this graph cannot be interpreted as representing prevalence of intellectual disability.
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Figure 4

Life expectancy by calendar period in people without intellectual disabilities under the �ve methods to
handling immortal time bias
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