

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Symbiont-driven niche expansion shaped the adaptive radiation of insects

Charlie Cornwallis (Charlie.cornwallis@biol.lu.se) Lund University Anouk van't Padje Wageningen University & Research https://orcid.org/0000-0003-2633-2153 **Jacintha Ellers** Vrije Universiteit Amsterdam https://orcid.org/0000-0003-2665-1971 Malin Klein VU University Amsterdam **Raphaella Jackson** Queen Mary University of London **Toby Kiers** VU University Amsterdam Stuart West University of Oxford https://orcid.org/0000-0003-2152-3153 Lee Henry Queen Mary University of London

Biological Sciences - Article

Keywords: symbioses, microbe-insect symbioses, insect diversification, feeding niche

Posted Date: November 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1063949/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1 Symbiont-driven niche expansion shaped the adaptive radiation of

2 insects

- 3 Charlie K. Cornwallis^{1*}, Anouk van't Padje², Jacintha Ellers², Malin Klein², Raphaella
- 4 Jackson³, E. Toby Kiers², Stuart A. West⁴, Lee M. Henry^{3*}

5

- ⁶ ¹ Department of Biology, Lund University, Sölvegaten 37, 223 62 Lund, Sweden.
- ⁷ ² Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De
- 8 Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands.
- ⁹ ³ School of Biological and Chemical Sciences, Queen Mary University of London, London, E1

10 4DQ, UK.

- ⁴ Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
- 12 *Joint corresponding authors

13	For over 300 million years, insects have relied on symbiotic microbes for nutrition
14	and defence ^{1,2} . However, it is unclear whether specific ecological conditions have
15	repeatedly favoured the evolution of symbioses, and how this has influenced insect
16	diversification ^{1,3,4} . Using data on 1844 microbe-insect symbioses across 400 insect
17	families, we found that symbionts have allowed insects to radiate into a range of
18	feeding niches deficient in B vitamins, including phloem, blood and wood. In some
19	cases, such as herbivorous insects, the shift to a new niche has resulted in
20	spectacular species proliferation. In other niches, such as strict blood feeding,
21	diversification has been severely constrained. Symbioses therefore appear to solve
22	universal nutrient deficiencies for insects, but the consequences for insect
23	diversification depend on the feeding niche invaded.

24 Main text

25 Across the tree of life, microbial symbionts have enabled organisms to harness new 26 forms of energy, access unobtainable nutrients, and outsource critical functions such as 27 defence^{1,2}. So valuable are symbiotic partnerships that they have repeatedly led to 28 organisms becoming obligately dependent on each other for survival⁵. Such 29 interdependence between hosts and symbionts has led to the evolution of new levels of 30 organismal complexity that have ultimately shaped the diversity of life on earth^{3,6}. 31 32 The essential services provided by symbionts have enabled hosts to expand into 33 previously uninhabitable environments^{1,7}. For example, sulfur-oxidizing bacteria enable 34 giant marine tubeworms to live in deep-sea vents, root-associated fungi helped plants 35 colonize land, and nutrient-supplementing symbionts have allowed insects to live solely 36 on the imbalanced diets of plant sap and vertebrate blood^{2,8,9}. However, it is unclear 37 whether there are key ecological factors that allow us to make generalisations about how 38 and why obligate symbioses evolve. 39

Insects are an excellent system to study the evolution of obligate symbiosis, as microbes
have been recruited by a diverse set of insect families for a range of functions, including
defence and nutrition¹⁰. Obligate symbioses, defined here as hosts not being able to
survive without symbionts, are strongly associated with insects feeding on specialized
resources, such as plant-sap, blood (hematophagy) and wood (xylophagy)². It is therefore

45	widely accepted that symbiotic partnerships have opened up new ecological niches by
46	solving a variety of nutrient limitations that have contributed to the incredible
47	diversification of insects ⁷ .
48	
49	Previous work, however, has consistently focused on single groups of insects at a time.
50	As a result, the extent that we can generalize about the ecological causes and
51	consequences of obligate symbiosis across different groups of insects and microbes is
52	unknown. For example, have obligate symbioses solved the same or different nutritional
53	deficiencies across divergent feeding niches, and how has this influenced the
54	diversification of different insect lineages?
55	
56	We address these questions by examining macro-evolutionary patterns of symbiosis
57	across 1844 microbe-insect combinations from 400 insect families. Data were collated
58	across bacteria, fungi and protist symbionts with nutritional and defensive functions
59	(Supplementary Tables 1-4). First, we estimated how often insect lineages within
60	different feeding niches have evolved obligate symbiosis. Obligate dependence was
61	determined by the presence of morphological structures exclusively associated with
62	obligate symbiosis (e.g. bacteriocytes ¹⁰). Where information on symbiont housing organs
63	was lacking, data on the impacts of symbiont removal and patterns of host-symbiont co-
64	speciation were used to determine obligate dependence (see Methods). Second, we
65	examined the composition of insect diets to determine whether specific nutrient
66	deficiencies have consistently led to the evolution of obligate symbiosis across different
	4

67	feeding niches. We differentiate between insect families that specialize on single plant-
68	based resources (phloem, xylem, or wood) from families that exploit various plant parts
69	(phytophagy, referred to here as herbivores), as there were large differences in the
70	nutrients between these diets (Supplementary Tables 1 & 4). Third, we tested if the
71	acquisition of obligate symbionts has increased or decreased host diversification after
72	radiating into different feeding niches. We circumvent the problem of poorly resolved
73	species level phylogenies by reconstructing the evolutionary history of obligate
74	symbioses at the family level.
75	
76	Evolutionary origins of obligate symbiosis
77	We found that obligate symbiosis has evolved in at least 13 independent insect lineages
78	(Fig. 1. Supplementary Table 5). These origins were estimated on the time-calibrated
79	phylogeny ¹¹ to date back as far as 336 million years, allowing us to examine the long-
80	term evolutionary consequences of obligate symbiosis for niche specialization and
81	diversification.
82	
83	Reconstructing the ancestral feeding niches of insect families showed that all obligate
84	symbioses evolved from omnivorous (origins = 75%), herbivorous (origins = 8%) and
85	predatory ancestors (origins = 17%. Fig. 1. Supplementary Table 5). Following the
86	acquisition of obligate symbionts, 59% of lineages switched to a single food source
87	(phloem = 40%, blood = 12%, xylem = 6% and wood = 1%. Fig.1. Supplementary Table
88	5). This pattern of food utilisation explains the current distribution of obligate symbiosis

89	remarkably well, where over 90% of insect species feeding on blood, phloem, xylem and
90	wood have obligate symbionts (Fig. 1. Supplementary Tables 1, 2 and 6). Conversely,
91	there are no known cases of obligate symbioses in insect families that are predominantly
92	predators or fungivores (Fig. 1. Supplementary Tables 1, 2 and 6).
93	
94	In contrast to nutritional symbionts, we found that only four insect families had
95	symbionts with defensive functions. This is likely influenced by sampling effort, as
96	defensive symbionts have only been discovered relatively recently in insects ¹² . However,
97	out of the 11 microbial species shown to provide insects with protective services, nearly
98	all maintain facultative relationships with their hosts. There is only one exception in our
99	database, the Asian citrus psyllid, Diaphorina citri, that has evolved obligate dependence
100	on a defensive symbiont, which is housed in bacteriocytes alongside a putative nutrient
101	provisioning symbiont ¹³ . While more work is clearly needed, these data support the
102	hypothesis that selection for protection against natural enemies is too inconsistent across
103	generations to favour the evolution of obligate dependence ^{5,14} .
104	

105 Nutrient deficiencies and obligate symbiosis

106 Our results show that the evolution of obligate symbiosis in insects is associated with 107 transitions to specialized feeding niches (Fig. 1). However, it is not clear if there are common nutrient deficiencies that explain the evolution of obligate symbiosis across 108 these diverse niches. To test this idea, we extracted the nutrient compositions for the 19 109

diet types of insects in our dataset, estimating levels of carbohydrates, fats, proteins andvitamins A, B, C, E and K.

113	We found that only one dietary component was consistently associated with the evolution
114	of obligate symbiosis across all feeding niches: low levels of B vitamins (Fig. 2.
115	Phylogenetic correlation (phylo <i>r</i>), Credible Interval (CI) = -0.39 (-0.59, -0.21), pMCMC
116	= 0.001. Supplementary Table 7). This pattern held across hosts with very different
117	feeding niches, that had highly variable compositions of carbohydrates, proteins, fats,
118	and vitamins in their diets (Extended Data Fig. 1. Supplementary Table 7). Other
119	nutritional deficiencies were associated with obligate symbiosis, but these were restricted
120	to specific feeding niches (Supplementary Table 8. Extended Data Fig. 1). For example,
121	insects feeding on phloem and wood had significantly less protein in their diets compared
122	to background levels across all other niches (Phloem (CI) = -0.76 (-1.03 , -0.37), pMCMC
123	= 0.001. Wood (CI) = -0.74 (-1.36, -0.28), pMCMC = 0.002. Supplementary Table 8).
124	
125	Examining different types of B vitamins further showed that the evolution of obligate
126	symbiosis was significantly associated with low levels of B5 and B9 vitamins, and
127	weakly related to B6 vitamins (Fig. 2. Supplementary Table 9). Vitamins B1, B2 and B3
128	were highly correlated with B5 (Pearson's correlation coefficients $r > 0.90$) and B6 is
129	correlated with B9 (r=0.77), indicating that sets of B-vitamins are often concurrently
130	absent from insect diets (Extended Data Fig. 2). Data on vitamins B7 and B12 had >30%
131	missing data and so were not analysed. No other macro- or micro-nutrients were

132 significantly correlated with obligate symbiosis across all insect families (Fig. 2.

- 133 Supplementary Table 7).
- 134

135	Our results are consistent with detailed studies that have demonstrated the fitness
136	consequences of providing B vitamins to specific insect species. For example, the fitness
137	of tsetse flies depends on B9 and B6 vitamins provided by Wigglesworthia bacteria ^{15,16} ,
138	and Buchnera supplements aphids with B5 and B2 vitamins, with B5 having a
139	particularly strong effect on host survival ¹⁷ . Dietary studies have also confirmed that
140	mutualistic Wolbachia provide essential B-vitamins for Cimex bed bugs18; and metabolic
141	homeostasis is restored in symbiont-free Dysdercus cotton stainers when B-vitamins are
142	supplemented, or hosts are reinfected with their actinobacterial symbionts ¹⁹ .
143	
144	Evolutionary transitions to nutrient deficient diets

145 Our results suggest that B vitamin deficiency is of widespread importance for the 146 evolution of obligate symbiosis in insects. There are, however, two competing 147 explanations for why such transitions occur. One possibility is that insects feeding on 148 diets low in vitamin B recruited symbionts to supply B vitamins. The alternative is that 149 insects first acquired obligate symbionts that could synthesise B vitamins, possibly for 150 some other benefit, which then enabled them to invade ecological niches where B 151 vitamins were scarce. The question is therefore whether the evolution of obligate 152 symbioses were triggered by low B vitamins in diets or whether they facilitated 153 specialisation on these diets.

154	We tested these competing hypotheses by estimating the amount of B5 and B9 vitamins
155	in ancestral diets prior to, and following, transitions to obligate symbiosis. We found
156	little evidence that levels of B5 and B9 vitamins were reduced in the diets of insects
157	before they acquired obligate symbionts (Fig. 3. Supplementary Tables 10-11). Instead,
158	we found that hosts that recruited obligate symbionts subsequently evolved to specialise
159	on diets with low levels of B5 and B9 vitamins (Fig. 3. Supplementary Tables 10-11).
160	Once obligate symbioses evolved, shifts to diets deficient in B vitamins were much more
161	frequent, particularly for B5, where transition rates to low B vitamins were 16 times
162	higher than for lineages without obligate symbionts (Supplementary Table 11).
163	
164	The key role of B vitamins in driving obligate symbioses was further supported by the
165	loss of obligate symbionts when insects switched to diets with elevated levels of B
166	vitamins (Figs. 3. Supplementary Tables 10-11). Insect lineages with above average
167	levels of B5 and B9 vitamins were more likely to lose their obligate symbionts
168	(Differences in transition rates (q): B5 = -2.05 (-3.35, -0.47), pMCMC=0.002. B9 = -
169	2.21 (-3.76, -0.89), pMCMC=0. Supplementary Table 11). Our results match with
170	observations from specific taxa, where obligate symbiont losses have been associated
171	with dietary changes in their insect hosts. In the mealybug genus, Hippeococcus,
172	symbiont losses are thought to be associated with nutrient provisioning by Dolichoderus
173	ants, and Typhlocybides plant hoppers lost their ancestrally obligate symbionts when
174	switching from plant-sap to more nutrient rich parenchyma. ²⁰
175	

176 Symbiont specialisation in nutrient provisioning

177 Given the key role of B vitamins in both the origin and breakdown of obligate symbioses, 178 we examined whether specific lineages of symbiotic bacteria specialise in providing B 179 vitamins to hosts. Have hosts relied on a restricted set of symbiotic partners, or have a 180 variety of symbionts converged to provide B vitamins? To address this question, we 181 created a phylogeny for symbionts to quantify the amount of variation in dietary B 182 vitamins explained by symbiont ancestry and their coevolutionary relationships with 183 hosts. 184 185 We found that hosts evolved dependence on a broad range of microbes (Supplementary 186 Tables 12-13). Less than 1% of variation in B5 and B9 vitamins in host diets was 187 explained by symbiont phylogeny and the coevolutionary history between symbionts and 188 hosts (symbiont phylogeny % variance: B5 (CI) = 0.05 (0.01, 0.09). B9 (CI) = 0.01 (0, 189 0.02). Coevolutionary interaction % variance: B5 (CI) = 0.04 (0.01, 0.07). B9 (CI) = 0.01190 (0, 0.02). Supplementary Tables 12-13). Instead, divergent symbiotic lineages appear to 191 have become convergently associated with insects feeding on low vitamin B diets 192 (Extended Data Fig. 3). Following the establishment of obligate symbioses, hosts and 193 symbionts tend to coevolve, as related insect families were significantly more likely to be 194 partnered with phylogenetically similar symbionts (coevolutionary interaction % 195 variance (CI) = 25.55 (0, 77). Parafit: P = 0.05. Supplementary Tables 14-15). These

196 results match with research showing that diverse symbiotic bacteria have retained the

197 genes for synthesising B vitamins²¹, and that insects whose bacteria lose the capacity to

198 provide B vitamins recruit new symbiont lineages to compensate for the loss²².

199

200 **Obligate symbiosis and insect diversification**

201 Finally, we examined whether obligate symbioses have influenced insect diversification

202 rates. The current paradigm, based on observations from specific lineages, such as sap-

203 feeding Hemipterans, is that the acquisition of symbionts opens up new niches and

204 increases host diversification^{23,24}. Host-symbiont coevolution can also generate

205 incompatibilities between populations that may increase speciation rates⁴.

206

207 Dependence on symbionts may, however, 'trap' hosts in specific niches, leading to the

208 opposite prediction that symbiosis reduces diversification⁴. For example, hosts can be

209 restricted to feeding on specific resources because of symbiont-assisted specialization²⁵,

210 or limited by the sensitivity of their obligate symbionts to environmental conditions, such

as temperature^{26,27}. Mutation accumulation can also degrade symbiont functioning,

212 resulting in hosts being stranded with maladapted symbionts that may increase extinction

risk²⁸. These competing hypotheses have not been systematically tested, generating

214 debate over the role of symbionts in insect diversification.

215

216 We found that obligate symbionts were associated with extreme highs and lows of

217 diversification (Fig. 4. Supplementary Tables 16-17). At the extreme high, herbivorous

218 insect families with obligate symbionts had 10 times as many species compared to the

219	average across families (Fig. 4. Herbivores with obligate symbionts versus background
220	(CI) = 2.74 (1.11, 4.13), pMCMC = 0.004). At the other extreme, extraordinarily low
221	diversification was associated with insect families feeding on blood, which had 9 times
222	fewer species than the average (Fig. 4. Blood feeders with obligate symbionts versus
223	background (CI) = -1.72 (-3.63, -0.17), pMCMC = 0.014). This resulted in a 92-fold
224	difference in the number of species in herbivorous insect families with obligate
225	symbionts versus those in blood-feeding niches. These estimates of diversification were
226	after accounting for differences between holo- and hemi-metabolism and insect
227	phylogenetic history, which are known to affect the number of species in families (see
228	Methods for analyses examining robustness to extinction rate assumptions).
229	

230 Diversification within feeding niches is promoted by obligate symbiosis

231 Across insects, patterns of diversification appear to be dominated by feeding niche 232 (Supplementary Table 17). However, within particular feeding niches, symbionts may 233 still systematically promote diversification if they allow species within those niches to exploit different resources. For example, in insect families feeding on more varied 234 235 resources, such as generalist herbivores and omnivores, symbionts may enable resource 236 partitioning between species, fueling the speciation process. If true, then herbivorous and 237 omnivorous families with obligate symbionts should have higher diversification rates 238 than families without them.

239

240	Within feeding niches, we found that herbivorous insect families with obligate symbionts
241	had 19 times as many species as families without symbionts (Fig. 4. Families with versus
242	without obligate symbionts (CI) = 3.32 (1.54, 4.95), pMCMC = 0.001. Supplementary
243	Table 17). Omnivorous and wood eating families of insects with obligate symbionts also
244	had two to three times as many species as families that lacked symbionts, although these
245	differences were not statistically significant (Fig. 4. Omnivorous: (CI) = 0.29 (-0.97,
246	1.48), pMCMC = 0.668. Wood: (CI) = 1.26 (-2.59, 3.94), pMCMC = 0.68.
247	Supplementary Table 17). These results are similar to findings from specific taxa. For
248	example, symbionts allowed Chrysomelide leaf beetles, now one of the most diverse
249	families of insects, to feed and radiate exclusively on plants ^{29,30} . Similarly, the success of
250	certain highly specious ant lineages has been facilitated by nutrient provisioning
251	symbionts that have allowed them to thrive on primarily plant-derived diets ³¹ .
252	
253	We examined the sensitivity of our analyses to a number of alternative approaches. First,
254	we tested how inserting families (n=23) that were not included in the published
255	phylogeny ¹¹ influenced our results (Supplementary Table 20). Second, we examined the
256	robustness of our results to including non-bacterial symbionts and including families that
257	had multiple co-occurring obligate symbionts (Supplementary Tables 21-23). Third, we
258	repeated our analyses using a second dataset restricted to only species where dependence
259	on symbionts had been directly studied, rather than inferred from microscopy studies
260	examining the presence of bacteriocytes within certain insect orders and superfamilies

261 (Supplementary Tables 24-26). The results remained qualitatively and quantitatively262 similar across all analyses.

263

264	Summarv

265 Our results suggest that we can make relatively broad inferences about the causes and

266 consequences of obligate symbioses in insects. After acquiring microbial partners, hosts

are able to exploit food resources deficient in B vitamins. In some cases, such as

268 herbivorous insects, the shift to this new niche has facilitated adaptive radiations,

analogous to textbook examples such as Darwin's finches. In other cases, such as strict

270 blood feeding, the new niche has severely constrained diversification. The intricate

271 relationships between hosts and their nutritional symbionts therefore appear key to

shaping patterns of global biodiversity.

273

274 **References**

275 1. Bronstein, J. L. *Mutualism. Mutualism* (Oxford University Press, 2015).

Douglas, A. E. The microbial dimension in insect nutritional ecology. *Functional Ecology* 23, 38–47 (2009).

Estrela, S., Kerr, B. & Morris, J. J. Transitions in individuality through symbiosis.
 Current Opinion in Microbiology 31, 191–198 (2016).

280	4.	Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of
281		an evolutionary rabbit hole. Proceedings of the National Academy of Sciences
282		112 , 10169–10176 (2015).
283	5.	Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The
284		evolution of host-symbiont dependence. <i>Nature Communications</i> 8, 1–8 (2017).
285	6.	Maynard-Smith, J. & Szathmary, E. The Major Transitions in Evolution. (Oxford
286		University Press, 1997).
287	7.	Moran, N. A., Tran, P. & Gerarado, N. M. Symbiosis and Insect Diversification:
288		An Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum
289		Bacteroidetes. Applied and Environmental Microbiology 71, 8802-8810 (2005).
290	8.	Kleiner, M. et al. Metaproteomics of a gutless marine worm and its symbiotic
291		microbial community reveal unusual pathways for carbon and energy use.
292		Proceedings of the National Academy of Sciences 109, E1173–E1182 (2012).
293	9.	Morris, J. L. et al. The timescale of early land plant evolution. Proceedings of the
294		National Academy of Sciences 115, E2274–E2283 (2018).
295	10.	Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of
296		heritable bacterial symbionts. Annual Review of Genetics 42, 165–190 (2008).

297	11.	Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic
298		Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation
299		Driving Diversification in Insects. PLoS One 9, e109085 (2014).
300	12.	Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial
301		symbionts in aphids confer resistance to parasitic wasps. Proceedings of the
302		National Academy of Sciences 100, 1803–1807 (2003).
303	13.	Nakabachi, A. et al. Defensive Bacteriome Symbiont with a Drastically Reduced
304		Genome. Current Biology 23, 1478–1484 (2013).
305	14.	Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real
306		world advancing ecological studies of heritable, protective bacteria in aphids and
307		beyond. Functional Ecology 28, 341–355 (2014).
308	15.	Snyder, A. K. & Rio, R. V. M. 'Wigglesworthia morsitans' Folate (Vitamin B9)
309		Biosynthesis Contributes to Tsetse Host Fitness. Applied and Environmental
310		<i>Microbiology</i> 81 , 5375–5386 (2015).
311	16.	Michalkova, V., Benoit, J. B., Weiss, B. L., Attardo, G. M. & Aksoy, S. Vitamin
312		B6 Generated by Obligate Symbionts Is Critical for Maintaining Proline
313		Homeostasis and Fecundity in Tsetse Flies. Applied and Environmental
314		Microbiology 80, 5844–5853 (2014).

17.	Blow, F. et al. B-vitamin nutrition in the pea aphid-Buchnera symbiosis. Journal
	of Insect Physiology 126, 104092 (2020).
18.	Nikoh, N. et al. Evolutionary origin of insectWolbachia nutritional mutualism.
	Proceedings of the National Academy of Sciences of the United States of America
	111, 10257–10262 (2014).
19.	Salem, H. et al. Vitamin supplementation by gut symbionts ensures metabolic
	homeostasis in an insect host. Proceedings of the Royal Society B: Biological
	Sciences 281, 20141838 (2014).
20.	Buchner, P. Endosymbiosis of Animals with Plant Microorganisms. (Interscience
	Publishers, 1965).
21.	Douglas, A. E. The B vitamin nutrition of insects: The contributions of diet,
	microbiome and horizontally acquired genes. Current Opinion in Insect Science
	23 , 65–69 (2017).
22.	Monnin, D. et al. Parallel Evolution in the Integration of a Co-obligate Aphid
	Symbiosis. Current Biology 30, 1949–1957.e6 (2020).
23.	Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont Acquisition and Replacement
	as a Source of Ecological Innovation. Trends in Microbiology 25, 375-390
	(2017).
	 17. 18. 19. 20. 21. 22. 23.

333	24.	Bell-Roberts, L., Douglas, A. E. & Werner, G. D. A. Match and mismatch
334		between dietary switches and microbial partners in plant sap-feeding insects.
335		Proceedings of the Royal Society B: Biological Sciences 286, 20190065 (2019).
336	25.	Manzano-Marín, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes
337		enables the establishment of new nutritional symbionts in aphids' di-symbiotic
338		systems. The ISME Journal 14, 259–273 (2020).
339	26.	Fan, Y. & Wernegreen, J. J. Can't Take the Heat: High Temperature Depletes
340		Bacterial Endosymbionts of Ants. Microbial Ecology 66, 727-733 (2013).
341	27.	Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R. & Moran, N. A. Aphid Thermal
342		Tolerance Is Governed by a Point Mutation in Bacterial Symbionts. PLoS Biology
343		5 , e96 (2007).
344	28.	McCutcheon, J. P., Boyd, B. M. & Dale, C. The Life of an Insect Endosymbiont
345		from the Cradle to the Grave. Current Biology 29, R485–R495 (2019).
346	29.	Salem, H. et al. Drastic Genome Reduction in an Herbivore's Pectinolytic
347		Symbiont. Cell 171, 1520–1531.e13 (2017).
348	30.	Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in
349		(semi-)aquatic reed beetles. Nature Communications 11, 2964 (2020).
350	31.	Feldhaar, H. et al. Nutritional upgrading for omnivorous carpenter ants by the
351		endosymbiont Blochmannia. BMC Biology 5, 48 (2007).

352 Figure legends

353 Figure 1: The evolutionary origins of obligate symbionts and their association 354 with different feeding niches. A) The phylogenetic distribution of obligate 355 symbionts across insect families and their feeding niches. Turquiose tips and 356 branches represent obligate symbiosis and different coloured dots represent 357 different feeding niches. Ancestral feeding niches and obligate symbiosis states 358 were estimated using Stochastic Character Mapping (SCM) (Supplementary Table 5. 359 See Extended Data Fig. 6 for tree with tip lables). B) The number of times obligate 360 symbiosis evolved in different ancestral feeding niches of insects. C) Current rates 361 of obligate symbioses in relation to the feeding niches of insects. The average 362 number of species within families is given along the x axis. Figure 2: Nutrient deficiencies and the evolution of obligate symbioses. A) 363 364 Macro-nutrients were not consistently associated with the proportion of species 365 within families that had obligate symbionts. B) Insect families with diets deficient in 366 B5 and B9 vitamins had significantly more species with obligate symbionts than 367 families feeding on diets with high levels of B vitamins (B5 phylo r (CI) = -0.43 (-368 0.56, -0.22), pMCMC = 0.001. B9 phylo r (CI) = -0.64 (-0.78, -0.44), pMCMC = 0.001). Vitamin B6 was also weakly related to obligate symbiosis (B6 phylo r (CI) = -0.25 (-369

- 370 0.42, -0.02), pMCMC = 0.056). Values of macro- and micro-nutrients are
- 371 standardized amounts per gram (see Methods for details). Vitamin B concentrations

372 were log transformed and mean centered (see Methods for details). The size of

373 points represents the mean number of host species (log transformed) examined for

obligate symbionts per family. Lines represent logistic regressions with 95%

375 confidence intervals plotted for illustrative purposes.

376 Figure 3: Obligate symbioses enable evolutionary shifts to diets deficient in B

377 vitamins. The ancestors of lineages that evolved obligate symbioses (Non to Ob) 378 had similar levels of B5 (A) and B9 (B) vitamins in their diets to lineages that did 379 not evolve obligate symbioses (Non to Non). However, after acquiring obligate 380 symbionts lineages switched to diets with significantly lower levels of B vitamins 381 (Non to Ob versus Ob to Ob). The evolutionary loss of obligate symbiosis was also 382 associated with increases in dietary levels of vitamin B5 (Ob to Ob versus Ob to 383 Non). Vitamin B concentrations were log transformed and mean centered (see 384 Methods for details). Violin density curves represent the posterior distribution of 385 estimated ancestral levels of B5 and B9 vitamins (1000 samples) estimated using a 386 BPMM (Supplementary Table 10). The width of the violin corresponds 387 approximately to the most likley estimate of B vitamins. Significant differences 388 between transitions are indicated by * pMCMC <0.05, ** pMCMC <0.01, *** pMCMC 389 < 0.0001.

Figure 4: Obligate symbioses and the evolutionary potential for

- 391 diversification. Diversification was measured as the number of species within 392 families controlling for family age. The highest and lowest number of species per 393 family were associated with feeding niches that had obligate symbionts. 394 Herbivorous insect families with symbionts had significantly more species than 395 those without, whereas blood feeding insects, which exclusively had obligate 396 symbionts, had the lowest number of species. Significant differences versus background numbers of species per family are indicated by * pMCMC <0.05, ** 397 pMCMC <0.01, *** pMCMC <0.0001 obtained from a BPMM (Supplementary Table 398
- 399 17).

400 Figures

Figure 1

Figure 4

416 Methods

417 **1. Data collection**

418 **1.1 Insect and symbiont data**

419 *Literature searches*

- 420 We complied a database on insect-microbe symbioses by: (1) searching published
- 421 literature using the following key words [order name] OR [family name] AND
- 422 "symbio"* using the search engines Web of Science and Google scholar during 2015-
- 423 2017 and again in 2020, (2) searching several prominent reviews (e.g. Ries 1931³²,
- 424 Schneider 1939³³, Müller 1962³⁴, Buchner 1965²⁰, Douglas 1989³⁵, Abe *et. al.* 2000³⁶,
- 425 Bourtzis and Miller 2003³⁷, 2006³⁸ and 2009³⁹, Baumann 2005⁴⁰, Baumann *et. al.*
- 426 2013⁴¹), and (3) forward and backward searches from the resulting papers. A full list of
- 427 the papers screened can be found in Supplementary Table 2.
- 428 The insect families included in the literature search were those listed in Bouchard *et. al.*
- 429 2011⁴², Davis *et. al.* 2010⁴³, and Rainford *et. al.* 2014¹¹, and those included in published
- 430 phylogenies investigating insect biodiversity: Hedges et al. 2015⁴⁴, Misof et al 2014⁴⁵,
- 431 and Rainford et al 2014¹¹. For symbiont detection, we only considered studies using
- 432 methods capable of capturing phylogenetically diverse bacteria species (e.g. deep-
- 433 coverage sequencing, or cloning, using 'universal' 16S rRNA primers), or microscopy
- 434 studies investigating whole insects for the presence of symbionts.

435 Specific clades of insects are known to carry the same obligate symbionts due to strict 436 vertical transmission (see Supplementary Table 2 'reference obligate criteria'). We 437 therefore searched Genbank to recover all insect species that have been associated with 438 specific vertically transmitted symbionts (identified taxonomically by symbiont genus 439 name in most cases) in order to increase our coverage of host-symbiont associations 440 (Supplementary Table 3). Search results were checked manually to ensure host species 441 belonged to the insect clade known to harbour the symbiont (Supplementary Table 3). In 442 families that have species both with and without obligate symbionts, we only considered 443 species directly studied for obligate symbiosis. Note that vertically transmitted symbionts 444 were only included in analyses of host evolution (section 4.1-4.3 & 4.5), not in analyses 445 of host-symbiont coevolution (section 4.4).

446 Data inclusion and exclusion

447 The aim of our paper was to investigate the evolution of beneficial obligate symbioses.

448 We therefore excluded studies: (1) on parasitic symbionts, such as those that manipulate

449 host reproduction (e.g. Spiroplasma, Cardinium, Wolbachia) that have not evolved

450 beneficial functions; (2) that failed to screen the entire insect (e.g. only performed insect

451 gut analyses); and (3) on symbionts with presumed beneficial functions, but that lacked

452 data needed for our obligate criteria (see below). Fungal and protist symbionts were

453 included where data on host dependency was available. Analyses of host-symbiont

454 coevolution were restricted to symbionts for which a phylogeny could be constructed

455 (bacteria with 16S rRNA genetic data: see section 2 for details).

456 For each insect-microbe association we collected data on: the insect species; juvenile and

457 adult insect diets; whether insects were holo- versus hemi-metabolous; the identity of

458 symbionts (if known); symbiont domain; whether symbionts were intra- or extra-cellular

459 (where known); whether symbionts were housed within specialized structures

460 (e.g. bacteriocytes); and whether insects were obligately dependent on symbionts (see

- 461 below for assessment criteria).
- 462 Criteria for assessing obligate symbiosis

463 Obligate dependence on endosymbionts would ideally be established from studies that

464 have measured changes in insect fitness before and after the experimental removal of the

465 microbes. However, such experiments are challenging and so these studies are relatively

466 rare. We therefore defined obligate dependence of insects on symbionts using proxy

467 measures that fulfilled one of the following criteria:

- 1. Insects have a bacteriome (or mycetome) with bacteriocytes (specialized
- 469 symbiont-housing cells) containing symbionts, as these specialised organs have
- 470 been shown to only evolve in insects with obligate symbionts¹⁰.
- 471 2. Insect-symbiont phylogenies are concordant and symbionts are universally472 present in reproductive females.
- 473 3. Symbiont removal results in reductions in host fitness and symbionts are474 universally present in reproductive females.

475 Consequently, species that lack specialized symbiont organs, or where symbionts are not 476 universally present in females, were classified as not having obligate symbionts. If 477 symbionts were universally present, but cophylogenetic and/or host fitness data were 478 unavailable the relationship was classified as unresolved.

479 Data on individual species were used to estimate the proportion of species in each family

480 that have evolved dependency on symbionts, which is summarized in Supplementary

481 Table 1. Data on each insect species examined, their associated symbionts and the

482 criteria to assess dependency are in Supplementary Table 2.

483 **1.2 Feeding niche classification**

484 The feeding niches of species were classified using information on their diets. Omnivores

485 were defined as species that feed on both plant and animal matter, or those that

486 scavenged on detritus material. Due to large differences in the nutrient contents of

487 different plant tissues, insect species that specialize on phloem-, xylem- and wood-

488 feeding (xylophagy) were considered separately from species that exploit non-

489 vascular/non-woody plant tissues (e.g. leaves, flowers, fruits, seeds, and/or root tips),

490 which we refer to as generalist herbivores (or phytophagous).

491 Species feeding niches were subsequently used to classify each family into a feeding

492 niche (Supplementary Table 1). Families were described as having omnivorous diets, if

- they contained species that were omnivores/detritivores, or if species fed in more than
- 494 one of the following niches: fungivory, hermatophagy, carnivory and phytophagy or

495 phloem-feeding. Families were assigned to the feeding categories of hematophagy, 496 phloem-feeding, xylem-feeding and predatory where the vast majority, if not all, known 497 species in the family fed exclusively on those resources. Families assigned as 498 xylophagous were those where the majority of species fed on wood as their primary food 499 source. Families containing species that fed on multiple plant tissues were classified as 500 generalist herbivores (or phytophagous). In cases where species-specific diets were not 501 available, we based diets on family-level feeding habits published in books and reviews 502 listed in Supplementary Table 2.

503 1.3 Nutrient data

504 We assigned insect diets into 19 categories (Supplementary Table 2) based on published 505 literature using the search terms [species name] and [adult diet] or [juvenile diet] in Web 506 of Science and Google Scholar. Where possible we cross-validated diet assignments 507 using multiple published studies (Supplementary Table 2). For each of the 19 diet 508 categories we collected data on the total carbohydrate, protein, and fats, as well as the 509 micronutrients vitamins A, B, C, D, E, K, choline and betaine based on as many sources 510 of the same food type as possible (range of number of of different food sources = 1 to 28) 511 collated from nutritional databases and scientific literature (Supplementary Table 4). 512 Nutrient contents were from a range of food types, and are therefore approximations of 513 insect diets. Where possible, micronutrients were broken down into their sub-514 components, for example, individual B vitamins. There was insufficient data on vitamin 515 D, choline and betaine for analyses (>40% of insect families missing data).

516 Nutrient profiles for families were estimated by taking an average for each nutrient based 517 on the diets of species used to confirm the obligate criteria, or based on the family-level 518 diets where species-specific diets were unavailable. To calculate nutrient values for each 519 species, an average of adult and juvenile diets was taken, which were highly correlated 520 (Extended Data Fig. 4). For omnivorous species, nutrients were calculated by averaging 521 across all food sources.

522 Standardisation of nutrient data The data on nutrients (carbohydrates, fats, proteins and 523 vitamins) were reported as the amount per gram, but for some dietary items this was wet 524 weight and others it was dry weight. Wet weights were much greater than dry weights 525 and therefore we standardized values to make nutrient values comparable across dietary 526 items. Values were standardized by dividing each macro-nutritional component 527 (carbohydrate, fat, protein) by the relative weight of each dietary item. The relative 528 weight of each dietary item (rw) was calculated as: 529 rw = total weight of dietary item / maximum total weight of any dietary item 530 As a result, the dietary item with the greatest total weight remained unchanged (rw = 1) 531 whereas foods with lower weights were increased (rw < 1). To calculate the relative 532 amounts of each vitamin in each food source the same approach was used, but instead of 533 using total weight of all components we used the total weight of vitamins (See R script

534 "DataConstruction.R" for details).

535 **1.4 Diversification rates**

536 In the absence of species level phylogenies, diversification is often modelled using two different approaches: diversification rates and raw values of species richness. We 537 538 examined the influence of obligate symbiosis and feeding niches on diversification using 539 both approaches. Data on the number of extant species in insect families (species richness) were taken from Rainford et. al. 2014¹¹. The ages of families were extracted 540 541 from the Rainford phylogeny which was time calibrated using 86 fossils¹¹. 542 Net diversification rates were also estimated using methods outlined by Magallón and 543 Sanderson⁴⁶ assuming different rates of extinction using the function 'bd.ms' in the R 544 package geiger⁴⁷. Diversification rates with different extinction fractions were strongly 545 correlated (Pearson's correlation coefficient r > 0.99. Extended Data Fig. 5). Therefore, 546 we only analysed diversification rates that were calculated assuming an intermediate extinction fraction (e = 0.5) (see Wiens *et. al.* 2015⁴⁸ for a similar approach). 547 548 Diversification rates are an estimate of the rate of change in species numbers over time 549 using clade age and species richness data, typically modelled as some form of birth-death 550 process⁴⁹. While such analyses try to more accurately capture speciation and extinction 551 processes, they can produce misleading results when diversity is not constant or unbounded through evolutionary time^{50,51}. This is known to be the case for insect 552 diversification where there have been rapid bursts of speciation through time⁵². Our data 553 554 also support this idea, as diversification rates were weakly correlated to species richness 555 (r~0.16. Fig. 5).

556 As the aim of our paper was to examine how obligate symbiosis has influenced increases 557 and decreases in diversification, irrespective of how fast or slow those species accumulated, we present analyses of species richness in the main text. Differences in the 558 559 ages of insect families were accounted for in these analyses by including family age as an 560 explanatory variable (see analysis section 4.5.2 below). The results of the analyses of 561 diversification rates were quite different from those of species richness (see analysis 562 section 4.5.3 and 4.5.4). Feeding niche and obligate symbiosis were not significantly 563 related to diversification rate (Supplementary Tables 18-19). This highlights that in these 564 widely divergent groups of insects feeding niches and obligate symbioses do not 565 influence the rate of diversification across the evolutionary time scales examined here, 566 but rather influence the number of species that have accumulated due to the long-term 567 balance between speciation and extinction.

568 **2. Insect and symbiont phylogenies**

569 Insects

570 We used the insect phylogeny generated by Rainford et al 2014¹¹. Families that lacked

571 data on obligate symbioses were pruned from the tree. There were 23 families for which

572 there was data on obligate symbioses but not included by Rainford. We therefore added

573 families to the phylogeny at branches corresponding to published sister taxa

574 (Supplementary Table 1) using the bind.tip function in the R package 'phytools'⁵³ (See R

- 575 script 'Rainford_adding_tips.R' for details). Added families were not included for
- 576 diversification analyses due to uncertainty of the age of these families.

577 Symbionts

578 We estimated the phylogenetic relationships for bacterial symbionts for which genetic

579 data was available. A ~1,500 bp region of the bacterial 16S rRNA gene downloaded from

- 580 the SILVA RNA database was aligned with MUSCLE and edited in the alignment
- 581 software Geneious 8.1.8 (<u>https://www.geneious.com</u>). We generated a maximum
- 582 likelihood phylogeny for the bacterial lineages using the on-line PhyML server⁵⁴, and the
- 583 best fitting models of evolution were estimated using the Aikake Information Criterion
- 584 (AIC). We bootstrapped the symbiont phylogeny 100 times and rooted to *Thermus*
- 585 *thermophilus*, which is basal to all the bacterial lineages presented in this study.

586 3. General statistical methods

587 Data were analysed using Bayesian Phylogenetic Mixed Models with single (BPMM)

and multiple response variables (MR-BPMM), Stochastic Character Mapping (SCM),

and transition rate models with Markov Chain Monte Carlo estimation. In this section we

590 provide general details of modelling approaches and in section four we outline the

591 specific analyses conducted. All analyses were conducted in R version 4.0.2⁵⁵, apart from

transition rate models that were conducted in BayesTraits V3⁵⁶. Continuous response and

593 explanatory variables were Z-transformed prior to analyses (mean = 0, standard deviation

594 = 1).
3.1 Single and Multi-Response Bayesian Phylogenetic Mixed Models (BPMM & MR-BPMM)

597 Model construction, parameter estimates and assessing significance

- 598 To estimate phylogenetic signature, co-evolutionary relationships and ancestral trait
- 599 values we used BPMMs and MR-BPMMs with Markov chain Monte Carlo (MCMC)
- 600 estimation in the R package MCMCglmm⁵⁷. The non-independence of data resulting
- from multiple species per family, phylogenetic relatedness between insect hosts and
- 602 phylogenetic relatedness between symbiont lineages were modelled using random
- 603 effects. For phylogenetic effects we fitted variance-co-variance matrix constructed from
- the insect and bacteria phylogenies. We estimated the amount of variation in response
- 605 variables explained by random effects (RE), including phylogenetic effects, as the

606 intraclass correlation coefficient (ICC) on the latent scale estimated as:

607 Vi / VRE + Ve

608 where Vi is the focal random effect, VRE is the sum of all random effects and Ve is the 609 residual variance on the latent scale. For binomial error distributions Ve was calculated 610 as the observed residual variance plus the variance associated with the link function

611 (logit = $pi^2/3$. See ^{58,59} for discussion).

Phylogenetic and residual correlations between traits were estimated using MR-BPMMs
whereby unstructured phylogenetic and residual covariance matrices were fitted as
random effects. Correlations between traits were calculated as:

616 The global intercept was removed from MR-BPMMs to allow trait specific intercepts to be estimated. Parameter estimates from models are presented as posterior modes (PM) 617 618 with 95% credible intervals (CIs). P values (pMCMC) were estimated as the number of 619 posterior samples above or below a specified value divided by the total number of posterior samples, corrected for the finite number of MCMC samples^{57,60}. For 620 621 correlations and fixed effects the specified value was 0, and for testing differences 622 between fixed effects it was the number of posterior samples where one level was greater 623 than the other.

624 Prior settings

625 For random effects we began prior selection by assessing model convergence using 626 inverse-Wishart priors (V = 1, nu=0.002). If the mixing properties of the MCMC chain 627 were poor, which was often the case for binomial response variables, we examined two 628 different parameter expanded priors (Fisher prior: V = 1, nu=1, alpha.mu = 0, alpha.V = 629 1000) and (γ 2 prior: V = 1, nu=1000, alpha.mu = 0, alpha.V = 1)⁵⁹. For all other traits an 630 inverse-Wishart prior was specified for residual variances (V = 1, nu=0.002). For fixed 631 effects the default priors in MCMCglmm (independent normal priors with zero mean and 632 large variance (10^{10}) were used apart from in models with binomial response variables where a prior of mu = 0, V = σ 2units + π 2/3 was specified. This is approximately flat on 633 the probability scale when a logit link function is defined⁵⁷, and in all cases improved the 634

- 635 mixing of chains. The final prior settings used for each analysis are specified in the
- 636 Supplementary R code (See R script "Analyses.R").
- 637 *Model settings and examining model convergence*
- 638 Models with Gaussian, Binomial and Poisson error distributions were run for 2000000
- 639 iterations, a burnin of 1000000 iterations and chains sampled every 1000 iterations.
- 640 Binomial models were specified with logit link functions and Poisson models were
- 641 specified with log link functions.
- 642 We examined the convergence of models by repeating each analysis three times and
- 643 examining the correspondence between chains using the R package 'coda'⁶¹ in the
- 644 following ways: (i) visually inspecting the traces of the MCMC posterior estimates and
- their overlap; (ii) calculating the autocorrelation and effective sample size of the
- 646 posterior distribution of each chain; and (iii) using Gelman and Rubin's convergence
- 647 diagnostic test that compares within- and between- chain variance using a potential scale
- reduction factor (PSR). PSR values substantially higher than 1.1 indicate chains with
- 649 poor convergence properties. For convergence checking see R script
- 650 'ModelCheckingCombining.R'.

651 **3.3 Stochastic character mapping (SCM)**

652 SCM was used to estimate ancestral states of obligate symbiosis and feeding niches

- across the insect phylogeny in the R package 'phytools'⁵³. In brief, this approach
- 654 calculates the conditional likelihood that each ancestral node is in a given state that

depends on the estimated transition rate matrix (Q) between states and the length of the branch associated with that node. Based on these conditional likelihoods, ancestral states at each node are stochastically simulated and used in combination with observations at the tips to reconstruct a character history along each branch. Each character history is simulated using a continuous-time Markov chain where changes between states and the time spent in each state is modelled as a Poisson process (see Bollback 2006⁶² for more details).

662 **3.4 Transition rate models**

The DISCRETE module in BayesTraits V3 was used to estimate transition rates (q) between two binary traits with MCMC estimation. We used hyper priors where values are drawn from a uniform distribution with a range 0 to 10 to seed the mean and variance of an exponential prior to reduce uncertainty over prior selection⁵⁶. We ran each model three times for a total of 11000000 iterations, a burnin of 1000000 iterations and sampled every 1000 iterations. We examined the convergence of models in the same way as section 3.2.

670 Bayes factors (2(log marginal likelihood of complex model – log marginal likelihood of

671 simple model)) were used to test if models that allowed coevolution provided a better fit

to the data than models that assumed independent evolution. To calculate the log

673 marginal likelihood, we used the stepping stones procedure as described in the

BayesTraits V3 manual where 100 stones were run for 1000 iterations each. Bayes

675 factors over 2 are considered to offer positive evidence, over 5 strong evidence and over
676 10 very strong evidence⁵⁶.

677 To test whether transitions rates were significantly different from each other, we

678 calculated the posterior mode, 95% CIs and pMCMC value of the posterior distribution

of differences between transition rates (see R markdown script 'ExtendedData.Rmd').

680 **3.5 Missing nutrient data**

681 There were missing values for some nutrients in the diets of some species in our dataset

682 (Supplementary Table 4). In BPMMs missing data is permitted in response variables and

683 is predicted with an accuracy relative to the phylogenetic signature in traits and the

magnitude of correlations between traits in the case of MR-BPMMs. This can enable

missing values to be predicted with high accuracy 60,63 . All traits analysed had high

686 phylogenetic signature (phylo $H^2 = 0.65-0.95$. Supplementary Table 7) and therefore

687 missing nutrient values were included in MR-BPMMs models. For all other analyses and

688 for explanatory variables in BPMMs missing data were removed.

689 **4. Specific analyses**

690 **4.1 Evolutionary history of obligate symbioses and feeding niche colonization**

691 **4.1.1 Estimating the number of origins of obligate symbioses using BPMM**

692 The probability of each of node in the insect phylogeny having an obligate symbiont was

693 estimated using a BPMM with the number of species with and without obligate

symbionts within each family as a binomial response variable. This accounts for
variation in the number of species examined for obligate symbionts across insect
families. The insect phylogeny was included as a random effect and the state of each
node was estimated using the 'predict' function in MCMCglmm. Nodes were classified
as 'obligate' where the posterior probability was greater than 0.5. We found support for
origins and 9 losses of obligate symbiosis

700 4.1.2 Estimating the number of origins of obligate symbioses using SCM

701 Insect families (n = 400) were classified as having evolved an obligate symbiosis (>0%) 702 species within families have obligate symbionts) or not (0% species within families have 703 obligate symbionts). Data on obligate symbioses were used to build 1000 stochastic 704 character maps across the insect phylogeny using an all-rates different Q matrix with 705 empirical Bayes estimation. The proportion of the 1000 stochastic character maps that 706 nodes were predicted to have obligate symbionts was used to classify the ancestral state 707 of each node (>50% of stochastic character maps = 'obligate', <50% = 'non-obligate'). 708 Differences in state between ancestral and descendant nodes were used to identify the 709 evolutionary origins and losses of obligate symbionts. We found support for 12 origins 710 and 9 losses of obligate symbiosis and the relative amounts of time spent in each state 711 were 27% obligate, 73% non-obligate (Supplementary Table 5). The estimates of 712 ancestral states obtained using SCM were extremely similar to those from BPMM 713 indicating our results were robust to the type of statistical techniques used 714 (Supplementary Table 5).

715 4.1.3 Estimating ancestral feeding niches using SCM

716	Ancestral feeding niches were estimated using SCM analysis of the feeding niches of
717	each insect family ($n = 400$). The settings for the model were the same as those in section
718	4.1.2. Each node was assigned to a feeding niche according to the niche with the highest
719	proportion of the 1000 stochastic character maps. Transitions between feeding niches
720	were identified where ancestral and descendant nodes were in different states
721	(Supplementary Table 5).
722	4.1.4 Estimating rates of obligate symbiosis across different feeding niches
723	using a BPMM

The probability that insects occupying different feeding niches have obligate symbionts

725 was modelled using a BPMM with the number of species with and without obligate

symbionts within each family as a binomial response variable. The feeding niche of each

family was fitted as an eight-level fixed effect and the insect phylogeny was fitted as a

random effect (Supplementary Table 6). To determine if rates of obligate symbiosis were

- significantly different across niches, we calculated the pairwise differences between
- niches and examined if the 95% CIs spanned 0 (Supplementary Table 6).

731 **4.2** Nutritional deficiencies and the evolution of obligate symbiosis

4.2.1 Estimating the phylogenetic correlations between obligate symbioses and macro- and micro-nutrients using a MR-BPMM

- 734 The correlations between obligate symbiosis and nutrients within diets was estimated
- using a MR-BPMM with the number of species with and without obligate symbionts as a
- binomial response variable and Z-transformed concentrations of carbohydrate, protein,
- 737 fat, vitamin A, vitamin B (sum of individual B vitamins), vitamin C, vitamin E and
- vitamin K as gaussian response variables. Unstructured phylogenetic and residual
- variance-covariance matrices were fitted as random effects (Supplementary Table 7).

740 **4.2.2** Estimating the nutrient contents of each feeding niche with and without

741 obligate symbionts using a MR-BPMM

- 742 Differences in the nutritional composition of different feeding niches were estimated
- vitamin B, vitamin C, using a MR-BPMM with carbohydrate, protein, fat, vitamin A, vitamin B, vitamin C,
- vitamin E and vitamin K as gaussian response variables and feeding niche (8-level
- factor) fitted as a fixed effect. Unstructured phylogenetic and residual variance-
- covariance matrices were fitted as random effects. To test whether nutrient levels in each
- niche differed from background rates, we re-ran models including a two-level factor of
- focal feeding niche versus all other niches instead of the eight-level fixed effect of
- 749 feeding niche (Supplementary Table 8).

4.2.3 Estimating the phylogenetic correlations between obligate symbioses and individual B vitamins using a MR-BPMM

752 The phylogenetic correlation between obligate symbiosis and vitamin B was highly

significant. We therefore analysed individual B vitamins (B5, B6 and B9) to examine if

they varied in their association with obligate symbiosis using a MR-BPMM. The number

of species with and without obligate symbionts was fitted as a binomial response variable

- and Z-transformed concentrations of vitamins B5, B6 and B9 were fitted as gaussian
- response variables. Unstructured phylogenetic and residual variance-covariance matrices

were fitted as random effects (Supplementary Table 9). Data on vitamins B7 and B12

vere not analysed as there were large amounts of missing values (>30% of insect

families). Data on B1, B2, and B3 were highly correlated to vitamin B5 levels (r > 0.9),

but there was more data on vitamin B5. As a result, only vitamin B5 was analysed, but it

is worth noting that the associations between B5 and obligate symbioses could also be

763 due to the effects of B1, B2 and B3.

4.3 Nutrient deficiencies and the evolutionary gains and losses of obligate
 symbiosis

4.3.1 Estimating ancestral vitamin B5 and B9 in diets of families that gained and lost obligate symbionts using a MR-BPMM

- We examined how the levels of B5 and B9 vitamins differed between ancestors of
- families with and without obligate symbionts using a two-step approach: first, we used

770	the output of the model in section 4.1.1 to classify nodes as: (i) non-obligate node with
771	non-obligate descendants (NonOb to NonOb); (ii) non-obligate node with at least one
772	obligate descendant (NonOb to Ob); (iii) obligate node with obligate descendants (Ob to
773	Ob); and (iv) obligate node with at least one non-obligate descendent (Ob to NonOb); .
774	Second, nodal classifications were entered as a four-level fixed factor in a MR- BPMM
775	with Z transformed B5 and B9 vitamin concentrations modelled as Gaussian response
776	variables (Supplementary Table 10). Unstructured phylogenetic and residual variance-
777	covariance matrices were fitted as random effects with the phylogenetic covariance
778	matrix being linked to node labels. We fitted interactions between the response trait and
779	node classification to estimate B5 and B9 vitamin levels preceding the origin
780	(comparison of classifications i versus ii), maintenance (comparison of classifications i
781	versus iii) and loss of obligate symbioses (comparison of classifications iii versus iv). To
782	account for uncertainty in our node classifications, we repeated the analysis 100 times,
783	each time reclassifying nodes by resampling from the posterior distribution of the
784	probability of nodes having an obligate symbiont. Posterior samples from across the 100
785	models were then combined. Each model was run for 1100000 iterations with a burn-in
786	of 1000000 iterations and thinning interval of 10000 samples, which across the re-
787	samplings resulted in 1000 posterior samples (100 re-samplings x 10 samples per
788	resampling).

4.3.2 Estimating transition rates between obligate symbioses and B5 and B9 vitamins using transition rate models

791 We tested if models that allowed for the coevolution between obligate symbiosis and B5 792 and B9 vitamins better explained our data than models that assumed independent 793 evolution of each trait using transition rate models. Coevolution was modelled using an 794 all rates different (ARD) Q matrix and separate sets of models were run for B5 and B9 795 vitamins. For these analyses only binary classifications can be modelled. We therefore 796 transformed data into obligate (>0% species within families have obligate symbionts) 797 and non-obligate (0% species within families have obligate symbionts) insect families, 798 and high and low B5 and B9 vitamins. For B vitamin classifications we choose two 799 different cut-offs to establish the sensitivity of our results to different thresholds: above 800 and below the 25% and 50% quantile for high and low B vitamins respectively 801 (Supplementary Table 11). It was not necessary to examine the sensitivity of our results 802 to the classification of obligate symbiosis as 96% of 400 insect families had 100% of 803 species with or without obligate symbionts.

804

4.4 Nutrient deficiencies and the evolution of host-symbiont co-specialisation

805 **4.4.1 Estimating the effect of host symbiont interactions on the evolution of**

- 806 obligate symbioses using BPMMS and parafit
- 807 To examine how obligate symbioses have been influenced by the coevolutionary history
 808 between insects and bacteria, we constructed a dataset of pairwise combinations between

809 all insect families and all symbionts. Insect families that shared a symbiont due to 810 vertically transmission from a common ancestor were removed for these analyses. For 811 each combination, the number of insect species within a family with a particular obligate 812 symbiont versus the number of species without that symbiont was calculated. This 813 enabled differences in the sampling effort across different insect-bacteria associations to 814 be accounted for. We analyzed the number of species in insect families with and without 815 each symbiont using a BPMM with a binomial error distribution and logit link function. 816 Differences in the probability of forming obligate partnerships between intra- and extra-817 cellular symbionts was modelled by including a two-level fixed effect. We fitted three 818 different variance-co-variance matrix as random effects to quantify the amount of 819 variation in obligate symbiosis explained by: (i) insect hosts independent of their 820 phylogenetic history ('h') e.g. certain hosts are more likely to form obligate relationships 821 than others; (ii) insect hosts phylogenetic history ('[h]') e.g. certain host lineages are 822 more likely to form obligate relationships than others; and (iii) phylogenetic interactions 823 between hosts and symbionts ('[hs]') e.g. particular host phylogenetic lineages are more 824 likely to form obligate symbioses with particular bacterial phylogenetic lineages (Supplementary Table 14). See Hadfield et. al. 2014 for methods on model fitting⁶⁴. 825 826 Each bacterial symbiont lineage was only found in a single insect family. The lack of 827 replication of symbiont lineages across hosts meant that the following sources of 828 variation in obligate symbioses were not identifiable: (iv) interspecific variation amongst 829 symbionts independent of their phylogenetic history (s) e.g. certain bacteria are more

830 likely to form obligate relationships than others; (v) the phylogenetic history of bacteria 831 ('[s]') e.g. certain bacterial lineages are more likely to form obligate relationships than 832 others; (vi) interspecific interactions between hosts and symbionts independent of their 833 phylogenetic history (hs) e.g. certain insect bacteria combinations are more likely to form 834 obligate relationships than others; (vii) particular insect hosts, independent of their 835 phylogenetic history, being more likely to form obligate symbioses with specific 836 phylogenetic lineages of bacteria ('h[s]'); and (viii) particular bacterial lineages, 837 independent of their phylogenetic history, are more likely to form obligate symbioses 838 with specific insect families ([s]h). 839 To further examine whether phylogenetically related lineages of bacteria are more likely 840 to form obligate symbioses with phylogenetically related lineages of insects we used

parafit in the R package 'ape' (Supplementary Table 15). This tests the correlation

between host and symbiont shared branch lengths against a randomised distribution

generated from 1000 permutations of the data 65 .

4.4.2 Estimating the effect of host symbiont interactions on dietary levels of B5

845 & **B9** vitamins using BPMMS

- 846 To test if specific lineages of symbiotic bacteria specialise in providing B5 and B9
- vitamins to hosts we used the same BPMM approach described in section 4.4.1. We
- 848 estimated variation in levels of B vitamins (Gaussian responses) explained by h, [h], [s]
- and [hs]. Separate models were run for B5 and B9 vitamins and data were restricted to

- 850 combinations of hosts and bacteria that formed obligate symbioses (>0% species within
- 851 insect families with obligate symbionts) (Supplementary Tables 12-13).
- 4.5 Obligate symbioses and diversification

4.5.1 Estimating the relationship between species richness and obligate

854 symbiosis using a BPMM

855 The relationship between obligate symbioses and diversification was estimated using a

856 MR-BPMM with the number of species with and without obligate symbionts as a

857 binomial response variable and species richness as a Poisson response variable. To

858 control for older families potentially accumulating more species than younger families

859 we included a fixed effect of family age. Family ages were estimated from the

860 phylogenetic tree by (Rainford et al. 2014¹¹), which is time calibrated. A fixed effect of

861 whether insect families were holo- or hemi-metabolous (two-level factor) was also

862 included as a fixed effect, as it has previously been shown to influence diversification

863 rates¹¹. Unstructured phylogenetic and residual variance-covariance matrices were fitted

as random effects (Supplementary Table 16).

865 There were 23 insect families that were added to the Rainford phylogeny for the analyses

- of obligate symbioses (see below and Supplementary Table 1). It was not possible to
- 867 estimate the age of these families so they were excluded from all diversification analyses.

868 **4.5.2** Estimating the relationship between species richness and obligate

869 symbiosis for different feeding niche using a BPMM

870 The diversification rates of insects occupying different feeding niches were estimated

- using a BPMM with species richness as a Poisson response variable. The feeding niche
- 872 (eight-level factor) of each family, family age and holo-hemi metabolism were fitted as
- fixed effects (Supplementary Table 17). To test whether the species richness of each
- niche differed from background levels, we re-ran models including a two-level factor of
- focal feeding niche versus all other niches instead of the eight-level fixed effect of
- 876 feeding niche (Supplementary Table 17).

4.5.3 Estimation of the relationship between diversification rate and obligate symbiosis using a MR-BPMM

- 879 To examine the correspondence between the rate at which species diversify versus the
- total number of species that accumulate in clades we repeated the analysis outlined 4.5.1.
- 881 Diversification rates, calculated using the methods outlined by Magallon and

882 Sanderson⁴⁶, were modelled as a gaussian response variable and family age was removed

from the model (Supplementary Table 18).

4.5.4 Estimation of the relationship between diversification rate and feeding

- 885 niche using a BPMM
- 886 To test if the rate at which species diversify differs between groups of insects with
- different feeding niches we repeated the analysis outlined 4.5.2 including diversification

- rate as a gaussian response variable and removing family age from models
- 889 (Supplementary Table 19).
- 890

891 **4.6 Verification analyses**

- 892 We tested the robustness of our conclusions to several underlying data assumptions.
- 893 These sensitivity analyses provided quantitatively similar results to our main analysis
- 894 (Supplementary Tables 20-26).

4.6.1 Re-analysis of 4.2.1 after removing families that were added to the

896 Rainford tree

897 There were 23 families within our obligate symbiont dataset that were not represented in

the Rainford insect phylogeny that were added to the phylogeny (see section 2). To

- 899 examine the robustness of our results when including these families we re-ran the
- analyses detailed in section 4.2.1 (Supplementary Table 20) with the 23 additional
- 901 families excluded.

902 4.6.2 Re-analysis of 4.2.1 including only bacterial symbionts

903 Bacteria made up the vast majority of obligate symbionts (79 out of 84 insect families

had bacterial symbionts = 94%). To verify that our results were not explained by a few

- 905 outlying eukaryotic symbionts, we re-ran the analyses detailed in section 4.2.1 including
- only insect families with bacterial symbionts (n_{families}=395. Supplementary Table 21).

907 4.6.3 Re-analysis of 4.4.2 removing co-occurring obligate symbionts

There were 112 unique host-bacterial symbiont combinations. Of these 49% (n=55) had multiple co-occuring symbionts. It is possible that any signature of bacteria specializing in B5 and B9 vitamin production is obscured by the presence of co-residing obligate symbionts that may change nutrient provisioning roles. We therefore repeated the analyses in section 4.4.2 after removing hosts that had multiple co-occurring symbionts (Supplementary Tables 22-23).

914 4.6.4 Re-analysis of 4.2.1, 4.2.3 and 4.5.2 excluding obligate symbiont data

915 *inferred from microscope studies*

916 Out of the 400 insect families included in our analyses, 260 were inferred to not have

917 obligate symbionts based on a lack of specialized symbiont organs within certain insect

918 clades shown from microscopy studies by Buchner and colleagues. They indicated that

919 insects in the orders Ephemeroptera, Plecoptera, Odontata, Neuroptera, Orthoptera,

920 Lepidoptera, superfamily Tenthredinoidea, and subclade Aculeata (excluding

921 Formicidae) all lacked bacteriocytes and in general do not depend on endosymbionts for

922 survival²⁰. To test the sensitivity of our results to inferring the absence of obligate

923 symbionts within these insect groups, we re-ran the analyses outlined in sections 4.2.1,

4.2.3 and 4.5.2 after removing these 260 families to focus on families and species where

925 obligate symbioses had been studied directly (see section 1 'Criteria for assessing

926 obligate symbiosis' for more details).

927	The re	esults of all verification analyses were quantitatively similar to our main analyses
928	(Supp	lementary Tables 20-26).
929	Data	and code availability
930	R cod	e, BayesTraits code, data and analysis results are available at the open science
931	frame	work: DOI 10.17605/OSF.IO/TYK7C. Full citations of references in
932	supple	ementary tables are given in the method references ⁶⁵⁻³⁶⁷ .
933		
934	Meth	od references
935	32.	Ries, E. Die symbiose der Läuse und Federlinge. Zeitschrift für Morphologie und
936		Ökologie der Tiere 20 , 233–367 (1931).
937	33.	Schneider, G. Beitrage zur Kenntis der Symbiontischen Einrichtuingen der
938		Heteroperen. (1939).
939	34.	Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der
940		endosymbiosen der zikaden. Zeitschrift für Morphologie und Ökologie der Tiere
941		51 , 190–210 (1962).
942	35.	Douglas, A. E. Mycetocyte symbiosis in insects. <i>Biological Reviews</i> 64, 409-434
943		(1989).
944	36.	Abe, T., Bignell, D. E. & Higashi, M. Termites: Evolution, Sociality, Symbioses,
945		<i>Ecology</i> . (2000).

946	37.	Bourtzis, K. & Miller, T. A. Insect Symbiosis. vol. 1 (CRC Press, 2003).
947	38.	Bourtzis, K. & Miller, T. A. Insect Symbiosis. vol. 2 (CRC Press, 2006).
948	39.	Bourtzis, K. & Miller, T. A. Insect Symbiosis. vol. 3 (CRC Press, 2009).
949	40.	Baumann, P. Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-
950		Sucking Insects. Annual Review of Microbiology 59, 155-189 (2005).
951	41.	Baumann, P., Moran, N. A. & Baumann, L. C. Bacteriocyte-associated
952		endosymbionts of insects. in The Prokaryotes (Springer, 2013).
953	42.	Bouchard, P. et al. Family-group names in Coleoptera (Insecta). ZooKeys 1-895
954		(2011).
955	43.	Davis, R. B., Baldauf, S. L. & Mayhew, P. J. The origins of species richness in
956		the Hymenoptera: Insights from a family-level supertree. BMC Evolutionary
957		<i>Biology</i> 10 , (2010).
958	44.	Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of Life
959		Reveals Clock-Like Speciation and Diversification. Molecular Biology and
960		<i>Evolution</i> 32 , 835–845 (2015).
961	45.	Misof, B. et al. Phylogenomics resolves the timing and pattern of insect
962		evolution. Science 346, 763–767 (2014).

963	46.	Magallon, S. & Sanderson, M. J. Absolute Diversification Rates in Angiosperm
964		Clades. Evolution 55, 1762–1780 (2001).
965	47.	Pennell, M. W. et al. Geiger v2.0: An expanded suite of methods for fitting
966		macroevolutionary models to phylogenetic trees. <i>Bioinformatics</i> 30 , 2216–2218
967		(2014).
968	48.	Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases
969		diversification across insect clades. Nature Communications 6, 8370 (2015).
970	49.	Morlon, H. Phylogenetic approaches for studying diversification. Ecology Letters
971		17, 508–525 (2014).
972	50.	Rabosky, D. L. Ecological limits and diversification rate: Alternative paradigms
973		to explain the variation in species richness among clades and regions. Ecology
974		Letters 12, 735–743 (2009).
975	51.	Wiens, J. J. The Causes Of Species Richness Patterns Across Space, Time, And
976		Clades And The Role Of 'Ecological Limits'. The Quarterly Review of Biology
977		86, 75–96 (2011).
978	52.	Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect
979		diversification: Towards a reconciliation of fossil and molecular evidence?
980		Scientific Reports 6, (2016).

981	53.	Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and
982		other things). <i>Methods in Ecology and Evolution</i> 3 , 217–223 (2012).
983	54.	Guindon, S. et al. New Algorithms and Methods to Estimate Maximum-
984		Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic
985		<i>Biology</i> 59 , 307–321 (2010).
986	55.	R Core Team. R: A language and environment for statistical computing. (R
987		Foundation for Statistical Computing, 2020).
988	56.	Pagel, M. & Meade, A. Bayesian Analysis of Correlated Evolution of Discrete
989		Characters by Reversible-Jump Markov Chain Monte Carlo. The American
990		Naturalist 167, 808–825 (2006).
991	57.	Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed
992		Models: The MCMCglmm <i>R</i> Package. <i>Journal of Statistical Software</i> 33 , (2010).
993	58.	Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian
994		data: A practical guide for biologists. Biological Reviews no-no (2010)
995		doi: <u>10.1111/j.1469-185X.2010.00141.x</u> .
996	59.	Villemereuil, P. de, Schielzeth, H., Nakagawa, S. & Morrissey, M. General
997		Methods for Evolutionary Quantitative Genetic Inference from Generalized

998 Mixed Models. *Genetics* **204**, 1281–1294 (2016).

999	60.	Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for
1000		comparative biology: Phylogenies, taxonomies and multi-trait models for
1001		continuous and categorical characters. Journal of Evolutionary Biology 23, 494-
1002		508 (2010).
1003	61.	Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis
1004		and output analysis for MCMC. R News 6, 7-11 (2006).
1005	62.	Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on
1006		phylogenies. BMC Bioinformatics 7, 88 (2006).
1007	63.	Nakagawa, S. Missing Data: Mechanisms, Methods and Messages. in Ecological
1008		Statistics: Contemporary theory and application (Oxford University Press, 2015).
1009	64.	Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A Tale of Two
1010		Phylogenies: Comparative Analyses of Ecological Interactions. The American
1011		Naturalist 183, 174–187 (2014).
1012	65.	Legendre, P., Desdevises, Y. & Bazin, E. A Statistical Test for Host - Parasite
1013		Coevolution. Systematic Biology 51, 217–234 (2002).
1014	66.	SELFNutritionData. https://nutritiondata.self.com/
1015	67.	Slism. https://slism.com/calorie/
1016	68.	Fat secret. https://www.fatsecret.com/calories-nutrition/

1017	69.	Aksoy, S., Chen, X. & Hypsa, V. Phylogeny and potential transmission routes of
1018		midgut-associated endosymbionts of tsetse (Diptera: glossinidae). Insect
1019		<i>Molecular Biology</i> 6 , 183–190 (1997).
1020	70.	Allen, J. M., Reed, D. L., Perotti, M. A. & Braig, H. R. Evolutionary relationships
1021		of "Candidatus Riesia spp.," Endosymbiotic Enterobacteriaceae living within
1022		hematophagous primate lice. Applied and Environmental Microbiology 73, 1659-
1023		1664 (2007).
1024	71.	Allen, J. M., Burleigh, J. G., Light, J. E. & Reed, D. L. Effects of 16S rDNA
1025		sampling on estimates of the number of endosymbiont lineages in sucking lice.
1026		<i>Peerj</i> 4 , (2016).
1027	72.	Andersen, P. C., Brodbeck, V. B. & Mizell, R. F. Metabolism of amino acids,
1028		organic acids and sugars extracted from the xylem fluid of four host plants by
1029		adult Homalodisca coagulata. Entomologia Experimentalis et Applicata 50, 149-
1030		159 (1989).
1031	73.	Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper,
1032		Homalodisca coagulate, in relation to xylem fluid chemistry and tension. Journal
1033		of Insect Physiology 38, 611–622 (1992).
1034	74.	Andersen, P. C. Diurnal Vitiations in Tension, Osmolarity, and the Composition
1035		of Nitrogen and Carbon Assimilates in Xylem Fluid of Prunus persica, Vitis

- Hybrid, and Pyrus communis. *Journal of the American Society for Horticultural Science* 120, 600–606 (1995).
- 1038 75. Andersen, J. C. et al. A phylogenetic analysis of armored scale insects
- 1039 (Hemiptera: Diaspididae), based upon nuclear, mitochondrial, and endosymbiont
 1040 gene sequences. *Molecular Phylogenetics and Evolution* 57, 992–1003 (2010).
- 1041 76. Arab, D. A., Bourguignon, T., Wang, Z. Q., Ho, S. Y. W. & Lo, N. Evolutionary

1042 rates are correlated between cockroach symbionts and mitochondrial genomes.
1043 *Biology Letters* 16, (2020).

- 1044 77. Arnett, R. H., Thomas, M. C., Skelley, P. E. & Franks, J. H. *American Beetles*,
 1045 *Volume II Polyphaga: Scarabaeoidea through Curculionoidea*. (2010).
- 1046 78. Ayayee, P. *et al.* Gut Microbes Contribute to Nitrogen Provisioning in a Wood1047 Feeding Cerambycid. *Environmental Entomology* 43, 903–912 (2014).
- Back, E. A. Biology of the saw-toothed grain beetle, Oryzaephilus surinamensis
 Linné. *Journal of Agricultural Research* 33, 435–452 (1926).
- 1050 80. Baena, M. Unusual Feeding Habits in Four Iberian Heteroptera (Hemiptera).
 1051 Boletín de la Sociedad Entomológica Aragonesa 48, 399–401 (2011).
- 1052 81. Ball, D. W. The Chemical Composition of Honey. *Chemistry for Everyone* 84,
 1053 1643–1646 (2007).

1054	82.	Barker, S. C., Whiting, M., Johnson, K. P. & Murrell, A. Phylogeny of the lice
1055		(Insecta, Phthiraptera) inferred from small subunit rRNA. Zoologica Scripta 32,
1056		407–414 (2003).
1057	83.	Bechly, G. & Szwedo, J. Coleorrhyncha: Moss bugs. in The Crato fossil beds of
1058		Brazil: Window into an ancient world 313–318 (2007).
1059	84.	Begon m. Yeast and Drosophila. in The Genetics and Biology of Drosophila (ed.
1060		Ashburner M, C. H. and T. J.) (Academic Press, 1982).
1061	85.	Bell, W. J. et al. Cockroaches Ecology, Behavior, and Natural History. (2007).
1062	86.	Bennett, G. M. & Moran, N. A. Small, Smaller, Smallest: The Origins and
1063		Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect. Genome
1064		Biology and Evolution 5, 1675–1688 (2013).
1065	87.	Berlanga, M., Paster, B. J. & Guerrero, R. Coevolution of symbiotic spirochete
1066		diversity in lower termites. International Microbiology 10, 133–139 (2007).
1067	88.	Bertsch, A. & Coello, N. A biotechnological process for treatment and recycling
1068		poultry feathers as a feed ingredient. Bioresource Technology 96, 1703–1708
1069		(2005).
1070	89.	Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Morphology , systematics , and
1071		host plants of Palaearctic Donaciinae larvae. in New Developments in the biology
1072		of Chrysomelidae (eds. Jolivet, P. et al.) 481-502 (2004).

1073	90.	Bienkowski, A. O. Feeding behaviof of leaf-beetles (Coleoptera, Chrysomelidae).
1074		Zoologichesky Zhurnal 88, 1471–1480 (2009).
1075	91.	Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. & Goffredi, S. K.
1076		Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from
1077		Costa Rica. Frontiers in Microbiology 5, (2014).
1078	92.	Bogdanov, S., Jurendic, T., Sieber, R. & Gallmann, P. Honey for nutrition and
1079		health: A review. Journal of the American College of Nutrition 27, 677-689
1080		(2008).
1081	93.	Boyd, B. M. et al. Two Bacterial Genera, Sodalis and Rickettsia, Associated with
1082		the Seal Louse Proechinophthirus fluctus (Phthiraptera: anoplura). Applied and
1083		Environmental Microbiology 82, 3185–3197 (2016).
1084	94.	Braendle, C. et al. Developmental origin and evolution of bacteriocytes in the
1085		aphid-Buchnera symbiosis. Plos Biology 1, 70–76 (2003).
1086	95.	Bressan, A., Arneodo, J., Simonato, M., Haines, W. P. & Boudon-Padieu, E.
1087		Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid
1088		planthoppers (Hemiptera: Fulgoromorpha: pentastirini). Environmental
1089		Microbiology 11, 3265–3279 (2009).

1090	96.	Buchner, P. Studien an intracellularen symbionten v. Die symbiontischen
1091		einrichtungen der zikaden. Zeitschrift für Morphologie und Ökologie der Tierer 4,
1092		88–245 (1925).
1093	97.	Buchner, P. Endosymbiosis of Animals with Plant Microorganisms. (1965).
1094	98.	Bukkens, S. G. F. The nutritional value of edible insects. Ecology of Food and
1095		<i>Nutrition</i> 36 , 287–319 (1997).
1096	99.	Burke, G. R., Normark, B. B., Favret, C. & Moran, N. A. Evolution and Diversity
1097		of Facultative Symbionts from the Aphid Subfamily Lachninae. Applied and
1098		Environmental Microbiology 75, 5328–5335 (2009).
1099	100.	Buxton, P. A. The biology of a blood-sucking bug, Rhodmius prolixus.
1100		Transactions of the Royal Entomological Society of London 78, 227–256 (1930).
1101	101.	Calderon, O. & Berkov, A. Midgut and Fat Body Bacteriocytes in Neotropical
1102		Cerambycid Beetles (Coleoptera: cerambycidae). Environmental Entomology 41,
1103		108–117 (2012).
1104	102.	Campbell, A. M., Lawrence, A. J., Hudspath, C. B. & Gruwell, M. E. Molecular
1105		Identification of Diaspididae and Elucidation of Non-Native Species Using the
1106		Genes 28s and 16s. Insects 5, (2014).
1107	103.	Campos, M. G. R. et al. Pollen composition and standardisation of analytical
1108		methods. Journal of Apicultural Research 47, 154–161 (2008).

1109 104. Capinera, J. L. et al. Encyclopedia of Entomology. vol. 1 (2008).

105.	Chanbusarakum, L. J. & Ullman, D. E. Distribution and Ecology of Frankliniella
	occidentalis (Thysanoptera: Thripidae) Bacterial Symbionts. Environmental
	Entomology 38, 1069–1077 (2009).
106.	Chen, X., Li, S. & Aksoy, S. Concordant evolution of a symbiont with its host
	insect species: Molecular phylogeny of genus Glossina and its bacteriome-
	associated endosymbiont, Wigglesworthia glossinidia. Journal of Molecular
	<i>Evolution</i> 48 , 49–58 (1999).
107.	Chen, S. et al. Value-Added Chemicals from Animal Manure. (2003).
108.	Chen, X. & Stansly, P. A. Biology of Tamarixia radiata (Hymenoptera:
	Eulophidae), Parasitoid of the Citrus Greening Disease Vector Diaphorina citri
	(Hemiptera: Psylloidea): A Mini Review. Florida Entomologist 97, 1404–1413
	(2014).
109.	Chinery, M. Insects of Britain and Western Europe. (Domino Books Ltd, 2012).
110.	Cho, G., Malenovsky, I. & Lee, S. Higher-level molecular phylogeny of jumping
	plant lice (Hemiptera: Sternorrhyncha: psylloidea). Systematic Entomology 44,
	638–651 (2019).
	 105. 106. 107. 108. 109. 110.

1126	111.	Claridge, M. F. & Wilson, M. R. Host plant associations, diversity and species-
1127		area relationships of mesophyll-feeding leafhopper or trees and shrubs in Britain.
1128		Ecological Entomology 6, 217–238 (1981).
1129	112.	Clark, J. W. & Kambhampati, S. Phylogenetic analysis of Blattabacterium,
1130		endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea:
1131		Cryptocercidae), including a description of three new species. Molecular
1132		Phylogenetics and Evolution 26, 82–88 (2003).
1133	113.	Clements, J. C., Doucet, D. A. & McCorquodale, D. B. Establishment of a
1134		European cockroach. Journal of the Acadian Entomological Society 7, 4–7
1135		(2013).
1136	114.	Cleveland, L. R. The physiological and symbiotic relationships between
1137		intenstinal protozoa of termites and their host, with special reference to
1138		Reticulitermes flavipes Kollar. Biological Bulletin 46, 178–201 (1924).
1139	115.	Coscarón, M. C. & Contreras, E. F. Flat Bugs (Aradidae). in True Bugs
1140		(Heteroptera) of the Neotropics (eds. Panizzi, A. R., Grazia, J., Panizzi, A. R. &
1141		Grazia, J.) vol. 2 423–458 (2015).
1142	116.	Crowson, R. A. The biology of the Coleoptera. (Academic Press Inc., 1981).

1143	117.	Cryan, J. R. & Svenson, G. J. Family-level relationships of the spittlebugs and
1144		froghoppers (Hemiptera: Cicadomorpha: cercopoidea). Systematic Entomology
1145		35 , 393–415 (2010).
1146	118.	de Arruda, V. A. S., Pereira, A. A. S., de Freitas, A. S., Barth, O. M. & de
1147		Almeida-Muradian, L. B. Dried bee pollen: B complex vitamins, physicochemical
1148		and botanical composition. Journal of Food Composition and Analysis 29, 100-
1149		105 (2013).
1150	119.	Degnan, P. H., Lazarus, A. B., Brock, C. D. & Wernegreen, J. J. Host-symbiont
1151		stability and fast evolutionary rates in an ant-bacterium association: Cospeciation
1152		of Camponotus species and their endosymbionts, Candidatus blochmannia.
1153		Systematic Biology 53, 95–110 (2004).
1154	120.	Deibert, P., Konig, D., Kloock, B., Groenefeld, M. & Berg, A. Glycaemic and
1155		insulinaemic properties of some German honey varieties. European Journal of
1156		<i>Clinical Nutrition</i> 64 , 762–764 (2010).
1157	121.	Dem, F. F., Stewart, A. J. A., Gibson, A., Weiblen, G. D. & Novotny, V. Low
1158		host specificity in species-rich assemblages of xylem- and phloem-feeding
1159		herbivores (Auchenorrhyncha) in a New Guinea lowland rain forest. Journal of
1160		<i>Tropical Ecology</i> 29 , 467–476 (2013).
1161	122.	Denno, R. F. & Perfect, J. R. Planthoppers: Their ecology and management.
1162		(1994).

1163	123.	de Vries, E. J., Jacobs, G. & Breeuwer, J. A. J. Growth and transmission of gut
1164		bacteria in the Western flower thrips, Frankliniella occidentalis. Journal of
1165		Invertebrate Pathology 77, 129–137 (2001).
1166	124.	Dhami, M. K., Buckley, T. R., Beggs, J. R. & Taylor, M. W. Primary symbiont of
1167		the ancient scale insect family Coelostomidiidae exhibits strict cophylogenetic
1168		patterns. Symbiosis 61, 77–91 (2013).
1169	125.	Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and
1170		interplay with aphid feeding. Comptes Rendus Biologies 333, 504-515 (2010).
1171	126.	Downie, D. A. & Gullan, P. J. Phylogenetic congruence of mealybugs and their
1172		primary endosymbionts. Journal of Evolutionary Biology 18, 315–324 (2005).
1173	127.	Duarte, R. T., Carvalho Simões, M. C. & Sgarbieri, V. C. Bovine blood
1174		components: Fractionation, composition, and nutritive value. Journal of
1175		agricultural and food chemistry 47, 231–236 (1999).
1176	128.	Duff, A. Identification - Longhorn Beetles: Part 1. in British Wildlife vol. 18 406-
1177		414 (2006).
1178	129.	Duron, O. et al. Origin, acquisition and diversification of heritable bacterial
1179		endosymbionts in louse flies and bat flies. Molecular Ecology 23, 2105–2117
1180		(2014).

1181	130.	D'Urso, V. & Uliana, M. Acanalonia conica (Hemiptera, Fulgoromorpha,
1182		Acanaloniidae), a Nearctic species recently introduced in Europe. Mitteilungen
1183		aus dem Museum fur Naturkunde in Berlin - Deutsche Entomologische Zeitschrift
1184		53 , 103–107 (2006).
1185	131.	Ebino, K. Y. Studies on Coprophagy in Experimental Animals. Experimental
1186		Animals 42 , 1–9 (1993).
1187	132.	Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the
1188		effects of infections with trypanosomatids. Experimental Parasitology 100, 17-27
1189		(2002).
1190	133.	Emmet, A. D. & Grindley, H. S. The chemstry of animal feces - first paper. A
1191		comparison of the analysis of fresh and air-dried feces. Journal of the American
1192		<i>Chemical Society</i> 31 , 569–579 (1909).
1193	134.	Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in
1194		the dung beetle, Onthophagus taurus (Coleoptera: scarabaeidae). Plos One 8, 1-
1195		15 (2013).
1196	135.	Eutick, M. L., Veivers, P., Obrien, R. W. & Slaytor, M. Dependence on higher
1197		termites, Nasutitermes exitosus and lower termite, Coptotermes lactues on the gut
1198		flora. Journal of Insect Physiology 24, 363–368 (1978).

1199	136.	Evans, H. E. Notes on the prey and nesting behavior of some solitary wasps of
1200		Mexico and southwestern United States. Journal of the Kansas Entomological
1201		Society 37 , 35–40 (1966).
1202	137.	Evans, H. E. The Natural History and Behavior of North American Beewolves.
1203		Journal of the New York Entomological Society 96, 487–489 (1988).
1204	138.	Every, D., Farrell, J. A. K. & Stufkens, M. W. Wheat-bug damage in New
1205		Zealand wheats: The feeding mechanism of nysius huttoni and its effect on the
1206		morphological and physiological development of wheat. Journal of the Science of
1207		<i>Food and Agriculture</i> 50 , 297–309 (1990).
1208	139.	Foottit, R. G. Insect Biodiversity: Science and Society, 2nd Edition. vol. 1 (Wiley
1209		Blackwell, 2017).
1210	140.	Franzini, P. Z. N. et al. The gut Microbiomes of two Pachysoma Macleay desert
1211		dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae) feeding on different
1212		diets. Plos One 11, 1–19 (2016).
1213	141.	Fukatsu, T. Secondary Intracellular Symbiotic Bacteria in Aphids of the Genus
1214		Yamatocallis (Homoptera: Aphididae: drepanosiphinae). Applied and
1215		Environmental Microbiology 67, 5315–5320 (2001).

1216	142.	Fukatsu, T. et al. Bacterial endosymbiont of the slender pigeon louse,
1217		Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies.
1218		Applied and Environmental Microbiology 73, 6660–6668 (2007).
1219	143.	Fukatsu, T. et al. Intestinal endocellular symbiotic bacterium of the macaque
1220		louse Pedicinus obtusus: Distinct endosymbiont origins in anthropoid primate lice
1221		and the old world monkey louse. Applied and Environmental Microbiology 75,
1222		3796–3799 (2009).
1223	144.	Gesse, F., Ribes, J. & Goula, M. Belonochilus numenius, the sycamore seed bug,
1224		new record for the Iberian fauna. Bulletin of Insectology 62, 121-123 (2009).
1225	145.	Girousse C, B. J. L. D. S. & Bournoville, R. Sugar and amino acid composition of
1226		phloem sap of Medicago sativa : A comparative study of two collecting methods.
1227		Plant Physiology and Biochemestry 21, 41–48 (1991).
1228	146.	Glad, C., Regnard, J. L., Queroe, Y., Brun, O. & Motorgaudry, J. F. Flux and
1229		Chemical-Composition of Xylem Exudates From Chardonnay Grapevines -
1230		Temporal Evolution and Effect of Recut. American Journal of Enology and
1231		<i>Viticulture</i> 43 , 275–282 (1992).
1232	147.	Gonella, E., Orru, B. & Alma, A. Egg masses treatment with micronutrient
1233		fertilizers has a suppressive effect on newly-emerged nymphs of the brown
1234		marmorated stink bug Halyomorpha halys. Entomologia Generalis 39, 231-238
1235		(2019).

1236	148.	Goodchild, A. J. P. Some observations on growth and egg production of the
1237		blood-sucking Reduviids, Rhodnius prolixus and Triatoma infestans. Proceedings
1238		of the Royal Entomological Society of London. Series A, General Entomology 30,
1239		137–144 (1955).
1240	149.	Gordon, E. R. L., McFrederick, Q. & Weirauch, C. Phylogenetic evidence for
1241		ancient and persistent environmental symbiont reacquisition in Largidae
1242		(Hemiptera: heteroptera). Applied and Environmental Microbiology 82, 7123-
1243		7133 (2016).
1244	150.	Gregory, B. R., Wilder, O. H. M. & Ostby, P. C. Studies on the Amino Acid and
1245		Vitamin Composition of Feather Meal. Poultry Science 35, 234–235 (1956).
1246	151.	Grimaldi, D. & Engel, M. S. Evolution of the insects. (Cambridge University
1247		Press, 2005).
1248	152.	Gruwell, M. E., Morse, G. V. E. & Normark, B. B. Phylogenetic congruence of
1249		armored scale insects (Hemiptera : Diaspididae) and their primary
1250		endosymbionts from the phylum Bacteroidetes. Molecular Phylogenetics and
1251		Evolution 44, 267–280 (2007).
1252	153.	Gueguen, G. et al. Endosymbiont metacommunities, mtDNA diversity and the
1253		evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex.

1254 *Molecular Ecology* **19**, 4365–4378 (2010).

1255	154.	Gullan, P. J. & Kosztarab, M. Adaptations in Scale Insects. Annual Review of
1256		Entomology 42 , 23–50 (1997).
1257	155.	Gullan, P. J. & Cook, L. G. Phylogeny and higher classification of the scale
1258		insects (Hemiptera: Sternorrhyncha: coccoidea). Zootaxa 425, 413-425 (2007).
1259	156.	Gutiérrez, A., Del Río, J. C., González-Vila, F. J. & Martín, F. Chemical
1260		composition of lipophilic extractives from eucalyptus globulus Labill. wood.
1261		Holzforschung 53, 481–486 (1999).
1262	157.	Hagedorn, H. H. Effect of the age of pollen used in pollen supplements on their
1263		nutritive value for the honeybee. Ii. Effect of vitamin content of pollens. Journal
1264		of Apicultural Research 7, 97–101 (1968).
1265	158.	Hall, S. M. & Baker, D. A. The chemical composition of Ricinus phloem exudate.
1266		<i>Planta</i> 106 , 131–140 (1972).
1267	159.	Hamilton, K. G. A. A new family of froghoppers from the American tropics
1268		(Hemiptera: Cercopoidea: epipygidae). Biodiversity 2, 15-21 (2001).
1269	160.	Hamilton, P. T. & Perlman, S. J. Host Defense via Symbiosis in Drosophila.
1270		<i>PLoS Pathogens</i> 9, 1–4 (2013).
1271	161.	Hanelová J, V. J. Behaviour of the central European Acanthosomatidae
1272		(Hemiptera: Heteroptera: Pentatomoidea) during oviposition and parental care.
1273		Acta Musei Moraviae, Scientiae biologicae 98, 433–457 (2013).
1274	162.	Hayashi, H. & Chino, M. Collection of pure phloem sap from wheat and its
------	------	--
1275		chemical composition. Plant and Cell Physiology 27, 1387–1393 (1986).
1276	163.	Hayashi, H. & Chino, M. Chemical composition of phloem sap from the
1277		uppermost internode of the rice plant. Plant and Cell Physiology 31, 247-251
1278		(1990).
1279	164.	Hendrick, R. L. & Pregitzer, K. S. The dynamics of fine root length, biomass, and
1280		nitrogen content in two northern hardwood ecosystems. Canadian Journal of
1281		Forest Research 23, 2507–2520 (1993).
1282	165.	Henry, T. J. Phylogenetic analysis of family groups within the infraorder
1283		Pentatomomorpha (Hemiptera: Heteroptera), with emphasis on the Lygaeoidea.
1284		Annals of the Entomological Society of America 90, 275–301 (1997).
1285	166.	Henry, T. J. Biodiversity of Heteroptera. (2009).
1286	167.	Henry, L. M. et al. Horizontally Transmitted Symbionts and Host Colonization of
1287		Ecological Niches. Current Biology 23, 1713–1717 (2013).
1288	168.	Hijaz, F. & Killiny, N. Collection and chemical composition of phloem sap from
1289		Citrus sinensis L. Osbeck (sweet orange). Plos One 9, 1-11 (2014).
1290	169.	Hirota, B. et al. A Novel, Extremely Elongated, and Endocellular Bacterial
1291		Symbiont Supports Cuticle Formation of a Grain Pest Beetle. <i>mBio</i> 8, (2017).

1292	170.	Hirota, B., Meng, X. Y. & Fukatsu, T. Bacteriome-Associated Endosymbiotic
1293		Bacteria of Nosodendron Tree Sap Beetles (Coleoptera: nosodendridae).
1294		Frontiers in Microbiology 11, (2020).
1295	171.	Hlavjenková, I. & Šefrová, H. Chrysomphalus aonidum (Linnaeus, 1758), a new
1296		alien pest of ornamental plants in the Českáeská Republikach republic
1297		(Hemiptera: Coccoidea: diaspididae). Acta Universitatis Agriculturae et
1298		Silviculturae Mendelianae Brunensis 60, 69–78 (2012).
1299	172.	Hodkinson, I. D. Biology of Psylloidea (Homoptera): A review. Bulletin of
1300		Entomological Research 04, 325–338 (1974).
1301	173.	Horsfield, D. Evidence for Xylem Feeding By Philaenus Spumarius (L.)
1302		(Homoptera: cercopidae). Entomologia Experimentalis et Applicata 24, 95-99
1303		(1978).
1304	174.	Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host-
1305		symbiont cospeciation and reductive genome evolution in insect gut bacteria. Plos
1306		<i>Biology</i> 4 , 1841–1851 (2006).
1307	175.	Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a
1308		bacteriocyte-associated nutritional mutualist. Proceedings of the National

1309 *Academy of Sciences* **107**, 769–774 (2010).

1310	176.	Hosokawa, T., Kikuchi, Y., Nikoh, N. & Fukatsu, T. Polyphyly of gut symbionts
1311		in stinkbugs of the family cydnidae. Applied and Environmental Microbiology 78,
1312		4758–4761 (2012).
1313	177.	Hosokawa, T., Imanishi, M., Koga, R. & Fukatsu, T. Diversity and evolution of
1314		bacterial symbionts in the gut symbiotic organ of jewel stinkbugs (Hemiptera:
1315		scutelleridae). Applied Entomology and Zoology 54, 359-367 (2019).
1316	178.	Hosokawa, T. et al. Reductive genome evolution, host-symbiont co-speciation
1317		and uterine transmission of endosymbiotic bacteria in bat flies. ISME Journal 6,
1318		577–587 (Mar 2012B).
1319	179.	Howe, M. A. A Provisional Checklist of the Invertebrates Recorded in Wales 4.
1320		<i>True Bugs</i> . (2004).
1321	180.	Huang, C. Y., Sabree, Z. L. & Moran, N. A. Genome sequence of Blattabacterium
1322		sp. Strain BGIGA, endosymbiont of the Blaberus giganteus cockroach. Journal of
1323		<i>Bacteriology</i> 194 , 4450–4451 (2012).
1324	181.	Hunt, T. et al. A comprehensive phylogeny of beetles reveals the evolutionary
1325		origins of a superradiation. <i>Science</i> 318 , 1913–1916 (2007).
1326	182.	Husnik, F. & McCutcheon, J. P. Repeated replacement of an intrabacterial
1327		symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National
1328		Academy of Sciences of the United States of America 113, E5416–E5424 (2016).

1329	183.	Ischayek, J. I. & Kern, M. US Honeys Varying in Glucose and Fructose Content
1330		Elicit Similar Glycemic Indexes. Journal of the American Dietetic Association
1331		106 , 1260–1262 (2006).
1332	184.	Ishii, Y., Matsuura, Y., Kakizawa, S., Nikoh, N. & Fukatsu, T. Diversity of
1333		bacterial endosymbionts associated with macrosteles leafhoppers vectoring
1334		phytopathogenic phytoplasmas. Applied and Environmental Microbiology 79,
1335		5013–5022 (2013).
1336	185.	Itoh, H., Matsuura, Y., Hosokawa, T., Fukatsu, T. & Kikuchi, Y. Obligate gut
1337		symbiotic association in the sloe bug Dolycoris baccarum (Hemiptera:
1338		pentatomidae). Applied Entomology and Zoology 52, 51-59 (2017).
1339	186.	Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M. & Perlman, S. J.
1340		Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont.
1341		<i>Science</i> 329 , 212–215 (2010).
1342	187.	Jagota, S. K. & Dani, H. M. A New Calorimetric Technique for the Estimation of
1343		Vitamin C Using Folin Phenol Reagent. Analytical biochemistry 182, 178–182
1344		(1982).
1345	188.	Jeschke, W. D. Ion Circulation via Phloem and Xylem Between Root and Shoot
1346		of Nodulated White Lupin. Journal of Plant Physiology 117, 319-330 (1985).

1347	189.	Jousselin, E., Desdevises, Y. & Coeur D'Acier, A. Fine-scale cospeciation
1348		between Brachycaudus and Buchnera aphidicola: Bacterial genome helps define
1349		species and evolutionary relationships in aphids. Proceedings of the Royal Society
1350		<i>B: Biological Sciences</i> 276, 187–196 (2009).
1351	190.	Jung, S. & Lee, S. Molecular phylogeny of the plant bugs (Heteroptera: Miridae)
1352		and the evolution of feeding habits. Cladistics 28, 50-79 (2012).
1353	191.	Jungen, H. Endosymbionten bei Ameisen. Insectes Sociaux 15, 227-232 (1968).
1354	192.	Kafil, M., Bandani, A. R., Kaltenpoth, M., Goldansaz, S. H. & Alavi, S. M. Role
1355		of Symbiotic Bacteria in the Growth and Development of the Sunn Pest,
1356		Eurygaster integriceps. Journal of Insect Science 13, 1-12 (2013).
1357	193.	Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning
1358		host's ecological adaptation. Current Biology 24, 2465-2470 (2014).
1359	194.	Kaltenpoth, M. et al. Partner choice and fidelity stabilize coevolution in a
1360		Cretaceous-age defensive symbiosis. Proceedings of the National Academy of
1361		Sciences 111, 6359–6364 (2014).
1362	195.	Karamipour, N., Mehrabadi, M. & Fathipour, Y. Gammaproteobacteria as
1363		essential primary symbionts in the striped shield bug, Graphosoma Lineatum
1364		(Hemiptera: pentatomidae). Scientific Reports 6, 21-25 (2016).

1365	196.	Kashima, T., Nakamura, T. & Tojo, S. Uric acid recycling in the shield bug,
1366		Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. Journal of
1367		Insect Physiology 52, 816–825 (2006).
1368	197.	Kashkouli, M., Fathipour, Y. & Mehrabadi, M. Heritable Gammaproteobacterial
1369		Symbiont Improves the Fitness of Brachynema germari Kolenati (Hemiptera:
1370		pentatomidae). Environmental Entomology 48, 1079–1087 (2019).
1371	198.	Kashkouli, M., Fathipour, Y. & Mehrabadi, M. Habitat visualization, acquisition
1372		features and necessity of the gammaproteobacterial symbiont of pistachio stink
1373		Bug, Acrosternum heegeri (Hem.: pentatomidae). Bulletin of Entomological
1374		<i>Research</i> 110 , 22–33 (2020).
1375	199.	Keilin, D. On the Life-history of Dasyhelea obscura, Winertz (Diptera,
1376		Nematocera, Ceratopogonidae), with some Remarks on the Parasites and
1377		Hereditary Bacterian Symbiont of this Midge. The Annals and Magazine of
1378		Natural History 8, 576–589 (1921).
1379	200.	Khan, Z. R. & Saxena, R. C. Effect of Steam Distillate Extracts of Resistant and
1380		Susceptible Rice Cultivars on Behavior of Sogatella furcifera (Homoptera:
1381		delphacidae). Journal of Economic Entomology 79, 928–935 (1986).
1382	201.	Kikuchi, Y. et al. Host-symbiont co-speciation and reductive genome evolution in
1383		gut symbiotic bacteria of acanthosomatid stinkbugs. Bmc Biology 7, 1–22 (2009).

1384	202.	Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-
1385		symbiont association between Burkholderia gut symbionts and their heteropteran
1386		hosts. ISME Journal 5, 446-460 (2011).
1387	203.	Kikuchi, Y., Hosokawa, T., Nikoh, N. & Fukatsu, T. Gut symbiotic bacteria in the
1388		cabbage bugs Eurydema rugosa and Eurydema dominulus (Heteroptera:
1389		pentatomidae). Applied Entomology and Zoology 47, 1-8 (2012).
1390	204.	Kim, K. C. & Ludwig, H. W. The family classification of the Anoplura.
1391		Systematic Entomology 3 , 249–284 (1978).
1392	205.	Kimura, M., Fujita, T. & Itokawa, Y. Liquid-Chromatographic Determinationof
1393		the Total Thiamin Content of Blood. Clinical Chemistry 28, 29-31 (1982).
1394	206.	Kleespies, R. G., Nansen, C., Adouhoun, T. & Huger, A. M. Ultrastructure of
1395		Bacteriomes and their sensitivity to ambient temperatures in Prostephanus
1396		truncatus (Horn). Biocontrol Science and Technology 11, 217–232 (2001).
1397	207.	Klein, A. et al. A novel intracellular mutualistic bacterium in the invasive ant
1398		Cardiocondyla obscurior. ISME Journal 10, 376–388 (2016).
1399	208.	Koga, R., Bennett, G. M., Cryan, J. R. & Moran, N. A. Evolutionary replacement
1400		of obligate symbionts in an ancient and diverse insect lineage. Environmental
1401		<i>Microbiology</i> 15 , 2073–2081 (2013).

1402	209.	Koga, R., Nikoh, N., Matsuura, Y., Meng, X. Y. & Fukatsu, T. Mealybugs with	
1403		distinct endosymbiotic systems living on the same host plant. FEMS	
1404		<i>Microbiology Ecology</i> 83 , 93–100 (2013).	
1405	210.	Kölsch, G., Matz-Grund, C. & Pedersen, V. B. Ultrastructural and molecular	
1406		characterization of endosymbionts of the reed beetle genus Macroplea	
1407		(Chrysomelidae, Donaciinae), and proposal of ' Candidatus Macropleicola	
1408		appendiculatae' and ' Candidatus Macropleicola muticae'. Canadian Journal of	
1409		Microbiology 55, 1250–1260 (2009).	
1410	211.	Kölsch, G. K. & Kubiak, M. The aquatic leaf beetle species macroplea mutica	
1411		and m. Appendiculata (Coleoptera, Chrysomelidae, Donaciinae) differ in their use	e
1412		of Myriophyllum spicatum as a host plant. Aquatic Insects 33, 13–26 (2011).	
1413	212.	Krenn, H. W., Plant, J. D. & Szucsich, N. U. Mouthparts of flower-visiting	
1414		insects. Arthropod Structure & Development 34, 1-40 (2005).	
1415	213.	Krenn, H. W. Feeding Mechanisms of Adult Lepidoptera: Structure, Function,	
1416		and Evolution of the Mouthparts. Annual Review of Entomology 55, 307-327	
1417		(2010).	
1418	214.	Küchler, S. M., Dettner, K. & Kehl, S. Molecular characterization and	
1419		localization of the obligate endosymbiotic bacterium in the birch catkin bug	
1420		Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). FEMS	
1421		Microbiology Ecology 73 , 408–418 (2010).	
		79	9

1422	215.	Kuechler, S. M., Dettner, K. & Kehl, S. Characterization of an obligate
1423		intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis
1424		typhae (Heteroptera, Lygaeidae, Artheneinae). Applied and Environmental
1425		Microbiology 77, 2869–2876 (2011).
1426	216.	Kuechler, S. M., Renz, P., Dettner, K. & Kehl, S. Diversity of symbiotic organs
1427		and bacterial endosymbionts of: Lygaeoid bugs of the families blissidae and
1428		lygaeidae (Hemiptera:: Heteroptera: lygaeoidea). Applied and Environmental
1429		<i>Microbiology</i> 78 , 2648–2659 (2012).
1430	217.	Kuechler, S. M., Gibbs, G., Burckhardt, D. H., Dettner, K. & Hartung, V.
1431		Diversity of bacterial endosymbionts and bacteria-host co-evolution in
1432		Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: peloridiidae).
1433		Environmental Microbiology 15, 2031–2042 (2013).
1434	218.	Kuechler, S. M., Matsuura, Y., Dettner, K. & Kikuchi, Y. Phylogenetically
1435		Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs,
1436		Dicranocephalus spp. (Heteroptera: stenocephalidae). Microbes and environments
1437		31 , 145–153 (2016).
1438	219.	Kumar, H. & Sharma, S. Determination of Chlorophyll and Carotenoid Loss in
1439		Dalbergia sissoo caused by Aonidiella orientalis (Newstead) [Homoptera:
1440		Coccoidea: diaspididae]. Journal of Entomology and Zoology Studies 2, 104-106
1441		(2014).

1442	220.	Lamelas, A. et al. Serratia symbiotica from the Aphid Cinara cedri: A Missing
1443		Link from Facultative to Obligate Insect Endosymbiont. <i>PLoS Genetics</i> 7, (2011).
1444	221.	Lefèvre, C. et al. Endosymbiont Phylogenesis in the Dryophthoridae Weevils:
1445		Evidence for Bacterial Replacement. Molecular Biology and Evolution 21, 965-
1446		973 (2004).
1447	222.	Leschen, R. A. B. Morphology and Systematics (Elateroidea, Bostrichiformia,
1448		Cucujiformia partim). in Coleoptera. Beetles vol. 2 (Walter de Gruyter, 2010).
1449	223.	Liu, LY., Schonitzer, K. & Yang, JT. A review of the literature on the life
1450		history of Bostrichidae. Mitteilungen der Münchner Entomologischen
1451		<i>Gesellschaft</i> 98 , 91–97 (2008).
1452	224.	Lo, N., Beninati, T., Stone, F., Walker, J. & Sacchi, L. Cockroaches that lack
1453		Blattabacterium endosymbionts: The phylogenetically divergent genus Nocticola.
1454		Biology Letters 3 , 327–330 (2007).
1455	225.	Loper, G. M., Standifer, L. N., Thompson, M. J. & Gilliam, M. Biochemistry and
1456		microbiology of bee collected almond (Prunus dulcis) pollen and bee bread. I-
1457		Fatty Acids, Sterols, Vitamins and Minerals. Apidologie 11, 63–73 (1980).
1458	226.	Lukasik, P., van Asch, M., Guo, H. F., Ferrari, J. & Godfray, H. C. J. Unrelated
1459		facultative endosymbionts protect aphids against a fungal pathogen. Ecology
1460		Letters 16, 214–218 (2013).

1461	227.	Machtelinckx, T. et al. Microbial community of predatory bugs of the genus
1462		Macrolophus (Hemiptera: miridae). BMC Microbiology 12 Suppl 1, S9-2180-12-
1463		S1-S9 (2012).
1464	228.	Maier, C. T. The Behavior of Hydrometra championana (Hemiptera:
1465		Hydrometridae) and Resource Partitioning with Tenagogonus quadrilineatus
1466		(Hemiptera: gerridae). Journal of the Kansas Entomological Society 50, 263-271
1467		(1977).
1468	229.	Majka, C. The flat bark beetles (Coleoptera, Silvanidae, Cucujidae,
1469		Laemophloeidae) of Atlantic Canada. ZooKeys 2, 221–238 (2008).
1470	230.	Majka, C. G. & Lesage, L. Introduced leaf beetles of the Maritime Provinces, 7.
1471		<i>Zootaxa</i> 56 , 37–56 (2008).
1472	231.	Mann, J. Cactus-feeding insects and mites. Bulletin of the United States National
1473		<i>Museum</i> 256 , 1–158 (1969).
1474	232.	Mao, M., Yang, X. S., Poff, K. & Bennett, G. Comparative Genomics of the
1475		Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera:
1476		Membracidae), Provide Insight into the Origins and Evolution of an Ancient
1477		Symbiosis. Genome Biology and Evolution 9, 1803–1815 (2017).
1478	233.	Marche, T. et al. Chemical changes during composting of a paper mill
1479		sludgehardwood sawdust mixture. Geoderma 116, 345-356 (2003).

- 1480 234. Marshall, S. A. *Flies: The Natural History and Diversity of Diptera*. (Firefly
 1481 Books, 2012).
- 1482 235. Martin, M. Life history and habits of the pigeon louse (Columbicola columbae
 1483 [Linnaeus]). *The Canadian Entomologist* 66, 6–16 (1934).
- 1484 236. Martínez, M., Canneva, B. & Ronderos, M. M. Diptera, Ceratopogonidae,
- Dasyhelea necrophila Spinelli and Rodriguez, 1999: Detection of eggs in
 ovitraps, in Uruguay. *Check List* 6, 239–241 (2010).
- 1487 237. Martinez, A. J. *et al.* Angiosperm to Gymnosperm host-plant switch entails shifts
 1488 in microbiota of the Welwitschia bug, Probergrothius angolensis (Distant, 1902).
 1489 *Molecular Ecology* 28, 5172–5187 (2019).
- 1490 238. Martins, D. B., de Oliveira, E. Z., Valandro, M. A., Franco, M. & de Souza, J. na.
 1491 Trichodectes canis in puppy and adult dogs. *Comparative Clinical Pathology* 23,
 1492 1485–1489 (2014).
- 1493 239. Matsuura, Y. *et al.* Huge Symbiotic Organs in Giant Scale Insects of the Genus
 1494 Drosicha (Coccoidea: Monophlebidae) Harbor Flavobacterial and Enterobacterial
 1495 Endosymbionts. *Zoological Science* 26, 448–456 (2009).
- 1496 240. Matsuura, Y. *et al.* Evolution of symbiotic organs and endosymbionts in lygaeid
 1497 stinkbugs. *ISME Journal* 6, 397–409 (2012).

1498	241.	Matsuura, Y., Kikuchi, Y., Meng, X. Y., Koga, R. & Fukatsu, T. Novel clade of
1499		alphaproteobacterial endosymbionts associated with stinkbugs and other
1500		arthropods. Applied and Environmental Microbiology 78, 4149–4156 (2012).
1501	242.	McClure, M. S. Impact on host plants. in Armoured scale insects: Their biology,
1502		natural enemies and control (ed. Rosen, D.) vol. 4 289-291 (Elsevier, 1990).
1503	243.	McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of
1504		metabolic roles in bacterial co-symbionts of insects. Proceedings of the National
1505		Academy of Sciences 106, 15394–15399 (2009).
1506	244.	McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative
1507		genetic code in the extremely small and GC-rich genome of a bacterial symbiont.
1508		<i>PLoS Genetics</i> 5 , 1–11 (2009).
1509	245.	McCutcheon, J. P. & von Dohlen, C. D. An Interdependent Metabolic Patchwork
1510		in the Nested Symbiosis of Mealybugs. Current Biology 21, 1366–1372 (2011).
1511	246.	Mead, F. W. & Fasulo, T. R. Scentless Plant Bugs , Jadera sp. Insecta : hemiptera.
1512		Deutsche Entomologische Zeitschrift 1–3 (2000).
1513	247.	Merritt, S. Z. Within-plant variation in concentrations of amino acids, sugar, and
1514		sinigrin in phloem sap of black mustard, Brassica nigra (L.) Koch (Cruciferae).
1515		Journal of Chemical Ecology 22, 1133–1145 (1996).

1516	248.	Merville, A. et al. Endosymbiont diversity among sibling weevil species
1517		competing for the same resource. BMC Evolutionary Biology 13, 1–12 (2013).
1518	249.	Meyer, J. M. & Hoy, M. A. Molecular survey of endosymbionts in Florida
1519		populations of Diaphorina citri (Hemiptera : Psyllidae) and its parasitoids
1520		Tamarixia radiata (Hymenoptera : Eulophidae) and Diaphorencyrtus aligarhensis
1521		(Hymenoptera : encyrtidae). Florida Entomologist 91, 294–304 (2008).
1522	250.	Michalik, A., Jankowska, W. & Szklarzewicz, T. Ultrastructure and Transovarial
1523		Transmission of Endosymbiotic Microorganisms in Conomelus anceps and
1524		Metcalfa pruinosa (Insecta, Hemiptera, Fulgoromorpha). Folia Biologica
1525		(Kraków) 57 , 131–137 (2009).
1526	251.	Michalik, A., Jankowska, W., Kot, M., Gołas, A. & Szklarzewicz, T. Symbiosis
1527		in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae): Association
1528		in statu nascendi? Arthropod Structure and Development 43, 579-587 (2014).
1529	252.	Michalik, K., Szklarzewicz, T., Kalandyk-Kolodziejczyk, M., Jankowska, W. &
1530		Michalik, A. Bacteria belonging to the genus Burkholderia are obligatory
1531		symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and
1532		Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). Arthropod
1533		Structure & Development 45, 265–272 (2016).

1534	253.	Miles, P. W. The salivary secretions of a plant-sucking bug, Oncopeltus fascwitus
1535		(Dall.) Heteroptera: Lygaeidae) - I the types of secretions and their roles during
1536		feeding. Journal of Insect Physiology 3, 243–255 (1958).
1537	254.	Millett, M. A., Baker, A. J., Feist, W. C., Mellenberger, R. W. & Satter, L. D.
1538		Modifying Wood to Increase Its In Vitro Digestibility. Journal of Animal Science
1539		31 , 781–788 (1970).
1540	255.	Møller, H. B., Sommer, S. G. & Ahring, B. K. Methane productivity of manure,
1541		straw and solid fractions of manure. <i>Biomass and Bioenergy</i> 26, 485–495 (2004).
1542	256.	Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects - A
1543		variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48,
1544		295–304 (1998).
1545	257.	Moran, N. A., Dale, C., Dunbar, H. E., Smith, W. A. & Ochman, H. Intracellular
1546		symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct
1547		clade with a small genome. Environmental Microbiology 5, 116–126 (2003).
1548	258.	Moran, N. A., Tran, P. L. & Gerardo, N. M. Symbiosis and insect diversification:
1549		An ancient symbiont of sap-feeding insects from the bacterial phylum
1550		Bacteroidetes. Applied and Environmental Microbiology 71, 8802–8810 (2005).
1551	259.	Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and Evolution of
1552		Heritable Bacterial Symbionts. Annual Review of Genetics 42, 165-190 (2008).

1553	260.	Morse, S. F., Bush, S. E., Patterson, B. D., Dick, C. W. & Gruwell, M. E.
1554		Evolution, Multiple Acquisition, and Localization of Endosymbionts in Bat Flies
1555		(Diptera : Hippoboscoidea : Streblidae and Nycteribiidae). Applied and
1556		Environmental Microbiology 79, 2952–2961 (2013).
1557	261.	Mukesh, D. J. Production of Feather Protein Concentrate from Feathers by In
1558		vitro Enzymatic Treatment, its Biochemical Characterization and Antioxidant
1559		Nature. Middle-East Journal of Scientific Research 11, 881–886 (2012).
1560	262.	Munson, M. A. et al. Evidence for the establishment of aphid-eubacterium
1561		endosymbiosis in an ancestor of four aphid families. Journal of Bacteriology 173,
1562		6321–6324 (1991).
1563	263.	Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced
1564		genome. Current Biology 23, 1478–1484 (2013).
1565	264.	Nasu, S., Kusumi, T., Suwa, Y. & Kita, H. Symbiotes of Planthoppers : II.
1566		Isolation of Intracellular Symbiotic Microorganisms from the Brown Planthopper,
1567		Nilaparata lugens STAL, and Immunological Comparison of the Symbiotes
1568		Associated with Rice Planthoppers (Hemiptera : delphacidae). Applied
1569		Entomology and Zoology 16, 88–93 (1981).
1570	265.	New, T. R. Biology of the Psocoptera. Oriental Insects 21, 1–109 (1987).

1571	266.	Nishino, T., Tanahashi, M., Lin, C. P., Koga, R. & Fukatsu, T. Fungal and
1572		bacterial endosymbionts of eared leafhoppers of the subfamily Ledrinae
1573		(Hemiptera: cicadellidae). Applied Entomology and Zoology 51, 465–477 (2016).
1574	267.	Noda, H. Histological and Histochemical Observation of Intracellular Yeast-like
1575		Symbiotes in the Fat Body of the Smaller Brown Planthopper, Laodelphax
1576		striatellus (Homoptera : delphacidae). Applied Entomology and Zoology 12, 134-
1577		141 (1977).
1578	268.	Noda, H. et al. Bacteriome-associated endosymbionts of the green rice leafhopper
1579		Nephotettix cincticeps (Hemiptera: cicadellidae). Applied Entomology and
1580		<i>Zoology</i> 47 , 217–225 (2012).
1581	269.	Novakova, E., Husnik, F., Sochova, E. & Hypsa, V. Arsenophonus and Sodalis
1582		Symbionts in Louse Flies: An Analogy to the Wigglesworthia and Sodalis System
1583		in Tsetse Flies. Applied and Environmental Microbiology 81, 6189–6199 (2015).
1584	270.	Nováková, E., Hypša, V., Nguyen, P., Husník, F. & Darby, A. C. Genome
1585		sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a
1586		blood sucking fly Lipoptena cervi (Diptera: hippoboscidae). Standards in
1587		<i>Genomic Sciences</i> 11 , 1–7 (2016).
1588	271.	Novotny, V. & Wilson, M. R. Why are there no small species among xylem-
1589		sucking insects? Evolutionary Ecology 11, 419–437 (1997).

1590	272.	O'Brien, L. B. Planthopper systematics and external morphology. in The
1591		Leafhoppers and Planthoppers (ed. Nault, L. R.) 61-102 (John Wiley and Sons,
1592		1985).
1593	273.	Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. & Mergaert, P. Burkholderia Gut
1594		Symbionts Associated with European and Japanese Populations of the Dock Bug
1595		Coreus marginatus (Coreoidea: coreidae). Microbes and environments 34, 219-
1596		222 (2019).
1597	274.	Ohshima, T., Hayashi, H. & Chino, M. Collection and Chemical Composition of
1598		Pure Phloem Sap from Zea mays L. Plant and Cell Physiology 31, 735–737
1599		(1990).
1600	275.	Okanovic, D., Ristic, M., Kormanjos, S., Filipovic, S. & Zivkovic, B. Chemical
1601		characteristics of poultry slaughterhouse byproducts. Biotechnology in Animal
1602		Husbandry 25, 143–152 (2009).
1603	276.	Okude, G. et al. Novel bacteriocyte-associated pleomorphic symbiont of the grain
1604		pest beetle Rhyzopertha dominica (Coleoptera: bostrichidae). Zoological Letters
1605		3 , (2017).
1606	277.	Overholt, W. A., Diaz, R., Rosskopf, E., Green, S. J. & Overholt, W. A. Deep
1607		characterization of the microbiomes of Calophya spp. (Hemiptera: Calophyidae)
1608		gall-inducing psyllids reveals the absence of plant pathogenic bacteria and three
1609		dominant endosymbionts. Plos One 10, 1-16 (2015).

1610	278.	Pant, N. C. & Fraenkel, G. The function of the symbiotic yeasts of two insect
1611		species, Lasioderma serricorne F. And Stegobium (Sitodrepa) paniceum L.
1612		Science 112, 498–500 (1950).
1613	279.	Patil, V. S. & Magar, N. G. Fatty acids of human blood. <i>Biochemical Journal</i> 74,
1614		427–429 (1959).
1615	280.	Peeters, P. J., Read, J. & Sanson, G. D. Variation in the guild composition of
1616		herbivorous insect assemblages among co-occurring plant species. Austral
1617		<i>Ecology</i> 26 , 385–399 (2001).
1618	281.	Pérez-Ruiz, M., Martínez-Rodríguez, P., Herranz, J. & Bella, J. L. A survey of
1619		Wolbachia, Spiroplasma and other bacteria in parthenogenetic and non-
1620		parthenogenetic phasmid (Phasmatodea) species. European Journal of
1621		Entomology 112, 409–418 (2015).
1622	282.	Perotti, M. A., Clarke, H. K., Turner, B. D. & Braig, H. R. Rickettsia as obligate
1623		and mycetomic bacteria. The FASEB Journal 20, 2372–2374 (2006).
1624	283.	Peuke, A. D. Correlations in concentrations, xylem and phloem flows, and
1625		partitioning of elements and ions in intact plants. A summary and statistical re-
1626		evaluation of modelling experiments in Ricinus communis. Journal of
1627		<i>Experimental Botany</i> 61 , 635–655 (2010).

1628	284.	Powell, J. Evolution of larval food preference in Lepidoptera. in Moths and
1629		Butterflies. Volume 1. Evolution, Systematics, and Biogeography. Handbook of
1630		Zoology. Volume IV. Arthropoda: insecta. (ed. Kristensen, N. P.) vol. IV (Walter
1631		deGruyter, 1988).
1632	285.	Putman, W. L. The feeding habits of certain leafhoppers. The Canadian
1633		Entomologist 73 , 39–53 (1941).
1634	286.	Rahman, N. A. et al. A molecular survey of Australian and North American
1635		termite genera indicates that vertical inheritance is the primary force shaping
1636		termite gut microbiomes. <i>Microbiome</i> 3 , 1–16 (2015).
1637	287.	Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic
1638		Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation
1639		Driving Diversification in Insects. Plos One 9, (2014).
1640	288.	Ramírez-Puebla, S. T. et al. Molecular Phylogeny of the Genus Dactylopius
1641		(Hemiptera: Dactylopiidae) and Identification of the Symbiotic Bacteria.
1642		Environmental Entomology 39 , 1178–1183 (2010).
1643	289.	Raven, J. A. Phytophages of Xylem and Phloem: A Comparison of Animal and
1644		Plant Sap-feeders. Advances in Ecological Research 13, 135–234 (1983).
1645	290.	Raven, J. A. Phytophages of Xylem and Phloem: A Comparison of Animal and
1646		Plant Sap-feeders. Advances in Ecological Research 13, 135–234 (1983).

1647	291.	Rebijith, K. B. et al. Reconstructing the macroevolutionary patterns of aphids
1648		(Hemiptera: Aphididae) using nuclear and mitochondrial DNA sequences.
1649		Biological Journal of the Linnean Society 121, 796–814 (2017).
1650	292.	Resh, V. Encyclopedia of Insects 2nd Edition. (Academic Press, 2009).
1651	293.	Rivault, C. & Cloarec, A. Exploitation of food resources by the cockroach
1652		Blattella germaica in an urban habitat. Entomologia Experimentalis et Applicata
1653		61 , 149–158 (1991).
1654	294.	Rivera-Torres, V., Noblet, J. & van Milgen, J. Changes in chemical composition
1655		in male Turkeys during growth. Poultry Science 90, 68-74 (2011).
1656	295.	Robbins, C. R. Chemical Composition of Different Hair Types. in Chemical and
1657		Physical Behavior of Human Hair 105–176 (2012).
1658	296.	Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J. & Vabkova, J. Edible
1659		FlowersA New Promising Source of Mineral Elements in Human Nutrition.
1660		Molecules 17, 6672–6683 (2012).
1661	297.	Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. & Martínez-
1662		Romero, E. Genome sequence of "candidatus Walczuchella monophlebidarum"
1663		the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea:
1664		monophlebidae). Genome Biology and Evolution 6, 714–726 (2014).

1665	298.	Rosenblueth, M., Sayavedra, L., Sámano-Sánchez, H., Roth, A. & Martínez-
1666		Romero, E. Evolutionary relationships of flavobacterial and enterobacterial
1667		endosymbionts with their scale insect hosts (Hemiptera: coccoidea). Journal of
1668		Evolutionary Biology 25, 2357–2368 (2012).
1669	299.	Rosengaus, R. B., Zecher, C. N., Schultheis, K. F., Brucker, R. M. & Bordenstein,
1670		S. R. Disruption of the Termite Gut Microbiota and Its Prolonged Consequences
1671		for Fitness. Applied and Environmental Microbiology 77, 4303–4312 (2011).
1672	300.	Rumpold, B. A. & Schlüter, O. K. Nutritional composition and safety aspects of
1673		edible insects. Molecular Nutrition and Food Research 57, 802-823 (2013).
1674	301.	Sabree, Z. L. et al. Genome shrinkage and loss of nutrient-providing potential in
1675		the obligate symbiont of the primitive termite Mastotermes darwiniensis. Applied
1676		and Environmental Microbiology 78, 204–210 (2012).
1677	302.	Sadof, C. S. & Neal, J. J. Use of Host Plant Resources by the Euonymus Scale,
1678		Unaspis euonymi (Homoptera : Diaspididae). Annals of the Entomological
1679		Society of America 614–620 (1993).
1680	303.	Salem, H., Kreutzer, E., Sudakaran, S. & Kaltenpoth, M. Actinobacteria as
1681		essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae).

Environmental Microbiology **15**, 1956–1968 (2013).

1683	304.	Salem, H. et al. Drastic Genome Reduction in an Herbivore's Pectinolytic
1684		Symbiont. Cell 171, 1520-+ (2017).
1685	305.	Salvi, J. & Katewa, S. S. Chemical Composition and Nutritive value of sap of the
1686		Phoenix silvestris Roxb. Electronical Journal of Environment, Agricultural and
1687		Food Chemestry 11, 6672–6685 (2012).
1688	306.	Santos-Garcia, D. The All-Rounder Sodalis: A New Bacteriome-Associated
1689		Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera:
1690		Henestarinae) and a Critical Examination of Its Evolution. Genome Biology and
1691		<i>Evolution</i> 9 , 2893–2910 (2017).
1692	307.	Sanz, M. L., Gonzalez, M., de Lorenzo, C., Sanz, J. & Martinez-Castro, I.
1693		Carbohydrate composition and physico chemical properties of artisanal honeys
1694		from Madrid (Spain): Occurrence of Echium sp honey. Journal of the Science of
1695		Food and Agriculture 84, 1577–1584 (2004).
1696	308.	Sariyildiz, T. & Anderson, J. M. Variation in the chemical composition of green
1697		leaves and leaf litters from three deciduous tree species growing on different soil
1698		types. Forest Ecology and Management 210, 303–319 (2005).
	200	Constitution K of al Constitution of the formation of the formation of the formation of

1700 human lice. *Applied and Environmental Microbiology* **72**, 7349–7352 (2006).

1701	310.	Sauer, C., Stackebrandt, E., Gadau, J., Holldobler, B. & Gross, R. Systematic
1702		relationships and cospeciation of bacterial endosymbionts and their carpenter ant
1703		host species: Proposal of the new taxon Candidatus Blochmannia gen. nov.
1704		International Journal of Systematic and Evolutionary Microbiology 50, 1877–
1705		1886 (2000).
1706	311.	Saxena, A. K. Further observations on the freely circulating hemocytes of Liperus
1707		lawrensis tropicalis Peters (Phthiraptera, Ischnocera). Current Science 50, 551-
1708		551 (1981).
1709	312.	Saxena, A. K. & Agarwal, G. P. Mycetocytes in Aegypoecus perspicuus
1710		(Phthiraptera). Current Science 54, 763–764 (1985).
1711	313.	Schaefer, C. W. & Chopra, N. P. Cladistic Analysis of the Rhopalidae, with a List
1712		of Food Plants. Annals of the Entomological Society of America 75, 224–233
1713		(1982).
1714	314.	Materials and methods are available as supplementary materials.
1715	315.	Şen, A., Miranda, I., Santos, S., Graça, J. & Pereira, H. The chemical composition
1716		of cork and phloem in the rhytidome of Quercus cerris bark. Industrial Crops and
1717		<i>Products</i> 31 , 417–422 (2010).
1718	316.	Shelomi, M., Lo, W. S., Kimsey, L. S. & Kuo, C. H. Analysis of the gut
1719		microbiota of walking sticks (Phasmatodea). BMC Research Notes 6, (2013).

1720	317.	Shibata, K. et al. Values of water-soluble vitamins in blood and urine of Japanese
1721		young men and women consuming a semi-purified diet based on the Japanese
1722		Dietary Reference Intakes. Journal of nutritional science and vitaminology 51,
1723		319–28 (2005).
1724	318.	Shils, M. E., Baker, H. & Frank, O. Blood Vitamin Levels of Long-Term Adult
1725		Home Total Parenteral Nutrition Patients: The Efficacy of the AMA-FDA
1726		Parenteral Multivitamin Formulation. Journal of Parenteral and Enteral Nutrition
1727		9 , 179–188 (1985).
1728	319.	Singh, S. K., Arya, S., Singh, S. K. & Khan, V. Feeding and reproductive
1729		behaviour of pigeon slender louse, Columbicola. Journal of applied and natural
1730		science 1, 126–133 (2010).
1731	320.	Sirimanne, S. R., Patterson, D. G., Ma, L. & Justice, J. B. Application of cloud-
1732		point extraction-reversed-phase high-performance liquid chromatography: A
1733		preliminary study of the extraction and quantification of vitamins A and E in
1734		human serum and whole blood. Journal of Chromatography B: Biomedical
1735		Applications 716, 129–137 (1998).
1736	321.	Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. & Ghanim, M. Co-infection
1737		and localization of secondary symbionts in two whitefly species. BMC

Microbiology **10**, (2010).

1739	322.	Slater, J. A. A Contribution to the Biology of the Subfamily Cyminae
1740		(Heteroptera: lygaeidae). Annals of the Entomological Society of America 45,
1741		315–326 (1952).
1742	323.	Slater, J. A. Monocots and Chinch Bugs: A Study of Host Plant Relationships in
1743		the Lygaeid Subfamily Blissinae (Hemiptera: lygaeidae). Biotropica 8, 143-165
1744		(1976).
1745	324.	Somerville, D. C. Nutritional Value of Bee Collected Pollens. Rural Industries
1746		Research and Development Corporation 1–166 (2001).
1747	325.	Souza, de N. R. Host plant associations of two cochineal insect species,
1748		Dactylopius ceylonicus and D. Opuntiae (Dactylopiidae: Hemiptera), on the
1749		invasive cactus species Opuntia monacantha, O. Ficus-indica and a possible
1750		hybrid cactus, in South Africa. (The University of Cape Town, 2014).
1751	326.	Stammer, HJ. Studien an symbiosen zwischen käfern und mikroorganismen I.
1752		Die bymbiose der Donaciien (Coleopt. Chrysomel.). Zeitschrift für Morphologie
1753		und Ökologie der Tiere 29 , 585–608 (1935).
1754	327.	Stammer, H. J. Studien an symbiosen zwischen kafern und mikrooiganismen. II.
1755		Die syivibiose de Bromius obscuius L. Und der Cassidaarten (Coleopt.

Chrysomel.). Aus dem Zoologischen Institut der Universitat Breslau (1936). 1756

1757	328.	Stock, A. M. W. & Lattin, J. D. Biology of Intertidal Saldula palustris (Douglas)
1758		on the Oregon Coast (Heteroptera: saldidae). Journal of the Kansas
1759		Entomological Society 49 , 313–326 (1976).
1760	329.	Sudakaran, S., Retz, F., Kikuchi, Y., Kost, C. & Kaltenpoth, M. Evolutionary
1761		transition in symbiotic syndromes enabled diversification of phytophagous insects
1762		on an imbalanced diet. ISME Journal 9, 2587–2604 (2015).
1763	330.	Sudan, V. A rare documentation of Haematomyzus elephantis lice from elephants
1764		of Mathura. Journal of Parasitic Diseases 39 , 793–794 (2015).
1765	331.	Sutton, M. F. On the food, feeding mechanism and alimentary canal of Corixidae
1766		(Hemiptera, Heteroptera)*. Proceedings of the Zoological Society of London 121,
1767		465–499 (1951).
1768	332.	Sweet, M. H. The Seed Bugs: A Contribution to the Feeding Habits of the
1769		Lygaeidae (Hemiptera: heteroptera). Annals of the Entomological Society of
1770		<i>America</i> 53 , 317–321 (1960).
1771	333.	Szabo, G. et al. Convergent patterns in the evolution of mealybug symbioses
1772		involving different intrabacterial symbionts. ISME Journal 11, 715–726 (2017).
1773	334.	Szklarzewicz, T., Jankowska, W., Wieczorek, K. & Wgierek, P. Structure of the
1774		ovaries of the primitive aphids Phylloxera coccinea and Phylloxera glabra
1775		(Hemiptera, Aphidinea: phylloxeridae). Acta Zoologica 90, 123–131 (2009).

1776	335.	Tada, A. et al. Obligate association with gut bacterial symbiont in Japanese
1777		populations of the southern green stinkbug Nezara viridula (Heteroptera:
1778		pentatomidae). Applied Entomology and Zoology 46, 483-488 (2011).
1779	336.	Taha, E. K. A. Chemical composition and amounts of mineral elements in
1780		honeybee-collected pollen in relation to botanical origin. Journal of Apicultural
1781		<i>Science</i> 59 , 75–81 (2015).
1782	337.	Teixeira, L., Ferreira, A. & Ashburner, M. The Bacterial Symbiont Wolbachia
1783		Induces Resistance to RNA Viral Infections in Drosophila melanogaster. Plos
1784		<i>Biology</i> 6 , 2753–2763 (2008).
1785	338.	Thao, M. L. L. et al. Cospeciation of psyllids and their primary prokaryotic
1786		endosymbionts. Applied and Environmental Microbiology 66, 2898–2905 (2000).
1787	339.	Thao, M. L. L., Gullan, P. J. & Baumann, P. Secondary (y-Proteobacteria)
1788		endosymbionts infect the primary (β -Proteobacteria) endosymbionts of
1789		mealybugs multiple times and coevolve with their hosts. Applied and
1790		Environmental Microbiology 68, 3190–3197 (2002).
1791	340.	Thao, M. L. L. L. & Baumann, P. Evolutionary relationships of primary
1792		prokaryotic endosymbionts of whiteflies and their hosts. Applied and
1793		Environmental Microbiology 70, 3401–3406 (2004).

1794	341.	Theis, R. C. The Protein Content of the whole Blood and Plasma in Cancer. The
1795		Journal of Cancer Research 6, 127–130 (1921).
1796	342.	Thompson, V. Associative nitrogen fixation, C4 photosynthesis, and the evolution
1797		of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane
1798		and forage grasses. Bulletin of Entomological Research 94, 189–200 (2004).
1799	343.	Tian, G., Kang, B. T. & Brussaard, L. Biological effects of plant residues with
1800		contrasting chemical compositions under humid tropical conditions-
1801		Decomposition and nutrient release. Soil Biology and Biochemistry 24, 1051-
1802		1060 (1992).
1803	344.	Tillman, P. G. & Mullinix, B. G. Effect of prey species on plant feeding behavior
1804		by the Big-eyed Bug, Geocoris punctipes (Say) (Heteroptera: Geocoridae), on
1805		Cotton. Environmental Entomology 32, 1399–1403 (2003).
1806	345.	Toenshoff, E. R., Gruber, D. & Horn, M. Co-evolution and symbiont replacement
1807		shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial
1808		symbionts. Environmental Microbiology 14, 1284–1295 (2012).
1809	346.	Toenshoff, E. R., Szabo, G., Gruber, D. & Horn, M. The Pine Bark Adelgid,
1810		Pineus strobi, Contains Two Novel Bacteriocyte-Associated
1811		Gammaproteobacterial Symbionts. Applied and Environmental Microbiology 80,
1812		878–885 (2014).

1813	347.	Toenshoff, E. R. et al. Bacteriocyte-associated gammaproteobacterial symbionts
1814		of the Adelges nordmannianae/piceae complex (Hemiptera: adelgidae). ISME
1815		<i>Journal</i> 6 , 384–396 (2012).
1816	348.	Toju, H. et al. "Candidatus Curculioniphilus buchneri," a Novel Clade of
1817		Bacterial Endocellular Symbionts from Weevils of the Genus Curculio. Applied
1818		and Environmental Microbiology 76, 275–282 (2010).
1819	349.	Toju, H., Tanabe, A. S., Notsu, Y., Sota, T. & Fukatsu, T. Diversification of
1820		endosymbiosis: Replacements, co-speciation and promiscuity of bacteriocyte
1821		symbionts in weevils. ISME Journal 7, 1378–1390 (2013).
1822	350.	Trivedi, M. C., Sharma, S., Rawat, B. S. & Saxena, A. K. Haematophagous
1823		nature of an amblyceran phthirapteran, Menacanthus cornutus Schommer,
1824		infesting poultry bird Gallus domesticus L. In India. Journal of Applied
1825		Entomology 110, 107–111 (1990).
1826	351.	Tsuchida, T., Koga, R., Shibao, H., Matsumoto, T. & Fukatsu, T. Diversity and
1827		geographic distribution of secondary endosymbiotic bacteria in natural
1828		populations of the pea aphid, Acyrthosiphon pisum. Molecular Ecology 11, 2123-
1829		2135 (2002).
1830	352.	Tsuchida, T., Koga, R., Fujiwara, A. & Fukatsu, T. Phenotypic Effect of
1831		"Candidatus Rickettsiella viridis," a Facultative Symbiont of the Pea Aphid

1832	(Acyrthosiphon pisum), and Its Interaction with a Coexisting Symbiont. Applied
1833	and Environmental Microbiology 80, 525–533 (2014).

- 1834 353. Urban, J. M. & Cryan, J. R. Two ancient bacterial endosymbionts have coevolved
 1835 with the planthoppers (Insecta: Hemiptera: fulgoroidea). *BMC Evolutionary*1836 *Biology* 12, 1–19 (2012).
- 1837 354. van Helden, M., Tjallingh, W. F. & van Beek, T. A. Phloem sap collection from
 1838 lettuce (Lactuca sativa L.): Chemical comparison among collection methods.

1839 *Journal of Chemical Ecology* **20**, 3191–3206 (1994).

- 1840 355. Van Huis, A. et al. Nutritional values of insects for human consumption. (2013).
- 1841 356. Vasconcelos, E. J. R. *et al.* Assessing Cat Flea Microbiomes in Northern and
 1842 Southern California by 16S rRNA Next-Generation Sequencing. *Vector-Borne*
- 1843 *and Zoonotic Diseases* **18**, 491–499 (2018).
- 1844 357. Vea, I. M. & Grimaldi, D. A. Putting scales into evolutionary time: The
- 1845 divergence of major scale insect lineages (Hemiptera) predates the radiation of
 1846 modern angiosperm hosts. *Scientific Reports* 6, (2016).
- 1847 358. von Dohlen, C. D. *et al.* Diversity of proteobacterial endosymbionts in hemlock
- 1848 woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and
- 1849 introduced range. *Environmental Microbiology* **15**, 2043–2062 (2013).

1850	359.	Waldkircher, G., Webb, M. D. & Maschwitz, U. Description of a new shieldbug
1851		(Heteroptera: Plataspidae) and its close association with a species of ant
1852		(Hymenoptera: Formicidae) in Southeast Asia. Tijdschrift voor Entomologie 147,
1853		21–28 (2004).
1854	360.	Weiss, B. & Kaltenpoth, M. Bacteriome-Localized Intracellular Symbionts in
1855		Pollen-Feeding Beetles of the Genus Dasytes (Coleoptera, Dasytidae). Frontiers
1856		<i>in Microbiology</i> 7 , 1–10 (2016).
1857	361.	Williams, D. Aquatic Insects. vols Aquatic Conservation: Marine and Freshwater
1858		Ecosystems (C. A. B. International, 1992).
1859	362.	Wilson, A. C. C. & Duncan, R. P. Signatures of host/symbiont genome
1860		coevolution in insect nutritional endosymbioses. Proceedings of the National
1861		Academy of Sciences of the United States of America 112, 10255–10261 (2015).
1862	363.	Winnick, C. G., Holwell, G. I. & Herberstein, M. E. Internal reproductive
1863		anatomy of the praying mantid Ciulfina klassi (Mantodea: liturgusidae).
1864		Arthropod Structure and Development 38 , 60–69 (2009).
1865	364.	Woodard, H. Q. & White, D. R. THE COMPOSITION OF BODY-TISSUES.
1866		British Journal of Radiology 59, 1209–1219 (1986).
1867	365.	Zhou, W. W. et al. Identification and expression profiles of nine glutathione S-
1868		transferase genes from the important rice phloem sap-sucker and virus vector

1869	Laodelphax striatellus (Fallén) (Hemiptera: delphacidae). Pest Management
1870	Science 68, 1296–1305 (2012).

- 1871 366. Ziegler, H. & Ziegler, I. Die wasserlöslichen Vitamine in den Siebröhrensäften
 1872 einiger Bäume. *Flora oder Allgemeine Botanische Zeitung* 152, 257–278 (1962).
- 1873 367. Zimmerman, M. H. *The Formation of Wood in Forest Trees*. (Academic Press, 1874 1964).
- 1875 368. Voedingswaarde tabel.nl. https://www.voedingswaardetabel.nl/

1877 Acknowledgments

- 1878 **Funding**: We are very grateful to funding from the Knut and Alice Wallenberg
- 1879 Foundation (Wallenberg Academy fellowship 2018.0138 to CKC), the Swedish Research
- 1880 Council (grant number 2017-03880 to CKC), the European Research Council (grant
- numbers 335542 to ETK and 834164 to SAW), the Ammodo Foundation (funding to
- 1882 ETK), and Natural Environmental Research Council (grant number NE/M018016/1 to
- 1883 LH).
- 1884 **Author contributions:** Conceptualization CKC, AVP, JE, ETK, SAW, LMH.
- 1885 Methodology: CKC, AVP, JE, MK, RJ, ETK, SAW, LMH. Investigation: CKC, AVP, JE, MK,
- 1886 RJ, ETK, SAW, LMH. Visualization: CKC, AVP, ETK, SAW, LMH. Funding acquisition:
- 1887 CKC, JE, ETK, SAW, LMH. Project administration: JE, ETK, LMH. Supervision: JE, ETK,

1888	LMH. Writing – original draft: CKC, ETK, SAW, LMH. Writing – review & editing: CKC,
1889	AVP, JE, MK, RJ, ETK, SAW, LMH.
1890	
1891	Corresponding authors
1892	Correspondence to <u>charlie.cornwallis@biol.lu.se</u> or <u>l.henry@qmul.ac.uk</u> .
1893	
1894	Ethics declarations
1895	None
1896	
1897	Competing interests
1898	The authors have no competing interests.
1899	
1900	Supplementary Information
1901	Supplementary Tables 1 to 26 are provided in xlsx and html format in the files
1902	"SupplementaryTables.html" and "SupplementaryTables.xlsx". Full citations of

1903 references in supplementary tables are given in the method references⁴⁸⁻³⁶⁷.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTables.xlsx
- InsectExtendedData.docx