1	Immobilization of Baeyer-Villiger monooxygenase from acetone grown <i>Fusarium</i> sp.
2	
3	Michio Takagi ¹ , Kotchakorn T.sriwong ¹ , Ayaka Masuda ¹ , Nozomi Kawaguchi ¹ , Shusuke Fukui ¹ , Huong
4	Le Viet Lan ¹ , Dai-ichiro Kato ² , Takashi Kitayama ³ , Mikio Fujii ⁴ , Afifa Ayu Koesoema ⁵ , Tomoko
5	Matsuda ¹ *
6	
7	¹ Department of Life Sciences and Technology, School of Life Science and Technology, Tokyo Institute of
8	Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
9	
10	² Graduate School of Science and Engineering, Kagoshima University
11	1-21-35 Korimoto, Kagoshima 890-0065 Japan
12	k0035454@kadai.jp
13	
14	³ Faculty of Agriculture, Kindai University
15	3327-204, Nakamachi, Nara, Japan
16	kitayama@nara.kindai.ac.jp
17	
18	⁴ School of Pharmacy, International University of Health and Welfare
19	2600-1 Kitakanemaru, Ohtawara, Tochigi, Japan
20	mfujii@iuhw.ac.jp
21	
22	⁵ Research Institute for Interdisciplinary Science (RIIS), Okayama University
23	700-8530 3-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Japan
24	
25	Corresponding author:
26	Tomoko Matsuda (tmatsuda@bio.titech.ac.jp, tel/fax +81-45-924-5757)
27	
28 20	
29	Abstract
30	A neural biogestalust for Paguer, Villiger evidations is pagagary for phormagoutical and chamical
37	A novel blocataryst for Baeyer–Viniger oxidations is necessary for pharmaceutical and chemical industries, so this study sime to find a Pasuar Villiger monocytypenese (PVMO) and to improve its
32	stability by immobilization
34	Results
35	Acetone, the simplest ketone, was selected as the only carbon source for the screening of microorganisms
36	with a RVMO A enkaryote Eusarium sp NBRC 100816 with a RVMO (ERVMO) was isolated from a
37	soil sample <i>F</i> BVMO was overexpressed in <i>E</i> coli and successfully immobilized by the organic inorganic
	son sumple. I by the was overexpressed in D. con and successfully initionized by the organic-inorganic

38 nanocrystal formation method. The immobilization improved the thermostability of *F*BVMO. Substrate

39	specificity investigation revealed that both free and immobilized FBVMO were found to show catalytic
40	activities not only for Baeyer-Villiger oxidation of ketones to esters but also for oxidation of sulfides to
41	sulfoxides. Furthermore, a preparative scale reaction using immobilized FBVMO was successfully
42	conducted.
43	Conclusions
44	FBVMO was discovered from an environmental sample, overexpressed in E. coli, and immobilized by
45	the organic-inorganic nanocrystal formation method. The immobilization successfully improved its
46	thermostability.
47	
48	Keywords
49	Baeyer-Villiger monooxygenase, Fusarium sp. NBRC 109816, immobilization, thermostability
50	
51	
52	Introduction
53	The Baeyer-Villiger oxidation (BVO), the transformation of an acyclic ketone or cyclic ketone
54	to the corresponding ester or lactone, respectively, is an important organic reaction for pharmaceutical
55	and chemical industries. However, commonly used oxidants for BVO, such as meta-chloroperbenzoic
56	acid (mCPBA) and trifluoroperacetic acid (TFPAA) (Know 1993), are potentially explosive. Moreover,
57	the stoichiometric amounts of hazardous reagent, a peroxyacid, is converted to a carboxylic acid,
58	producing chemical waste. Therefore, an effort to use environmentally benign oxidants such as H ₂ O ₂ and
59	O2 has been made (Bryliakov 2017; Liu et al. 2020). On the other hand, biocatalysts have been considered
60	to be sustainable catalysts (Matsuda 2017; Dong et al. 2018; Sheldon and Woodley 2018; Birolli et al.
61	2019; Wu et al. 2020; Koesoema et al. 2020). For biocatalytic BVO, Baeyer-Villiger monooxygenase
62	(BVMO) can use oxygen in the air as an oxidant, producing water as a byproduct (Fig. 1), so that the
63	reactions are not explosive (Morii et al. 1999; Kyte et al. 2004; Rehdorf et al. 2007; Franceschini et al.
64	2012; Leipold et al. 2012, 2013; Fürst et al. 2017, 2019; Nguyen et al. 2017; Fordwour et al. 2018; Woo
65	et al. 2018). Approximately a hundred of BVMOs (Fürst et al. 2019) such as Acinetobacter
66	cyclohexanone monooxygenase (AcCHMO)(Donoghue et al. 1976; Chen et al. 1988; Bong et al. 2018),
67	Pseudomonas putida 2,5-diketocamphane monooxygenase (2,5-DKCMO) (Cassimjee et al. 2014), and
68	Thermocrispum municipale cyclohexanone monooxygenase (TmCHMO) (Delgove et al. 2019) have been
69	used for biocatalytic BVO. However, comparing other kinds of biocatalysts such as lipases and carbonyl
70	reductases, the number of available BVMOs are limited, so that there is a high demand to expand on the
71	diversity (Fürst et al. 2019). Moreover, most of the research with isolated enzymes investigated
72	prokaryotic BVMOs (Fürst et al. 2019); therefore, eukaryotic BVMOs are lacking (Leipold et al. 2012).
73	While many BVMOs have been discovered by genome mining (Fürst et al. 2019), the potential
74	of catalytic BVO activity found in the environments by function-driven screening is still underexplored.
75	Therefore, this study aims to find a unique BVMO from environments. Acetone, the simplest ketone, was
76	used as the only carbon source, expecting that the simplest substrate is the best to apply for further

- development. Besides being the simplest, the three acetone metabolic pathways, including BVO,
- carboxylation to form acetoacetate, and terminal hydroxylation to form acetol (1-hydroxy-2-propanone),
- have been reported (Hausinger 2007). Therefore, acetone was used as the only carbon source for
- 80 screening microorganisms with a BVMO in this study, resulting in the isolation of two species of
- 81 *Fusarium*, eukaryote, with a BVMO from soil samples. The BVMO from one of them, *Fusarium* sp.
- 82 NBRC 109816 (FBVMO), was overexpressed in E. coli.
- 83 Then, *F*BVMO was immobilized to improve stability since one of the major obstacles for the 84 utilization of BVMO for organic synthesis is its low stability. So far, BVMOs have not been successfully
- 85 immobilized due to their low stability, except in a few cases (Cassimjee et al. 2014; Delgove et al. 2019).
- 86 A thermostable cyclohexanone monooxygenase from *Thermocrispum municipale (Tm*CHMO) was co-
- 87 immobilized on an amino-functionalized agarose-based support with a glucose dehydrogenase (GDH)
- 88 (Delgove et al. 2019). 2,5-Diketocamphane monooxygenase from *Pseudomonas putida* (2,5-DKCMO)
- 89 was co-immobilized on controlled porosity glass (CPG) with two cofactor-reconverting enzymes
- 90 (Cassimjee et al. 2014). Among enzyme immobilization methods (Liese and Hilterhaus 2013; Mohamad
- 91 et al. 2015; Basso and Serban 2019; T.sriwong et al. 2021a), the protein-inorganic nanocrystal formation
- 92 method is one of the simplest and most effective methods (Ge et al. 2012; Yin et al. 2015; Zhang et al.
- 93 2020). Lipase (Zhang et al. 2020), peroxidases (Ge et al. 2012; Yu et al. 2015; Altinkaynak et al. 2016),
- 94 alcohol dehydrogenases (López-Gallego and Yate 2015; T.sriwong et al. 2020), and aldehyde
- 95 dehydrogenase (T.sriwong et al. 2021b) have been immobilized by this method, achieving the
- 96 improvement in the activity and/or stability. However, no BVMO has been immobilized by this method,
- 97 to the best of our knowledge. Therefore, immobilization of FBVMO by the method was conducted in this
- 98 study, resulting in a significant improvement in thermostability. Substrate specificity investigation
- 99 revealed that both free and immobilized FBVMO were found to show catalytic activities not only for
- BVO of ketones to esters but also for oxidation of sulfides to sulfoxides. Furthermore, a preparative scale
 reaction using immobilized *F*BVMO was successfully conducted.
- 102
- 103 Materials and methods

104 Reagents, materials, and apparatus

- Materials written in the Supplementary Information were used.
- 105 106

107 Screening of microorganism using acetone as the only carbon source

- Environmental samples from soil, river, and ponds were collected, and diluted by $1.0-10^5$ times with sterilized water, and cultivated at 30 °C and 250 rpm in a liquid medium (Wiegant and De Bont 1980) at pH 7.0 consisting of K₂HPO₄ (1.55 g/L), KH₂PO₄ (0.97 g/L), NH₄Cl (2.0 g/L), MgCl₂·6H₂O (0.075 g/L), (NH₄)₂SO₄ (0.10 g/L), NaCl (0.39 g/L), FeSO₄·7H₂O (0.010 g/L), ZnSO₄·7H₂O (0.010 g/L), MnSO₄·5H₂O (0.010 g/L), KHCO₃ (0.50 g/L), and acetone (50-300 mM). Out of 300 samples, two microorganisms were able to grow with acetone as the only carbon source. They were identified as
- 114 Fusarium sp. and Fusarium oxysporum Schltdl based on morphological tests (Supplementary Fig. 1) and

ITS-5.8S rDNA sequencing. *Fusarium* sp. was deposited to the National Institute of Technology and
 Evaluation (Tokyo, Japan) as *Fusarium* sp. NBRC 109816.

117

118 **Isolation of the gene**

119 Among the known genomic sequences of various Fusarium species, F. oxysporum f. sp. 120 conglutinans race 2 54008 (accession number AGNF01000703.1) was selected by searching a genome 121 with the highest homology with one of the most studied BVMO, CHMO from Acinetobacter sp. 122 NCIMB9871 (Donoghue et al. 1976). To determine the sequence of FBVMO, four sets of primers 123 (Supplementary Table 1) were constructed based on the sequence of AGNF01000703.1. for PCR using 124 the genetic DNA of *Fusarium* sp. NBRC 109816 as a template. To remove the intron, two sets of primers 125 (Supplementary Table 1) were constructed for PCR using the genetic DNA of *Fusarium* sp. NBRC 126 109816 as a template. The two PCR products were inserted into pUC19 and transformed into E. coli 127 DH5a. Another set of primers (Supplementary Table 1) was used for PCR with pUC19-FBVMO as a 128 template to obtain FBVMO gene to construct pET-21b(+)-FBVMO, which was transformed into E. coli

- 129 BL21(DE3).
- 130

131 **Overexpression**

132 A single colony of the recombinant cells, BL21(DE3)-pET-21b(+)-FBVMO, was inoculated in 133 LB medium (4.0 mL) with carbenicillin (125 µg/mL) at 250 rpm at 37 °C to an optical density at 600 nm 134 (OD₆₀₀) reached 0.8-1.0. The pre-cultured cells (2.5 mL) were transferred into LB medium (250 ml) with 135 carbenicillin (125 µg/mL), and cultivated at 250 rpm at 37 °C until OD₆₀₀ reached 0.5-0.6. Then, IPTG 136 (0.2 mM) was added and cultivated at 250 rpm at 18 °C for 18 h. The cells were harvested by 137 centrifugation at 10,000 G for 5 min at 4 °C, washed with 0.8% NaCl, and suspended in a sodium 138 phosphate buffer (30 mL, pH 7.4, 20 mM) containing imidazole (5 mM), PMSF (1 mM), and DTT (1 139 mM). The mixture was sonicated at 100 W for 20 min at 0 °C and centrifuged at 15,000 G for 30 min at 4 140 °C, and the supernatant (30 mL) was used as a cell-free extract for further study. 141

142 **Purification**

143 The cell-free extract (30 mL) was loaded onto a HisTrapTMFF crude equilibrated with a sodium 144 phosphate buffer (pH 7.4, 20 mM) with PMSF (0.2 mM), and DTT (0.2 mM). The bound protein was 145 eluted by the buffers with 5 mM imidazole (20 mL), 10 mM imidazole (10 mL), 20 mM imidazole (10 146 mL), 30 mM imidazole (5 mL), and the FBVMO was eluted by the buffer with 70 mM imidazole (5 mL) 147 with PMSF (0.2 mM), and DTT (0.2 mM). The protein was concentrated by ultrafiltration using Amicon 148 Ultra-4 10-K MWCO and used for further study. The protein concentration was measured by the Bradford 149 method (Bradford 1976) using bovine serum albumin (BSA) as a standard. The purification steps are 150 summarized in Supplementary Table 2.

- 151
- 152

Activity measurement of the free enzyme

154 Cyclohexanone solution (10 μ L, 0.1 M solution with 10 % diethylene glycol (final 155 concentration 1 mM)) and sodium phosphate buffer (968 μ L, pH 7.4, 50 mM) were mixed, and then 156 NADPH solution (12 μ L, 10 mg/mL), and purified enzyme (10 μ L, 1.6-2.0 U/ml) were added. Initial 157 velocity was determined by following NADPH consumption at 340 nm for 3 min. Activity assays were 158 done at 25°C in duplicate in a 1.0 mL scale. One unit of enzyme is defined as μ mol of NADPH produced 159 in 1 min under the above conditions.

160

161 Immobilization

162 The purified FBVMO was immobilized with a similar method to our previous study (T.sriwong 163 et al. 2020, 2021b). The phosphate-buffer saline (PBS) was prepared by dissolving NaCl (0.80 g), KCl 164 (0.020 g), Na₂HPO₄ (0.142 g), and KH₂PO₄ (0.024 g) in distilled water (100 mL) and adjusting pH to 7.4 165 with HCl (aq). The metal solutions (50 mM (final concentration 5 mM), 100 mM (final concentration 10 166 mM), 200 mM (final concentration 20 mM), and 400 mM (final concentration 40 mM)) were prepared by 167 dissolving ZnSO4, MgSO4, MnSO4, CuSO4, FeSO4, NiCl₂, CoCl₂, or CaCl₂ in distilled water. PBS (350 168 μL), the purified *F*BVMO (100 μL, 1 U/mL in sodium phosphate buffer (50 mM, pH 7.4)), and metal 169 solution (50 µL) were mixed by gently turning it upside down, and incubated at 4 °C for 8 h. The solution 170 was centrifuged at 4 °C and 5,000 G for 5 min. The precipitant was suspended in PBS and centrifuged at 171 4 °C and 5,000 G for 5 min twice, and suspended in PBS, giving immobilized FBVMO nanocrystal 172 solution (500 µl). The residual protein concentration in the supernatant was determined by the Bradford 173 method (Bradford 1976), and the immobilization yield was calculated using equation (1).

174

175

Immobilization yield (%) =
$$\frac{[Protein]_{I} - [Protein]_{R}}{[Protein]_{I}} \times 100$$
 (1)

176 [Protein]_I = Initial protein concentration (mg/mL)

- 177 [Protein]_R = Concentration of protein in the supernatant after the FBVMO nanocrystal formation and
- 178 centrifugation (mg/mL)
- 179

180 Scanning Electron Microscope (SEM) analysis of immobilized FBVMO nanocrystal

FBVMO nanocrystal was analyzed by SEM with a similar method reported in our previous
study (T.sriwong et al. 2020, 2021b). The FBVMO nanocrystal was washed with distilled water several
times before being dried at room temperature.

- 185 Activity measurement of the immobilized enzyme
- 186 Cyclohexanone solution (10 µL, 0.1 M solution with 10 % diethylene glycol (final
- 187 concentration 1 mM)) and sodium phosphate buffer (928 µL, pH 7.4, 50 mM) were mixed, and then
- 188 NADPH solution (12 μL, 10 mg/mL), and immobilized FBVMO solution (50 μL) were added. Initial

velocity was determined by following NADPH consumption at 340 nm for 3 min. Activity assays were

- 190 done at 40°C in duplicate in a 1.0 mL scale.
- 191
- 192

Characterization of free and immobilized FBVMO

Effects of pH and on their activities were investigated at 25 °C using 50 mM MES-NaOH buffer (pH 5, 6), 50 mM sodium phosphate buffer (pH 7, 7.5, 8), 50 mM Tris-HCl buffer (pH 8, 8.5, 9), or 50 mM Gly-NaOH buffer (pH 9, 10) with the methods described above. For pH 8 and 9, the averages of the activities in the two buffers are shown. Effects of temperature on their activity were investigated using sodium phosphate buffer (50 mM, pH 8.0) with the methods described above. Thermostabilities of free and immobilized *F*BVMO were investigated by incubating at 40 °C and collecting the portion of the enzymes at 0, 5, 10, 20, 30, 60, 120, and 300 min for activity measurement described above.

- 200
- 201

Preparative-scale oxidation of cyclohexanone by the immobilized FBVMO

202 FBVMO nanocrystal solution (1 mL) prepared from 1 U of free FBVMO, heat treated 203 Thermoplasma acidophilum glucose dehydrogenase solution (1 mL, 1.95 U) prepared as reported 204 previously (Are et al. 2021), cyclohexanone solution dissolving 100 mg of cyclohexane in 1 mL of 205 aqueous solution containing 10% of diethylene glycol, NADPH (50 mg), glucose solution (1 mL of 1 M 206 solution), and sodium phosphate buffer (17 mL, 50 mM, pH 8.0) were mixed and incubated at 40 °C at 207 150 rpm for 3 days. The reaction was repeated 5 times to convert 500 mg (5.09 mmol) of cyclohexanone 208 in total. The reaction mixtures were combined, and the product was extracted with diethyl ether (25 mL x 209 3), dried over MgSO₄, evaporated under reduced pressure, purified by silica gel column chromatography 210 (hexane : ethyl acetate = 3:1), and characterized by ¹H-NMR analysis using CDCl₃ as a solvent. The ¹H-211 NMR spectrum was in agreement with that in literature (Omura et al. 2009). Yield 27 % (157 mg, 1.37 212 mmol). ¹H-NMR (400 MHz, CDCl₃): δ 1.65-1.87 (6H, m), 2.55-2.65 (2H, m), 4.19 (2H, t, *J* = 4.7Hz).

213

214 **Result and Discussion**

215 Screening, overexpression, and purification of FBVMO

216 Environmental samples from soil, river, and ponds were collected and cultivated using acetone 217 (50-300 mM) as the only carbon source. Out of 300 samples, two microorganisms were able to grow with 218 acetone as the only carbon. They were identified as Fusarium sp. and Fusarium oxysporum Schltdl based 219 on morphological tests (Supplementary Fig. 1) and ITS-5.8S rDNA sequencing. Encouraged by the 220 literature search showing the whole cell catalyzed BVO of 2-methylcyclohexanone by Fusarium sp. AP-2 221 (Kawamoto et al. 2008) and the whole-cell catalyzed BVO of alkyl-substituted hexanones by Fusarium 222 oxysporum and Fusarium avenaceum (Ratu et al. 2009), we examined the presence of BVMO in the 223 newly isolated Fusarium sp. and F. oxysporum Schltdl. Cyclohexanone was used as a substrate for the 224 whole-cell reactions. E-Caprolactone was successfully obtained in both reactions, suggesting the presence 225 of a BVMO in both species. Fusarium sp. has higher activity than F. oxysporum Schltdl, so that Fusarium 226 sp. was deposited to the National Institute of Technology and Evaluation (Tokyo, Japan) as Fusarium sp.

227 NBRC 109816, and used for further study.

228 For the use as an efficient biocatalyst, it is necessary to express BVMO from Fusarium sp. 229 NBRC 109816 (FBVMO), heterogeneously. Therefore, the gene encoding FBVMO was identified, 230 amplified, and cloned in an expression vector, pET-21b (+), after the removal of the intron, leading to 231 pET-21b (+)-FBVMO. The vector was transformed into E. coli BL21(DE3). His-tagged FBVMO was 232 induced by IPTG and purified by Ni affinity chromatography by 17.4 fold in 41% yield (Supplementary 233 Table 2). The DNA sequence and amino acid sequence are shown in Supplementary Figs. 2 and 3, 234 respectively. In the deduced amino acid sequences, type I BVMO fingerprint FxGxxxHTxxW[P/D] 235 (Fraaije et al. 2002; Rebehmed et al. 2013) and [A/G]GxWxxxx[F/Y]P[G/M]xxxD (Riebel et al. 2012) 236 and two Rossmann fold domains with a GxGxx[G/A] motif were found. 237 238 Immobilization of FBVMO and morphology study 239 To improve the stability, FBVMO was immobilized by the organic-inorganic nanocrystal

formation method according to our previous report (T.sriwong et al. 2020, 2021b). The purified *F*BVMO was mixed with a metal solution to give a catalytically active protein-inorganic nanocrystal. The kind and the concentration of the metal ion were optimized by investigating 5 mM, 10 mM, 20 mM, and 40 mM of Zn^{2+} , Mg²⁺, Mn²⁺, Cu²⁺, Fe²⁺, Ni²⁺, Co²⁺, and Ca²⁺. The activity of these nanocrystals toward the Baeyer-Villiger oxidation of cyclohexanone is shown in Fig. 2. Nanocrystal formed using 10 mM of Ca²⁺ showed the best activity among those tested, while high activity was observed in the nanocrystals from most of the ions except Mn²⁺.

247 Next, the stability of the nanocrystals formed under the optimum concentrations for each metal 248 was investigated. The nanocrystals used for the activity assay were recovered by centrifugation as a 249 precipitate, re-suspended in a buffer, and used for the activity assays (Fig 3(a)). To quantify the leakage of 250 the protein from the nanocrystal, the protein concentration in the supernatant was measured. The amount 251 of protein retained in the nanocrystal (immobilization yield) is shown in Fig 3(b). It was found that the 252 FBVMO nanocrystal could be recycled up to 8 times with retained activity. The remaining activity after 253 recycling largely depends on the kind of metal ions used for immobilization. The activity of the 10 mM 254 Ca²⁺ nanocrystal, showing the best activity for the 1st usage, decreased dramatically by recycling, and its 255 protein leakage was also obvious. On the other hand, while the activity of 20 mM Cu²⁺ nanocrystal was 256 moderate for the 1st usage (52%), it did not decrease significantly for the 8th usage (42%), so as for the 257 immobilization yield being 69% for the 1st usage and 53% for the 8th usage. Therefore, the best metal ion 258 and its optimum concentration were determined to be Cu^{2+} and 20 mM.

259The morphology study of FBVMO-Cu2+ nanocrystal was conducted by SEM analysis260(Supplementary Fig. 4). We found that the FBVMO-Cu2+ nanocrystal forms a porous structure261(Supplementary Fig. 4(b)), which could not be seen in the control copper (II) phosphate crystal without262the enzyme (Supplementary Fig. 4 (a)). The high porosity of the sponge-like structure may cause the high263activity of the FBVMO-Cu2+ nanocrystal.

265 Characterization of free and immobilized FBVMO

266 First, the effect of pH on the activity of the free and immobilized FBVMO toward the 267 oxidation of cyclohexanone was investigated. As shown in Fig. 4(a), similar results were obtained for the 268 free and immobilized enzyme, showing the highest activity around pH 8.0 - 8.5. Next, the effect of 269 temperature on the activity of the free and immobilized FBVMO toward the oxidation of cyclohexanone 270 was investigated. As shown in Fig. 4(b), the optimum temperature for the free and immobilized FBVMO 271 were 30 °C and 40 °C, respectively. The activity at 40 °C increased significantly by immobilization. The 272 free enzyme activity at 40 °C was 1.27 nmol·min⁻¹·mg⁻¹ protein, while the immobilized enzyme activity at 273 40 °C was 15.3 nmol·min⁻¹·mg⁻¹ protein. The immobilization improved the activity at 40 °C by 12 times. 274 Then, the thermostability of the free and immobilized FBVMO was investigated. As shown in Fig. 4(c), 275 the free FBVMO had only 18% of the remaining activity after incubation for 5 min at 40 °C, while >90% 276 of the activity of the immobilized FBVMO was retained after 5 h at 40 °C. The thermostability of the 277 FBVMO was significantly improved by immobilization. The nanocrystal formation method was proven 278 as a promising approach for BVMOs immobilization. The confinement of enzymes in the nanocrystal 279 may have fixed the unstable residue of the protein, as support materials act as a shell to protect the 280 enzyme from harsh environments, including high temperatures in general immobilization methods (Hu et 281 al. 2018; T.sriwong et al. 2021b). The successful result of immobilization of FBVMO, improving the 282 thermostability, is remarkable since there are only a few examples (Cassimjee et al. 2014; Delgove et al. 283 2019) for the immobilization of BVMOs due to the low stability of BVMOs.

284 Substrate specificities of the free and immobilized FBVMO were investigated using varieties 285 of ketones and sulfides. Both of the free and immobilized FBVMO successfully oxidized a wide range of 286 ketones (Table 1, Entries 1-8), and sulfides (Table 1, Entries 9-13). In general, it was clear that the broad 287 substrate specificity of the free FBVMO was greatly retained after immobilization. However, the 288 difference in the relative activities between the free and immobilized FBVMO were also seen for the 289 bulky substrates. The free enzyme exhibited about 3-5 times higher activities for cyclooctanone, 2-290 pentylcyclopentan-1-one, 4-phenylbutan-2-one, and diphenyl sulfide (Table 1, Entries 3, 4, 8, 13). The 291 change in the substrate preference by the immobilization is an intriguing phenomenon, since it was not 292 observed for the case of other enzymes such as Geotrichum candidum aldehyde dehydrogenase 293 (T.sriwong et al. 2021b). This might be caused by the subtle structural change of the enzyme by the 294 immobilization or by the restriction in the substrate transfer to the active site of the immobilized enzyme 295 due to the diminished flexibility of the residue at the entrance caused by the metal shell.

At last, a preparative scale reaction by the immobilized *F*BVMO was conducted using cyclohexanone as a substrate. The reaction proceeded smoothly, and the product was successfully isolated, purified, and identified by the ¹H NMR (Supplementary Fig. 5).

299

300 Conclusion

FBVMO was discovered from an environmental sample by the screening of microorganisms
 using acetone as the only carbon source. FBVMO was successfully immobilized by the organic-inorganic

303	nanocrystal formation method, resulting in an improvement in thermostability. Both free and immobilized
304	enzymes were characterized, and found to be versatile for both BVO and oxidation of sulfide. At last,
305	preparative scale reaction of BVO of cyclohexane was successfully conducted.
306	
307	Author contributions
308	M.T. and K.T. contributed equally to this work.
309	
310	Acknowledgement
311	We would like to acknowledge Prof. Nobuo Nomura from Department of Human Sciences,
312	Faculty of Human Sciences, Musashino University, Tokyo, Japan for the discussion regarding the
313	isolation of FBVMO gene and overexpression, and Hiroumi Nemoto, Haruka Maeda, Tomofumi Tanabe,
314 315	Ayana Hirukawa, Munammad Maulana Ichsan from our laboratory for the related research. The authors
316	microorganism. This work was supported by the Japan Society for the Promotion of Science (ISPS
317	KAKENHI Grant Number JP19K05560).
318	
319	References
320	Altinkaynak C, Yilmaz I, Koksal Z, et al (2016) Preparation of lactoperoxidase incorporated hybrid
321	nanoflower and its excellent activity and stability. Int J Biol Macromol 84:402-409.
322	https://doi.org/https://doi.org/10.1016/j.ijbiomac.2015.12.018
323	Are KRA, Ohshima S, Koike Y, et al (2021) Enzymatic direct carboxylation under supercritical CO2.
324	Biochem Eng J 171:108004. https://doi.org/https://doi.org/10.1016/j.bej.2021.108004
325	Basso A, Serban S (2019) Industrial applications of immobilized enzymes—A review. Mol Catal
326	479:110607. https://doi.org/https://doi.org/10.1016/j.mcat.2019.110607
327	Birolli WG, Lima RN, Porto ALM (2019) Applications of marine-derived microorganisms and their
328	enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol 10:.
329	https://doi.org/10.3389/fmicb.2019.01453
330	Bong YK, Song S, Nazor J, et al (2018) Baeyer-Villiger Monooxygenase-Mediated Synthesis of
331	Esomeprazole As an Alternative for Kagan Sulfoxidation. J Org Chem 83:7453–7458.
332	https://doi.org/10.1021/acs.joc.8b00468
333	Bradford MM (1976) A Rapid and Sensitive Method for the Quantitation Microgram Quantities of
334	Protein Utilizing the Principle of Protein-Dye Binding. 254:248–254
335	Bryliakov KP (2017) Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants
336	H2O2 and O2. Chem Rev 117:11406–11459. https://doi.org/10.1021/acs.chemrev.7b00167
337	Cassimjee KE, Kadow M, Wikmark Y, et al (2014) A general protein purification and immobilization

- 338 method on controlled porosity glass: biocatalytic applications. Chem Commun 50:9134-9137. 339 https://doi.org/10.1039/c4cc02605e 340 Chen YC, Peoples OP, Walsh CT (1988) Acinetobacter cyclohexanone monooxygenase: gene cloning 341 and sequence determination. J Bacteriol 170:781-789. https://doi.org/10.1128/jb.170.2.781-342 789.1988 343 Delgove MAF, Valencia D, Solé J, et al (2019) High performing immobilized Baeyer-Villiger 344 monooxygenase and glucose dehydrogenase for the synthesis of ε -caprolactone derivative. Appl 345 Catal A Gen 572:134-141. https://doi.org/10.1016/j.apcata.2018.12.036 346 Dong JJ, Fernández-Fueyo E, Hollmann F, et al (2018) Biocatalytic Oxidation Reactions: A Chemist's 347 Perspective. Angew Chemie - Int Ed 57:9238-9261. https://doi.org/10.1002/anie.201800343 348 Donoghue NA, Norris DB, Trudgill PW (1976) The Purification and Properties of Cyclohexanone 349 Oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem 63:175-350 192. https://doi.org/10.1111/j.1432-1033.1976.tb10220.x 351 Fordwour OB, Luka G, Hoorfar M, Wolthers KR (2018) Kinetic characterization of acetone 352 monooxygenase from Gordonia sp. strain TY-5. AMB Express 8:1-13. 353 https://doi.org/10.1186/s13568-018-0709-x 354 Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB (2002) Identification of a Baeyer-Villiger 355 monooxygenase sequence motif. FEBS Lett 518:43-47. https://doi.org/10.1016/s0014-356 5793(02)02623-6 357 Franceschini S, Van Beek HL, Pennetta A, et al (2012) Exploring the structural basis of substrate 358 preferences in Baeyer-Villiger monooxygenases: Insight from steroid monooxygenase. J Biol Chem 359 287:22626-22634. https://doi.org/10.1074/jbc.M112.372177 360 Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW (2019) Baeyer-Villiger Monooxygenases: 361 Tunable Oxidative Biocatalysts. ACS Catal 9:11207–11241. 362 https://doi.org/10.1021/acscatal.9b03396 363 Fürst MJLJ, Savino S, Dudek HM, et al (2017) Polycyclic ketone monooxygenase from the thermophilic 364 fungus Thermothelomyces thermophila: A structurally distinct biocatalyst for bulky substrates. J 365 Am Chem Soc 139:627-630. https://doi.org/10.1021/jacs.6b12246 366 Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432. 367 https://doi.org/10.1038/nnano.2012.80 368 Hausinger RP (2007) New insights into acetone metabolism. J Bacteriol 189:671-673. 369 https://doi.org/10.1128/JB.01578-06 370 Hu Y, Dai L, Liu D, et al (2018) Progress & prospect of metal-organic frameworks (MOFs) for enzyme
 - 10

371	immobilization (enzyme/MOFs). Renew Sustain Energy Rev 91:793-801.					
372	https://doi.org/10.1016/j.rser.2018.04.103					
373	Kawamoto M, Utsukihara T, Abe C, et al (2008) Biotransformation of (±)-2-methylcyclohexanone by					
374	fungi. Biotechnol Lett 30:1655–1660. https://doi.org/10.1007/s10529-008-9729-y					
375	Know GR (1993) The Baeyer-Villiger oxidation of ketones and aldehydes. In: Paquette LA (ed) Organic					
376	reactions. John Wiley & Sons, Inc, pp 251–798					
377	Koesoema AA, Standley DM, Senda T, Matsuda T (2020) Impact and relevance of alcohol					
378	dehydrogenase enantioselectivities on biotechnological applications. Appl. Microbiol. Biotechnol.					
379	104:2897–2909					
380	Kyte BG, Rouvière P, Cheng Q, Stewart JD (2004) Assessing the Substrate Selectivities and					
381	Enantioselectivities of Eight Novel Baeyer-Villiger Monooxygenases toward Alkyl-Substituted					
382	Cyclohexanones. J Org Chem 69:12–17. https://doi.org/10.1021/jo0302531					
383	Leipold F, Rudroff F, Mihovilovic MD, Bornscheuer UT (2013) The steroid monooxygenase from					
384	Rhodococcus rhodochrous; A versatile biocatalyst. Tetrahedron Asymmetry 24:1620-1624.					
385	https://doi.org/10.1016/j.tetasy.2013.11.003					
386	Leipold F, Wardenga R, Bornscheuer UT (2012) Cloning, expression and characterization of a eukaryotic					
387	cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Appl Microbiol					
388	Biotechnol 94:705–717. https://doi.org/10.1007/s00253-011-3670-z					
389	Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc					
390	Rev 42:6236–6249. https://doi.org/10.1039/C3CS35511J					
391	Liu C, Wen KG, Zeng XP, Peng YY (2020) Advances in Chemocatalytic Asymmetric Baeyer-Villiger					
392	Oxidations. Adv Synth Catal 362:1015-1031. https://doi.org/10.1002/adsc.201901178					
393	López-Gallego F, Yate L (2015) Selective biomineralization of Co3(PO4)2-sponges triggered by His-					
394	tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem Commun 51:8753-					
395	8756. https://doi.org/10.1039/C5CC00318K					
396	Matsuda T (ed) (2017) Future directions in biocatalysis, 2nd editio. Elsevier, Amsterdam					
397	Mohamad NR, Marzuki NHC, Buang NA, et al (2015) An overview of technologies for immobilization					
398	of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip					
399	29:205-220. https://doi.org/10.1080/13102818.2015.1008192					
400	Morii S, Sawamoto S, Yamauchi Y, et al (1999) Steroid monooxygenase of Rhodococcus rhodochrous:					
401	Sequencing of the genomic DNA, and hyperexpression, purification, and characterization of the					
402	recombinant enzyme. J Biochem 126:624-631.					
403	https://doi.org/10.1093/oxfordjournals.jbchem.a022494					

404 Nguyen Q-T, Mattevi A, Fraaije MW (2017) Chapter 6 - Expanding the Repertoire of Flavoenzyme-405 Based Biocatalysis. In: Matsuda T (ed) Future Directions in Biocatalysis (Second Eition). Elsevier, 406 Amsterdam, pp 119-133 407 Omura S, Fukuyama T, Murakami Y, et al (2009) Hydroruthenation triggered catalytic conversion of 408 dialdehydes and keto aldehydes to lactones. Chem Commun 6741-6743. 409 https://doi.org/10.1039/B912850F 410 Ratu B, Gładkowski W, Wawrze C (2009) Enzyme and Microbial Technology New aspects of the 411 application of Fusarium strains to production of. 45:156–163. 412 https://doi.org/10.1016/j.enzmictec.2009.04.008 413 Rebehmed J, Alphand V, de Berardinis V, de Brevern AG (2013) Evolution study of the Baeyer-Villiger 414 monooxygenases enzyme family: functional importance of the highly conserved residues. 415 Biochimie 95:1394-1402. https://doi.org/10.1016/j.biochi.2013.03.005 416 Rehdorf J, Kirschner A, Bornscheuer UT (2007) Cloning, expression and characterization of a Baeyer-417 Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett 29:1393-1398. 418 https://doi.org/10.1007/s10529-007-9401-y 419 Riebel A, Dudek HM, De Gonzalo G, et al (2012) Expanding the set of rhodococcal Baeyer-Villiger 420 monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol 421 Biotechnol 95:1479-1489. https://doi.org/10.1007/s00253-011-3823-0 422 Sheldon RA, Woodley JM (2018) Role of Biocatalysis in Sustainable Chemistry. Chem Rev 118:801-423 838. https://doi.org/10.1021/acs.chemrev.7b00203 424 T.sriwong K, Kamogawa R, Issasi CSC, et al (2021a) Geotrichum candidum acetophenone reductase 425 immobilization on reduced graphene oxide: a promising biocatalyst for green asymmetric reduction 426 of ketones. Biochem Eng J 108263. https://doi.org/10.1016/j.bej.2021.108263 427 T.sriwong K, Koesoema AA, Matsuda T (2020) Organic-inorganic nanocrystal reductase to promote 428 green asymmetric synthesis. RSC Adv 10:30953-30960. https://doi.org/10.1039/d0ra03160g 429 T.sriwong K, Ogura K, Hawari MA, Matsuda T (2021b) Geotrichum candidum aldehyde dehydrogenase-430 inorganic nanocrystal with enhanced activity. Enzyme Microb Technol 150:109866. 431 https://doi.org/10.1016/j.enzmictec.2021.109866 432 Wiegant WM, De Bont JAM (1980) A new route for ethylene glycol metabolism in Mycobacterium E44. 433 J Gen Microbiol 120:325-331. https://doi.org/10.1099/00221287-120-2-325 434 Woo JM, Jeon EY, Seo EJ, et al (2018) Improving catalytic activity of the Baeyer-Villiger 435 monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-436 (heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Sci Rep 8:1-11.

437	https://doi.org/10.1038/s41598-018-28575-8				
438	Wu S, Snajdrova R, Moore JC, et al (2020) Biocatalysis: Enzymatic Synthesis for Industrial Applications.				
439	Angew Chemie - Int Ed 2–34. https://doi.org/10.1002/anie.202006648				
440	Yin Y, Xiao Y, Lin G, et al (2015) An enzyme-inorganic hybrid nanoflower based immobilized enzyme				
441	reactor with enhanced enzymatic activity. J Mater Chem B 3:2295-2300.				
442	https://doi.org/10.1039/c4tb01697a				
443	Yu Y, Fei X, Tian J, et al (2015) Self-assembled enzyme-inorganic hybrid nanoflowers and their				
444	application to enzyme purification. Colloids Surfaces B Biointerfaces 130:299-304.				
445	https://doi.org/https://doi.org/10.1016/j.colsurfb.2015.04.033				
446	Zhang Y, Sun W, Elfeky NM, et al (2020) Self-assembly of lipase hybrid nanoflowers with bifunctional				
447	Ca2+ for improved activity and stability. Enzyme Microb Technol 132:109408.				
448	https://doi.org/https://doi.org/10.1016/j.enzmictec.2019.109408				
449					
450					
451	Supporting information				
452	Reagents, materials, and apparatus				
453	Table 1 Primers used for PCR to construct BL21(DE3)-pET-21b(+)-FBVMO				
454	Table 2 Summary of purification steps of FBVMO overexpressed in E. coli				
455	Fig. 1 Microscopic observation images of Fusarium sp. NBRC 109816				
456	Fig. 2 DNA sequence of FBVMO without intron				
457	Fig. 3 Amino acid sequence of FBVMO				
458	Fig. 4 SEM images of crystals formed by mixing PBS and CuSO ₄ solution (a) without and (b) with				
459	FBVMO				
460	Fig. 5 ¹ H NMR spectrum of ϵ -caprolactone obtained by oxidation of cyclohexanone with immobilized				
461	FBVMO				
462					
463	Conflict of interest				
464	The authors declare that they have no conflict of interest.				
465	Figure legends				
466	Fig. 1 Baeyer-Villiger monooxygenase (BVMO) catalyzed reaction				
467	Fig. 2 Effect of kind and concentration of metal ions for immobilization on residual activity. Activity				
468	before immobilization was set to 100%. The activity was determined at 40 °C, pH 7.4.				
469	Fig. 3 Effect of recycling of immobilized FBVMO on (a) activity and (b) immobilization yield The				

- activity was determined at 40 °C at pH 7.4. The optimum metal ion concentrations determined in
 Fig. 1 was employed. Activity before immobilization was set to 100%. Protein concentration before
 immobilization was set to 100%.
- Fig. 4 Effect of (a) pH and (b) temperature on oxidation activity of *F*BVMO, and (c) thermo-stability of *F*BVMO at 40 °C. Closed blue circle: immobilized *F*BVMO, open red circle: free *F*BVMO (a)
 Activity at pH 8.0 was set to 100% for free enzymes, and activity at pH 8.5 was set to 100% for
 immobilized *F*BVMO. (b) Activity at 30 °C was set to 100% (0.0192 µmol·min⁻¹·mg⁻¹ protein) for
 free enzymes, and activity at 40 °C was set to 100% (0.0153 µmol·min⁻¹·mg⁻¹ protein) for
- 478 immobilized FBVMO. (c) The activities before the treatment were set to 100%.

491 492 **Fig. 3** Effect of recycling of immobilized *F*BVMO on (a) activity and (b) immobilization yield

493 The activity was determined at 40 °C at pH 7.4. The optimum metal ion concentrations determined in Fig.

494 1 was used. Activity before immobilization was set to 100%. Protein concentration before immobilization
 495 was set to 100%.

 $\begin{array}{c} 496 \\ 497 \end{array}$

Fig. 4 Effect of (a) pH and (b) temperature on oxidation activity of FBVMO, and (c) thermo-stability of 498 FBVMO at 40 °C. Closed blue circle: immobilized FBVMO, open red circle: free FBVMO

- 499 (a) Activity at pH 8.0 was set to 100% for free enzymes, and activity at pH 8.5 was set to 100% for 500 immobilized FBVMO.
- 501 (b) Activity at 30 °C was set to 100% (0.0192 µmol·min⁻¹·mg⁻¹ protein) for free enzymes, and activity at
- 502 40 °C was set to 100% (0.0153 µmol·min⁻¹·mg⁻¹ protein) for immobilized FBVMO.
- 503 (c) The activities before the treatment were set to 100%.
- 504 505
- 506
- 507
- 508

Entry	Substrate		Relative activity (%)		
-		Free FBVMO	Immobilized FBVMO		
1	Cyclohexanone		100	100	
2	Cycloheptanone	O U	16	18	
3	Cyclooctanone		5.1	1.8	
4	2-Pentylcyclopentan-1-one	ů Ú	83	18	
5	Pentan-2-one	0 L	5.1	4.6	
6	Heptan-2-one	0 L	2.7	2.8	
7	1-Cyclopropylethan-1-one	0 L	3.0	2.2	
8	4-Phenylbutan-2-one		83	18	
9	Dimethyl sulfide	۶、 ×	2.8	3.2	
10	Diethyl sulfide	, S,∕	14	16	
11	Dipropyl sulfide	~\$~	3.2	3.0	
12	Methyl phenyl sulfide	^s	29	18	
13	Diphenyl sulfide		3.1	0.6	

 Table 1 Substrate specificity of FBVMO

The activities were determined under the standard assay conditions at pH 8.0 in 50 mM sodium phosphate buffer at 25 °C for the assay with the free *F*BVMO and 40 °C for the assay with the immobilized *F*BVMO. The activities of free or immobilized *F*BVMO toward cyclohexanone were set to 100%, respectively.

Supplementary Information

Immobilization of Baeyer-Villiger monooxygenase from acetone grown *Fusarium* sp.

Michio Takagi, Kotchakorn T.sriwong, Ayaka Masuda, Nozomi Kawaguchi, Shusuke Fukui, Huong Le Viet Lan, Dai-ichiro Kato, Takashi Kitayama, Mikio Fujii, Afifa Ayu Koesoema, Tomoko Matsuda

Table of content

1
2
2
2
3
3
4
4
5

Reagents, materials, and apparatus

Chemicals were purchased from Nacalai Tesque (Kyoto, Japan), Tokyo Chemical Industry (Tokyo, Japan), or Wako (Tokyo, Japan) unless otherwise indicated. All reagents were used without purification. Restriction enzymes, DNA marker for Agarose gel electrophoresis, λDNA/HindIII Markers G1711, Pure YieldTM Plasmid Miniprep System, and Wizard SV Gel PCR Clean-Up System were purchased from Promega (USA). Ex Taq polymerase and In-Fusion HD Cloning Kit were purchased from Takara Bio (Shiga, Japan). Precision Plus ProteinTM All Blue Standards, and protein concentration measurement reagent (Bradford reagent) were purchased from Bio-rad (USA). GenEluteTM Plant Genomic DNA Miniprep Kit and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Sigma Aldrich (USA). HisTrapTMFF crude (1 mL) was purchased from GE Healthcare (Tokyo, Japan). Amicon Ultra-4 (10 k) was purchased from Merk Millipore (USA).

Experiments were done using Bio-shaker BR-43FL from Taitech (Nagoya, Japan), high speed centrifuge TOMY MX-301 from Tomy Seiko (Tokyo, Japan), Gen Amp PCR system 9700 from Applied Biosystems (USA), and insonator 201 M from Kubota (Tokyo, Japan). Enzyme activity assays were performed on a UV-1900-UV-Vis spectrophotometer from Shimadzu (Kyoto, Japan). GC analysis was performed on a GC-14B equipped with FID detector and CP-Chirasil DEX CB column (Varian, 25 m x 0.32 mm, and 0.25 µm film thickness). ¹H-NMR analysis was performed on a Bruker Biospin AVANCE III 400 spectrometer at 400 MHz in CDCl₃. Morphological observation was done by Bench-top Scanning Electron Microscope (SEM) proX supplied by Phenom-World (Netherlands).

Purposes	Sequence			
Determination of	Forward primer-1 (5'-GCAAAAGGTCCCGAACATAA- 3')			
FBVMO sequence	Reverse primer-1 (5'-ATGATGTGATGGCTGTCCAA-3')			
-	• ````````````````````````````````````			
	Forward primer-2 (5'-GTGATCTCGGTGATGGGAGT-3')			
	Reverse primer-2 (5'-GGAAGCAAGCAAAGAGAGC-3')			
	Forward primer-3 (5'-CTTGCCCCAAGCATGGAC-3')			
	Reverse primer-3 (5'-GTCAAGGCCGAGAAGCTGAT-3')			
	Forward primer-4 (5'-CATGTCACAGCAATACGGAGA-3')			
	Reverse primer-4 (5'-GATATCATCCAACACGCCAAC-3')			
Removal of the intron	pUC19-BVMO forward primer			
and construction of	(5'-TCGGTACCCGGGGATCATGACCCCTTGTCCTGATTACG-3')			
pUC19-FBVMO	BVMO intron reverse primer			
	(5'-AACATCGAAGGCGTCTCCGACATGGC-3')			
	BVMO intron forward primer			
	(5'-GGATACGCCTTCGATGTT-3')			
	pUC19-BVMO reverse primer			
	(5'-TCGACTCTAGAGGATCGTCACTTCAGAACGGTCTAAATCC-3')			
Construction of	Insert forward primer			
pET-21b(+)-FBVMO	(5'-AAGGAGATATACATATGACCCCTTGTTCTGATTACG-3')			
	Insert reverse primer			
	(5'-GTCATGCTAGCCATAAACGGTCTAAATCCTTTGTATCC-3')			

Table 1 Primers used for PCR to construct BL21(DE3)-pET-21b(+)-FBVMO

Table 2 Summary	of purification	steps of FBVMO	overexpressed in <i>E. coli</i>
-------------------	-----------------	----------------	---------------------------------

Step	Total protein (mg)	Total unit (U)	Specific activity (U/mg) ^a	Yield (%)	Purification fold
Cell free extract	1.50	1.91	1.27	100	1
HisTrap FF crude	0.0352	0.78	22.1	41	17.4

^aThe specific activity was measured using 0.1% diethylene glycol to dissolve substrate, cyclohexanone, easily. The specific activity without using diethylene glycol was same as that with diethylene glycol.

Fig. 1 Microscopic observation images of Fusarium sp. NBRC 109816

ATGACCCCTTGTCCTGATTACGATGCTGTAGTAGTGGGAGCTGGCTTTGGTGGCATCTACATGT GCAAGAAGCTCGTGGACCAGGGCCTGTCTGTGAAGCTTATCGAGGTTGCGCCGGATGTTGGC GGCACTTGGTATTGGAATCGTTATCCGGGCGCCATGTCGGATACGCCTTCGATGTTGTATAGAT ACTCTTGGGACCTCGAAGATCTTCAGCAGTATTCATGGGAAAAGCAATACCTCCAACAACATG AGGTTTTGGCTTACCTACGGCATGTGGTTGATCGACATCAACTCCGTCAATATATGCAGTTCAA CGCTGAGATGAAAGCTGCCAACTGGGATCCAGACCACTCAAAATGGACTGTTGGTCTATCTTC TGGTCCGGATATCACATGTCGCTACTTGATCACCGCGATTGGGCTTCTTTCCAAGCAGAATTAT CCAGAAATCCGGGGATTGGATTCCTTCAAGGGCGAAATGTATCACACAGGGAGCTGGCCAGC GTCTTACGACTTCAAGAATAAGCGAGTCGGGGGTTATTGGGAACGGATCGACCGGTGTTCAAG TCATTACCGCAATTGCAGATGAAGTAAAGCTTCTGCGTTCATTCCAGCGGCACCCGCAGTATG TTGTGCCTGCAGTCAATAGAGCGTTTCCTCCTGAAGATCGACGCGAGATTGACCGCCAATGGA ACGAGATCTGGAAGCAAGCAAAAGAGAGCATGTTTGGTTTTGGATTCGAGGAGAGAGTCAAACT CCTGCCTATAGTGTCACAGCAGAAGAGCGTGAAAAGATCTTCGAGAACGCCTGGCAAAAGG GTGGCGGCTTCAACTTTATGTTCGGAACCTTTTCCGACATCTCTTCTGACGAAGCGGCAAACA AAGAAGCAGCCGACTTTATCAAAAGAAAGATCCGCCAAATCGTCAAAGATCCTATCAAGGCC GAGAAGCTGATTCCCACAGAGCATTATGCTCGTCGTCGTCGTGTGTGATACGGGTTATTATGAG AAGTTCAACAGCCATAATGTGGATATCATTGATGTCAATGAGACTCCCATCACCGAGATCACG CCTAAGGGTGTTCGAACAAGCGACGGGGCCGAGTATGACCTCGATGTTCTTGTGTTTGCCAC AGGTTTTGATGCCGTAGATGGGAACTACAAGCGGATTCCGATCCAAGGTGTATCAAACAAGAC TCTCAAGGACTGTTGGGCTGATGGACCAGACTCATATCTCGGTATCTCTGTATCAGACTTCCCA AATCTCTTCATGATACTGGGTCCGAACGGTCCTTTTACAAATTTGCCCCCGACCATTGAGACCC AGGTTGAGTTTGTATCTGACATCATCCAACACGCCAATGAATCGGCACGTCAGAACGGCAAG AATCCTACTATTGAAGCAGAGCGAGAAGCGGTCCATGCTTGGAGCAAGATCTGTGACGAGCT TAGCGCAAACAGTTTATTTAGAAGGACAGATTCTTGGATTTTTGGTGCTAACGTAGCTGGGAA AAAGCCTTCGGTGCTCTTTTACTTTGGAGGTCTTGCAAACTATAGGAAGGCCTTGCAGGATTT GATCGATGGATGGATACAAAGGATTTAGACCGTTTATGGCTAGCATGACTGGTGGACAGCAAAT **GGGTCGGGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCAC** CACCACCAC

Fig. 2 DNA sequence of *F*BVMO without intron green: sequence of *F*BVMO, yellow: sequence of restriction enzyme site, blue: sequence of His Tag, under line: sequence of T7 • Tag

MTPCPDYDAVVVGAGFGGIYMCKKLVDQGLSVKLIEVAPDVGGTWYWNRYPGAMSDTPSML YRYSWDLEDLQQYSWEKQYLQQHEVLAYLRHVVDRHQLRQYMQFNAEMKAANWDPDHSKW TVGLSSGPDITCRYLITAIGLLSKQNYPEIRGLDSFKGEMYHTGSWPASYDFKNKRVGVIGNGST GVQVITAIADEVKLLRSFQRHPQYVVPAVNRAFPPEDRREIDRQWNEIWKQAKESMFGFGFEES QTPAYSVTAEEREKIFENAWQKGGGFNFMFGTFSDISSDEAANKEAADFIKRKIRQIVKDPIKAEK LIPTEHYARRPLCDTGYYEKFNSHNVDIIDVNETPITEITPKGVRTSDGAEYDLDVLVFATGFDAV DGNYKRIPIQGVSNKTLKDCWADGPDSYLGISVSDFPNLFMILGPNGPFTNLPPTIETQVEFVSDII QHANESARQNGKNPTIEAEREAVHAWSKICDELSANSLFRRTDSWIFGANVAGKKPSVLFYFGG LANYRKALQDLIDDGYKGFRPF*

Fig. 3 Amino acid sequence of FBVMO

blue: type I BVMO fingerprint; FxGxxxHTxxW[P/D] (Fraaije et al. 2002; Rebehmed et al. 2013) green: type I BVMO fingerprint; [A/G]GxWxxx[F/Y]P[G/M]xxxD (Riebel et al. 2012) red: two Rossmann fold domains harboring a GxGxx [G/A] motif

Fig. 4 SEM images of crystals formed by mixing PBS and CuSO₄ solution (a) without and (b) with *F*BVMO

Fig. 5 ¹H NMR spectrum of ϵ -caprolactone obtained by oxidation of cyclohexanone with immobilized *FBVMO*

References

- Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB (2002) Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 518:43–47. https://doi.org/10.1016/s0014-5793(02)02623-6
- Rebehmed J, Alphand V, de Berardinis V, de Brevern AG (2013) Evolution study of the Baeyer-Villiger monooxygenases enzyme family: functional importance of the highly conserved residues. Biochimie 95:1394–1402. https://doi.org/10.1016/j.biochi.2013.03.005
- Riebel A, Dudek HM, De Gonzalo G, et al (2012) Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol Biotechnol 95:1479–1489. https://doi.org/10.1007/s00253-011-3823-0