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For over 300 million years, insects have relied on symbiotic microbes for nutrition 13 

and defence1,2. However, it is unclear whether specific ecological conditions have 14 

repeatedly favoured the evolution of symbioses, and how this has influenced insect 15 

diversification1,3,4. Using data on 1844 microbe-insect symbioses across 400 insect 16 

families, we found that symbionts have allowed insects to radiate into a range of 17 

feeding niches deficient in B vitamins, including phloem, blood and wood. In some 18 

cases, such as herbivorous insects, the shift to a new niche has resulted in 19 

spectacular species proliferation. In other niches, such as strict blood feeding, 20 

diversification has been severely constrained. Symbioses therefore appear to solve 21 

universal nutrient deficiencies for insects, but the consequences for insect 22 

diversification depend on the feeding niche invaded.  23 



 

 

 
 

 

3 

Main	text	24 

Across the tree of life, microbial symbionts have enabled organisms to harness new 25 

forms of energy, access unobtainable nutrients, and outsource critical functions such as 26 

defence1,2. So valuable are symbiotic partnerships that they have repeatedly led to 27 

organisms becoming obligately dependent on each other for survival5. Such 28 

interdependence between hosts and symbionts has led to the evolution of new levels of 29 

organismal complexity that have ultimately shaped the diversity of life on earth3,6. 30 

 31 

The essential services provided by symbionts have enabled hosts to expand into 32 

previously uninhabitable environments1,7. For example, sulfur-oxidizing bacteria enable 33 

giant marine tubeworms to live in deep-sea vents, root-associated fungi helped plants 34 

colonize land, and nutrient-supplementing symbionts have allowed insects to live solely 35 

on the imbalanced diets of plant sap and vertebrate blood2,8,9. However, it is unclear 36 

whether there are key ecological factors that allow us to make generalisations about how 37 

and why obligate symbioses evolve. 38 

 39 

Insects are an excellent system to study the evolution of obligate symbiosis, as microbes 40 

have been recruited by a diverse set of insect families for a range of functions, including 41 

defence and nutrition10. Obligate symbioses, defined here as hosts not being able to 42 

survive without symbionts, are strongly associated with insects feeding on specialized 43 

resources, such as plant-sap, blood (hematophagy) and wood (xylophagy)2. It is therefore 44 
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widely accepted that symbiotic partnerships have opened up new ecological niches by 45 

solving a variety of nutrient limitations that have contributed to the incredible 46 

diversification of insects7. 47 

 48 

Previous work, however, has consistently focused on single groups of insects at a time. 49 

As a result, the extent that we can generalize about the ecological causes and 50 

consequences of obligate symbiosis across different groups of insects and microbes is 51 

unknown. For example, have obligate symbioses solved the same or different nutritional 52 

deficiencies across divergent feeding niches, and how has this influenced the 53 

diversification of different insect lineages? 54 

 55 

We address these questions by examining macro-evolutionary patterns of symbiosis 56 

across 1844 microbe-insect combinations from 400 insect families. Data were collated 57 

across bacteria, fungi and protist symbionts with nutritional and defensive functions 58 

(Supplementary Tables 1-4). First, we estimated how often insect lineages within 59 

different feeding niches have evolved obligate symbiosis. Obligate dependence was 60 

determined by the presence of morphological structures exclusively associated with 61 

obligate symbiosis (e.g. bacteriocytes10). Where information on symbiont housing organs 62 

was lacking, data on the impacts of symbiont removal and patterns of host-symbiont co-63 

speciation were used to determine obligate dependence (see Methods). Second, we 64 

examined the composition of insect diets to determine whether specific nutrient 65 

deficiencies have consistently led to the evolution of obligate symbiosis across different 66 
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feeding niches. We differentiate between insect families that specialize on single plant-67 

based resources (phloem, xylem, or wood) from families that exploit various plant parts 68 

(phytophagy, referred to here as herbivores), as there were large differences in the 69 

nutrients between these diets (Supplementary Tables 1 & 4). Third, we tested if the 70 

acquisition of obligate symbionts has increased or decreased host diversification after 71 

radiating into different feeding niches. We circumvent the problem of poorly resolved 72 

species level phylogenies by reconstructing the evolutionary history of obligate 73 

symbioses at the family level. 74 

 75 

Evolutionary	origins	of	obligate	symbiosis	76 

We found that obligate symbiosis has evolved in at least 13 independent insect lineages 77 

(Fig. 1. Supplementary Table 5). These origins were estimated on the time-calibrated 78 

phylogeny11 to date back as far as 336 million years, allowing us to examine the long-79 

term evolutionary consequences of obligate symbiosis for niche specialization and 80 

diversification. 81 

 82 

Reconstructing the ancestral feeding niches of insect families showed that all obligate 83 

symbioses evolved from omnivorous (origins = 75%), herbivorous (origins = 8%) and 84 

predatory ancestors (origins = 17%. Fig. 1. Supplementary Table 5). Following the 85 

acquisition of obligate symbionts, 59% of lineages switched to a single food source 86 

(phloem = 40%, blood = 12%, xylem = 6% and wood = 1%. Fig.1. Supplementary Table 87 

5). This pattern of food utilisation explains the current distribution of obligate symbiosis 88 
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remarkably well, where over 90% of insect species feeding on blood, phloem, xylem and 89 

wood have obligate symbionts (Fig. 1. Supplementary Tables 1, 2 and 6). Conversely, 90 

there are no known cases of obligate symbioses in insect families that are predominantly 91 

predators or fungivores (Fig. 1. Supplementary Tables 1, 2 and 6). 92 

 93 

In contrast to nutritional symbionts, we found that only four insect families had 94 

symbionts with defensive functions. This is likely influenced by sampling effort, as 95 

defensive symbionts have only been discovered relatively recently in insects12. However, 96 

out of the 11 microbial species shown to provide insects with protective services, nearly 97 

all maintain facultative relationships with their hosts. There is only one exception in our 98 

database, the Asian citrus psyllid, Diaphorina citri, that has evolved obligate dependence 99 

on a defensive symbiont, which is housed in bacteriocytes alongside a putative nutrient 100 

provisioning symbiont13. While more work is clearly needed, these data support the 101 

hypothesis that selection for protection against natural enemies is too inconsistent across 102 

generations to favour the evolution of obligate dependence5,14. 103 

 104 

Nutrient	deficiencies	and	obligate	symbiosis	105 

Our results show that the evolution of obligate symbiosis in insects is associated with 106 

transitions to specialized feeding niches (Fig. 1). However, it is not clear if there are 107 

common nutrient deficiencies that explain the evolution of obligate symbiosis across 108 

these diverse niches. To test this idea, we extracted the nutrient compositions for the 19 109 
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diet types of insects in our dataset, estimating levels of carbohydrates, fats, proteins and 110 

vitamins A, B, C, E and K. 111 

 112 

We found that only one dietary component was consistently associated with the evolution 113 

of obligate symbiosis across all feeding niches: low levels of B vitamins (Fig. 2. 114 

Phylogenetic correlation (phylo r), Credible Interval (CI) = -0.39 (-0.59, -0.21), pMCMC 115 

= 0.001. Supplementary Table 7). This pattern held across hosts with very different 116 

feeding niches, that had highly variable compositions of carbohydrates, proteins, fats, 117 

and vitamins in their diets (Extended Data Fig. 1. Supplementary Table 7). Other 118 

nutritional deficiencies were associated with obligate symbiosis, but these were restricted 119 

to specific feeding niches (Supplementary Table 8. Extended Data Fig. 1). For example, 120 

insects feeding on phloem and wood had significantly less protein in their diets compared 121 

to background levels across all other niches (Phloem (CI) = -0.76 (-1.03, -0.37), pMCMC 122 

= 0.001. Wood (CI) = -0.74 (-1.36, -0.28), pMCMC = 0.002. Supplementary Table 8). 123 

 124 

Examining different types of B vitamins further showed that the evolution of obligate 125 

symbiosis was significantly associated with low levels of B5 and B9 vitamins, and 126 

weakly related to B6 vitamins (Fig. 2. Supplementary Table 9). Vitamins B1, B2 and B3 127 

were highly correlated with B5 (Pearson’s correlation coefficients r > 0.90) and B6 is 128 

correlated with B9 (r=0.77), indicating that sets of B-vitamins are often concurrently 129 

absent from insect diets (Extended Data Fig. 2). Data on vitamins B7 and B12 had >30% 130 

missing data and so were not analysed. No other macro- or micro-nutrients were 131 
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significantly correlated with obligate symbiosis across all insect families (Fig. 2. 132 

Supplementary Table 7). 133 

 134 

Our results are consistent with detailed studies that have demonstrated the fitness 135 

consequences of providing B vitamins to specific insect species. For example, the fitness 136 

of tsetse flies depends on B9 and B6 vitamins provided by Wigglesworthia bacteria15,16, 137 

and Buchnera supplements aphids with B5 and B2 vitamins, with B5 having a 138 

particularly strong effect on host survival17. Dietary studies have also confirmed that 139 

mutualistic Wolbachia provide essential B-vitamins for Cimex bed bugs18; and metabolic 140 

homeostasis is restored in symbiont-free Dysdercus cotton stainers when B-vitamins are 141 

supplemented, or hosts are reinfected with their actinobacterial symbionts19. 142 

 143 

Evolutionary	transitions	to	nutrient	deficient	diets	144 

Our results suggest that B vitamin deficiency is of widespread importance for the 145 

evolution of obligate symbiosis in insects. There are, however, two competing 146 

explanations for why such transitions occur. One possibility is that insects feeding on 147 

diets low in vitamin B recruited symbionts to supply B vitamins. The alternative is that 148 

insects first acquired obligate symbionts that could synthesise B vitamins, possibly for 149 

some other benefit, which then enabled them to invade ecological niches where B 150 

vitamins were scarce. The question is therefore whether the evolution of obligate 151 

symbioses were triggered by low B vitamins in diets or whether they facilitated 152 

specialisation on these diets. 153 
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We tested these competing hypotheses by estimating the amount of B5 and B9 vitamins 154 

in ancestral diets prior to, and following, transitions to obligate symbiosis. We found 155 

little evidence that levels of B5 and B9 vitamins were reduced in the diets of insects 156 

before they acquired obligate symbionts (Fig. 3. Supplementary Tables 10-11). Instead, 157 

we found that hosts that recruited obligate symbionts subsequently evolved to specialise 158 

on diets with low levels of B5 and B9 vitamins (Fig. 3. Supplementary Tables 10-11). 159 

Once obligate symbioses evolved, shifts to diets deficient in B vitamins were much more 160 

frequent, particularly for B5, where transition rates to low B vitamins were 16 times 161 

higher than for lineages without obligate symbionts (Supplementary Table 11). 162 

 163 

The key role of B vitamins in driving obligate symbioses was further supported by the 164 

loss of obligate symbionts when insects switched to diets with elevated levels of B 165 

vitamins (Figs. 3. Supplementary Tables 10-11). Insect lineages with above average 166 

levels of B5 and B9 vitamins were more likely to lose their obligate symbionts 167 

(Differences in transition rates (q): B5 = -2.05 (-3.35 , -0.47), pMCMC=0.002. B9 = -168 

2.21 (-3.76 , -0.89), pMCMC=0. Supplementary Table 11). Our results match with 169 

observations from specific taxa, where obligate symbiont losses have been associated 170 

with dietary changes in their insect hosts. In the mealybug genus, Hippeococcus, 171 

symbiont losses are thought to be associated with nutrient provisioning by Dolichoderus 172 

ants, and Typhlocybides plant hoppers lost their ancestrally obligate symbionts when 173 

switching from plant-sap to more nutrient rich parenchyma.20 174 

	175 
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Symbiont	specialisation	in	nutrient	provisioning	176 

Given the key role of B vitamins in both the origin and breakdown of obligate symbioses, 177 

we examined whether specific lineages of symbiotic bacteria specialise in providing B 178 

vitamins to hosts. Have hosts relied on a restricted set of symbiotic partners, or have a 179 

variety of symbionts converged to provide B vitamins? To address this question, we 180 

created a phylogeny for symbionts to quantify the amount of variation in dietary B 181 

vitamins explained by symbiont ancestry and their coevolutionary relationships with 182 

hosts. 183 

 184 

We found that hosts evolved dependence on a broad range of microbes (Supplementary 185 

Tables 12-13). Less than 1% of variation in B5 and B9 vitamins in host diets was 186 

explained by symbiont phylogeny and the coevolutionary history between symbionts and 187 

hosts (symbiont phylogeny % variance: B5 (CI) = 0.05 (0.01, 0.09). B9 (CI) = 0.01 (0, 188 

0.02). Coevolutionary interaction % variance: B5 (CI) = 0.04 (0.01, 0.07). B9 (CI) = 0.01 189 

(0, 0.02). Supplementary Tables 12-13). Instead, divergent symbiotic lineages appear to 190 

have become convergently associated with insects feeding on low vitamin B diets 191 

(Extended Data Fig. 3). Following the establishment of obligate symbioses, hosts and 192 

symbionts tend to coevolve, as related insect families were significantly more likely to be 193 

partnered with phylogenetically similar symbionts (coevolutionary interaction % 194 

variance (CI) = 25.55 (0, 77). Parafit: P = 0.05. Supplementary Tables 14-15). These 195 

results match with research showing that diverse symbiotic bacteria have retained the 196 
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genes for synthesising B vitamins21, and that insects whose bacteria lose the capacity to 197 

provide B vitamins recruit new symbiont lineages to compensate for the loss22. 198 

	199 

Obligate	symbiosis	and	insect	diversification	200 

Finally, we examined whether obligate symbioses have influenced insect diversification 201 

rates. The current paradigm, based on observations from specific lineages, such as sap-202 

feeding Hemipterans, is that the acquisition of symbionts opens up new niches and 203 

increases host diversification23,24. Host-symbiont coevolution can also generate 204 

incompatibilities between populations that may increase speciation rates4. 205 

 206 

Dependence on symbionts may, however, ‘trap’ hosts in specific niches, leading to the 207 

opposite prediction that symbiosis reduces diversification4. For example, hosts can be 208 

restricted to feeding on specific resources because of symbiont-assisted specialization25, 209 

or limited by the sensitivity of their obligate symbionts to environmental conditions, such 210 

as temperature26,27. Mutation accumulation can also degrade symbiont functioning, 211 

resulting in hosts being stranded with maladapted symbionts that may increase extinction 212 

risk28. These competing hypotheses have not been systematically tested, generating 213 

debate over the role of symbionts in insect diversification. 214 

 215 

We found that obligate symbionts were associated with extreme highs and lows of 216 

diversification (Fig. 4. Supplementary Tables 16-17). At the extreme high, herbivorous 217 

insect families with obligate symbionts had 10 times as many species compared to the 218 
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average across families (Fig. 4. Herbivores with obligate symbionts versus background 219 

(CI) = 2.74 (1.11, 4.13), pMCMC = 0.004). At the other extreme, extraordinarily low 220 

diversification was associated with insect families feeding on blood, which had 9 times 221 

fewer species than the average (Fig. 4. Blood feeders with obligate symbionts versus 222 

background (CI) = -1.72 (-3.63, -0.17), pMCMC = 0.014). This resulted in a 92-fold 223 

difference in the number of species in herbivorous insect families with obligate 224 

symbionts versus those in blood-feeding niches. These estimates of diversification were 225 

after accounting for differences between holo- and hemi-metabolism and insect 226 

phylogenetic history, which are known to affect the number of species in families (see 227 

Methods for analyses examining robustness to extinction rate assumptions). 228 

	229 

Diversification	within	feeding	niches	is	promoted	by	obligate	symbiosis	230 

Across insects, patterns of diversification appear to be dominated by feeding niche 231 

(Supplementary Table 17). However, within particular feeding niches, symbionts may 232 

still systematically promote diversification if they allow species within those niches to 233 

exploit different resources. For example, in insect families feeding on more varied 234 

resources, such as generalist herbivores and omnivores, symbionts may enable resource 235 

partitioning between species, fueling the speciation process. If true, then herbivorous and 236 

omnivorous families with obligate symbionts should have higher diversification rates 237 

than families without them. 238 

 239 
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Within feeding niches, we found that herbivorous insect families with obligate symbionts 240 

had 19 times as many species as families without symbionts (Fig. 4. Families with versus 241 

without obligate symbionts (CI) = 3.32 (1.54, 4.95), pMCMC = 0.001. Supplementary 242 

Table 17). Omnivorous and wood eating families of insects with obligate symbionts also 243 

had two to three times as many species as families that lacked symbionts, although these 244 

differences were not statistically significant (Fig. 4. Omnivorous: (CI) = 0.29 (-0.97, 245 

1.48), pMCMC = 0.668. Wood: (CI) = 1.26 (-2.59, 3.94), pMCMC = 0.68. 246 

Supplementary Table 17). These results are similar to findings from specific taxa. For 247 

example, symbionts allowed Chrysomelide leaf beetles, now one of the most diverse 248 

families of insects, to feed and radiate exclusively on plants29,30. Similarly, the success of 249 

certain highly specious ant lineages has been facilitated by nutrient provisioning 250 

symbionts that have allowed them to thrive on primarily plant-derived diets31. 251 

 252 

We examined the sensitivity of our analyses to a number of alternative approaches. First, 253 

we tested how inserting families (n=23) that were not included in the published 254 

phylogeny11 influenced our results (Supplementary Table 20). Second, we examined the 255 

robustness of our results to including non-bacterial symbionts and including families that 256 

had multiple co-occurring obligate symbionts (Supplementary Tables 21-23). Third, we 257 

repeated our analyses using a second dataset restricted to only species where dependence 258 

on symbionts had been directly studied, rather than inferred from microscopy studies 259 

examining the presence of bacteriocytes within certain insect orders and superfamilies 260 
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(Supplementary Tables 24-26). The results remained qualitatively and quantitatively 261 

similar across all analyses. 262 

 263 

Summary	264 

Our results suggest that we can make relatively broad inferences about the causes and 265 

consequences of obligate symbioses in insects. After acquiring microbial partners, hosts 266 

are able to exploit food resources deficient in B vitamins. In some cases, such as 267 

herbivorous insects, the shift to this new niche has facilitated adaptive radiations, 268 

analogous to textbook examples such as Darwin’s finches. In other cases, such as strict 269 

blood feeding, the new niche has severely constrained diversification. The intricate 270 

relationships between hosts and their nutritional symbionts therefore appear key to 271 

shaping patterns of global biodiversity. 272 

 273 
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Figure	legends	352 

Figure	1:	The	evolutionary	origins	of	obligate	symbionts	and	their	association	353 

with	different	feeding	niches.	A)	The	phylogenetic	distribution	of	obligate	354 

symbionts	across	insect	families	and	their	feeding	niches.	Turquiose	tips	and	355 

branches	represent	obligate	symbiosis	and	different	coloured	dots	represent	356 

different	feeding	niches.	Ancestral	feeding	niches	and	obligate	symbiosis	states	357 

were	estimated	using	Stochastic	Character	Mapping	(SCM)	(Supplementary	Table	5.	358 

See	Extended	Data	Fig.	6	for	tree	with	tip	lables).	B)	The	number	of	times	obligate	359 

symbiosis	evolved	in	different	ancestral	feeding	niches	of	insects.	C)	Current	rates	360 

of	obligate	symbioses	in	relation	to	the	feeding	niches	of	insects.	The	average	361 

number	of	species	within	families	is	given	along	the	x	axis.	362 

Figure	2:	Nutrient	deficiencies	and	the	evolution	of	obligate	symbioses.	A)	363 

Macro-nutrients	were	not	consistently	associated	with	the	proportion	of	species	364 

within	families	that	had	obligate	symbionts.	B)	Insect	families	with	diets	deficient	in	365 

B5	and	B9	vitamins	had	significantly	more	species	with	obligate	symbionts	than	366 

families	feeding	on	diets	with	high	levels	of	B	vitamins	(B5	phylo	r	(CI)	=	-0.43	(-367 

0.56,	-0.22),	pMCMC	=	0.001.	B9	phylo	r	(CI)	=	-0.64	(-0.78,	-0.44),	pMCMC	=	0.001).	368 

Vitamin	B6	was	also	weakly	related	to	obligate	symbiosis	(B6	phylo	r	(CI)	=	-0.25	(-369 

0.42,	-0.02),	pMCMC	=	0.056).	Values	of	macro-	and	micro-nutrients	are	370 

standardized	amounts	per	gram	(see	Methods	for	details).	Vitamin	B	concentrations	371 
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were	log	transformed	and	mean	centered	(see	Methods	for	details).	The	size	of	372 

points	represents	the	mean	number	of	host	species	(log	transformed)	examined	for	373 

obligate	symbionts	per	family.	Lines	represent	logistic	regressions	with	95%	374 

confidence	intervals	plotted	for	illustrative	purposes.	375 

Figure	3:	Obligate	symbioses	enable	evolutionary	shifts	to	diets	deficient	in	B	376 

vitamins.	The	ancestors	of	lineages	that	evolved	obligate	symbioses	(Non	to	Ob)	377 

had	similar	levels	of	B5	(A)	and	B9	(B)	vitamins	in	their	diets	to	lineages	that	did	378 

not	evolve	obligate	symbioses	(Non	to	Non).	However,	after	acquiring	obligate	379 

symbionts	lineages	switched	to	diets	with	significantly	lower	levels	of	B	vitamins	380 

(Non	to	Ob	versus	Ob	to	Ob).	The	evolutionary	loss	of	obligate	symbiosis	was	also	381 

associated	with	increases	in	dietary	levels	of	vitamin	B5	(Ob	to	Ob	versus	Ob	to	382 

Non).	Vitamin	B	concentrations	were	log	transformed	and	mean	centered	(see	383 

Methods	for	details).	Violin	density	curves	represent	the	posterior	distribution	of	384 

estimated	ancestral	levels	of	B5	and	B9	vitamins	(1000	samples)	estimated	using	a	385 

BPMM	(Supplementary	Table	10).	The	width	of	the	violin	corresponds	386 

approximately	to	the	most	likley	estimate	of	B	vitamins.	Significant	differences	387 

between	transitions	are	indicated	by	*	pMCMC	<0.05,	**	pMCMC	<0.01,	***	pMCMC	388 

<0.0001.	389 
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Figure	4:	Obligate	symbioses	and	the	evolutionary	potential	for	390 

diversification.	Diversification	was	measured	as	the	number	of	species	within	391 

families	controlling	for	family	age.	The	highest	and	lowest	number	of	species	per	392 

family	were	associated	with	feeding	niches	that	had	obligate	symbionts.	393 

Herbivorous	insect	families	with	symbionts	had	significantly	more	species	than	394 

those	without,	whereas	blood	feeding	insects,	which	exclusively	had	obligate	395 

symbionts,	had	the	lowest	number	of	species.	Significant	differences	versus	396 

background	numbers	of	species	per	family	are	indicated	by	*	pMCMC	<0.05,	**	397 

pMCMC	<0.01,	***	pMCMC	<0.0001	obtained	from	a	BPMM	(Supplementary	Table	398 

17).	 	399 
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Figures	400 
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Figure 2 405 
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Figure 3 408 
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Figure 4 411 
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Methods	416 

1.	Data	collection	417 

1.1	Insect	and	symbiont	data	418 

Literature searches 419 

We complied a database on insect-microbe symbioses by: (1) searching published 420 

literature using the following key words [order name] OR [family name] AND 421 

“symbio”* using the search engines Web of Science and Google scholar during 2015-422 

2017 and again in 2020, (2) searching several prominent reviews (e.g. Ries 193132, 423 

Schneider 193933, Müller 196234, Buchner 196520, Douglas 198935, Abe et. al. 200036, 424 

Bourtzis and Miller 200337, 200638 and 200939, Baumann 200540, Baumann et. al. 425 

201341), and (3) forward and backward searches from the resulting papers. A full list of 426 

the papers screened can be found in Supplementary Table 2. 427 

The insect families included in the literature search were those listed in Bouchard et. al. 428 

201142, Davis et. al. 201043, and Rainford et. al. 201411, and those included in published 429 

phylogenies investigating insect biodiversity: Hedges et al. 201544, Misof et al 201445, 430 

and Rainford et al 201411. For symbiont detection, we only considered studies using 431 

methods capable of capturing phylogenetically diverse bacteria species (e.g. deep-432 

coverage sequencing, or cloning, using ‘universal’ 16S rRNA primers), or microscopy 433 

studies investigating whole insects for the presence of symbionts. 434 
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Specific clades of insects are known to carry the same obligate symbionts due to strict 435 

vertical transmission (see Supplementary Table 2 ‘reference obligate criteria’). We 436 

therefore searched Genbank to recover all insect species that have been associated with 437 

specific vertically transmitted symbionts (identified taxonomically by symbiont genus 438 

name in most cases) in order to increase our coverage of host-symbiont associations 439 

(Supplementary Table 3). Search results were checked manually to ensure host species 440 

belonged to the insect clade known to harbour the symbiont (Supplementary Table 3). In 441 

families that have species both with and without obligate symbionts, we only considered 442 

species directly studied for obligate symbiosis. Note that vertically transmitted symbionts 443 

were only included in analyses of host evolution (section 4.1-4.3 & 4.5), not in analyses 444 

of host-symbiont coevolution (section 4.4). 445 

Data inclusion and exclusion 446 

The aim of our paper was to investigate the evolution of beneficial obligate symbioses. 447 

We therefore excluded studies: (1) on parasitic symbionts, such as those that manipulate 448 

host reproduction (e.g. Spiroplasma, Cardinium, Wolbachia) that have not evolved 449 

beneficial functions; (2) that failed to screen the entire insect (e.g. only performed insect 450 

gut analyses); and (3) on symbionts with presumed beneficial functions, but that lacked 451 

data needed for our obligate criteria (see below). Fungal and protist symbionts were 452 

included where data on host dependency was available. Analyses of host-symbiont 453 

coevolution were restricted to symbionts for which a phylogeny could be constructed 454 

(bacteria with 16S rRNA genetic data: see section 2 for details). 455 
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For each insect-microbe association we collected data on: the insect species; juvenile and 456 

adult insect diets; whether insects were holo- versus hemi-metabolous; the identity of 457 

symbionts (if known); symbiont domain; whether symbionts were intra- or extra-cellular 458 

(where known); whether symbionts were housed within specialized structures 459 

(e.g. bacteriocytes); and whether insects were obligately dependent on symbionts (see 460 

below for assessment criteria). 461 

Criteria for assessing obligate symbiosis 462 

Obligate dependence on endosymbionts would ideally be established from studies that 463 

have measured changes in insect fitness before and after the experimental removal of the 464 

microbes. However, such experiments are challenging and so these studies are relatively 465 

rare. We therefore defined obligate dependence of insects on symbionts using proxy 466 

measures that fulfilled one of the following criteria: 467 

1. Insects have a bacteriome (or mycetome) with bacteriocytes (specialized 468 

symbiont-housing cells) containing symbionts, as these specialised organs have 469 

been shown to only evolve in insects with obligate symbionts10. 470 

2. Insect-symbiont phylogenies are concordant and symbionts are universally 471 

present in reproductive females. 472 

3. Symbiont removal results in reductions in host fitness and symbionts are 473 

universally present in reproductive females. 474 
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Consequently, species that lack specialized symbiont organs, or where symbionts are not 475 

universally present in females, were classified as not having obligate symbionts. If 476 

symbionts were universally present, but cophylogenetic and/or host fitness data were 477 

unavailable the relationship was classified as unresolved. 478 

Data on individual species were used to estimate the proportion of species in each family 479 

that have evolved dependency on symbionts, which is summarized in Supplementary 480 

Table 1. Data on each insect species examined, their associated symbionts and the 481 

criteria to assess dependency are in Supplementary Table 2. 482 

1.2	Feeding	niche	classification	483 

The feeding niches of species were classified using information on their diets. Omnivores 484 

were defined as species that feed on both plant and animal matter, or those that 485 

scavenged on detritus material. Due to large differences in the nutrient contents of 486 

different plant tissues, insect species that specialize on phloem-, xylem- and wood-487 

feeding (xylophagy) were considered separately from species that exploit non-488 

vascular/non-woody plant tissues (e.g. leaves, flowers, fruits, seeds, and/or root tips), 489 

which we refer to as generalist herbivores (or phytophagous). 490 

Species feeding niches were subsequently used to classify each family into a feeding 491 

niche (Supplementary Table 1). Families were described as having omnivorous diets, if 492 

they contained species that were omnivores/detritivores, or if species fed in more than 493 

one of the following niches: fungivory, hermatophagy, carnivory and phytophagy or 494 



 

 

 
 

 

31 

phloem-feeding. Families were assigned to the feeding categories of hematophagy, 495 

phloem-feeding, xylem-feeding and predatory where the vast majority, if not all, known 496 

species in the family fed exclusively on those resources. Families assigned as 497 

xylophagous were those where the majority of species fed on wood as their primary food 498 

source. Families containing species that fed on multiple plant tissues were classified as 499 

generalist herbivores (or phytophagous).In cases where species-specific diets were not 500 

available, we based diets on family-level feeding habits published in books and reviews 501 

listed in Supplementary Table 2. 502 

1.3	Nutrient	data	503 

We assigned insect diets into 19 categories (Supplementary Table 2) based on published 504 

literature using the search terms [species name] and [adult diet] or [juvenile diet] in Web 505 

of Science and Google Scholar. Where possible we cross-validated diet assignments 506 

using multiple published studies (Supplementary Table 2). For each of the 19 diet 507 

categories we collected data on the total carbohydrate, protein, and fats, as well as the 508 

micronutrients vitamins A, B, C, D, E, K, choline and betaine based on as many sources 509 

of the same food type as possible (range of number of of different food sources = 1 to 28) 510 

collated from nutritional databases and scientific literature (Supplementary Table 4). 511 

Nutrient contents were from a range of food types, and are therefore approximations of 512 

insect diets. Where possible, micronutrients were broken down into their sub-513 

components, for example, individual B vitamins. There was insufficient data on vitamin 514 

D, choline and betaine for analyses (>40% of insect families missing data). 515 
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Nutrient profiles for families were estimated by taking an average for each nutrient based 516 

on the diets of species used to confirm the obligate criteria, or based on the family-level 517 

diets where species-specific diets were unavailable. To calculate nutrient values for each 518 

species, an average of adult and juvenile diets was taken, which were highly correlated 519 

(Extended Data Fig. 4). For omnivorous species, nutrients were calculated by averaging 520 

across all food sources. 521 

Standardisation of nutrient data The data on nutrients (carbohydrates, fats, proteins and 522 

vitamins) were reported as the amount per gram, but for some dietary items this was wet 523 

weight and others it was dry weight. Wet weights were much greater than dry weights 524 

and therefore we standardized values to make nutrient values comparable across dietary 525 

items. Values were standardized by dividing each macro-nutritional component 526 

(carbohydrate, fat, protein) by the relative weight of each dietary item. The relative 527 

weight of each dietary item (rw) was calculated as: 528 

rw	=	total	weight	of	dietary	item	/	maximum	total	weight	of	any	dietary	item	529 

As a result, the dietary item with the greatest total weight remained unchanged (rw = 1) 530 

whereas foods with lower weights were increased (rw < 1). To calculate the relative 531 

amounts of each vitamin in each food source the same approach was used, but instead of 532 

using total weight of all components we used the total weight of vitamins (See R script 533 

“DataConstruction.R” for details). 534 
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1.4	Diversification	rates	535 

In the absence of species level phylogenies, diversification is often modelled using two 536 

different approaches: diversification rates and raw values of species richness. We 537 

examined the influence of obligate symbiosis and feeding niches on diversification using 538 

both approaches. Data on the number of extant species in insect families (species 539 

richness) were taken from Rainford et. al. 201411. The ages of families were extracted 540 

from the Rainford phylogeny which was time calibrated using 86 fossils11. 541 

Net diversification rates were also estimated using methods outlined by Magallón and 542 

Sanderson46 assuming different rates of extinction using the function ‘bd.ms’ in the R 543 

package geiger47. Diversification rates with different extinction fractions were strongly 544 

correlated (Pearson’s correlation coefficient r > 0.99. Extended Data Fig. 5). Therefore, 545 

we only analysed diversification rates that were calculated assuming an intermediate 546 

extinction fraction (e = 0.5) (see Wiens et. al. 201548 for a similar approach). 547 

Diversification rates are an estimate of the rate of change in species numbers over time 548 

using clade age and species richness data, typically modelled as some form of birth-death 549 

process49. While such analyses try to more accurately capture speciation and extinction 550 

processes, they can produce misleading results when diversity is not constant or 551 

unbounded through evolutionary time50,51. This is known to be the case for insect 552 

diversification where there have been rapid bursts of speciation through time52. Our data 553 

also support this idea, as diversification rates were weakly correlated to species richness 554 

(r~0.16. Fig. 5). 555 
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As the aim of our paper was to examine how obligate symbiosis has influenced increases 556 

and decreases in diversification, irrespective of how fast or slow those species 557 

accumulated, we present analyses of species richness in the main text. Differences in the 558 

ages of insect families were accounted for in these analyses by including family age as an 559 

explanatory variable (see analysis section 4.5.2 below). The results of the analyses of 560 

diversification rates were quite different from those of species richness (see analysis 561 

section 4.5.3 and 4.5.4). Feeding niche and obligate symbiosis were not significantly 562 

related to diversification rate (Supplementary Tables 18-19). This highlights that in these 563 

widely divergent groups of insects feeding niches and obligate symbioses do not 564 

influence the rate of diversification across the evolutionary time scales examined here, 565 

but rather influence the number of species that have accumulated due to the long-term 566 

balance between speciation and extinction. 567 

2.	Insect	and	symbiont	phylogenies	568 

Insects 569 

We used the insect phylogeny generated by Rainford et al 201411. Families that lacked 570 

data on obligate symbioses were pruned from the tree. There were 23 families for which 571 

there was data on obligate symbioses but not included by Rainford. We therefore added 572 

families to the phylogeny at branches corresponding to published sister taxa 573 

(Supplementary Table 1) using the bind.tip function in the R package ‘phytools’53 (See R 574 

script ‘Rainford_adding_tips.R’ for details). Added families were not included for 575 

diversification analyses due to uncertainty of the age of these families. 576 
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Symbionts 577 

We estimated the phylogenetic relationships for bacterial symbionts for which genetic 578 

data was available. A ~1,500 bp region of the bacterial 16S rRNA gene downloaded from 579 

the SILVA RNA database was aligned with MUSCLE and edited in the alignment 580 

software Geneious 8.1.8 (https://www.geneious.com). We generated a maximum 581 

likelihood phylogeny for the bacterial lineages using the on-line PhyML server54, and the 582 

best fitting models of evolution were estimated using the Aikake Information Criterion 583 

(AIC). We bootstrapped the symbiont phylogeny 100 times and rooted to Thermus 584 

thermophilus, which is basal to all the bacterial lineages presented in this study. 585 

3.	General	statistical	methods	586 

Data were analysed using Bayesian Phylogenetic Mixed Models with single (BPMM) 587 

and multiple response variables (MR-BPMM), Stochastic Character Mapping (SCM), 588 

and transition rate models with Markov Chain Monte Carlo estimation. In this section we 589 

provide general details of modelling approaches and in section four we outline the 590 

specific analyses conducted. All analyses were conducted in R version 4.0.255, apart from 591 

transition rate models that were conducted in BayesTraits V356. Continuous response and 592 

explanatory variables were Z-transformed prior to analyses (mean = 0, standard deviation 593 

= 1). 594 
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3.1	Single	and	Multi-Response	Bayesian	Phylogenetic	Mixed	Models	(BPMM	&	595 

MR-BPMM)	596 

Model construction, parameter estimates and assessing significance 597 

To estimate phylogenetic signature, co-evolutionary relationships and ancestral trait 598 

values we used BPMMs and MR-BPMMs with Markov chain Monte Carlo (MCMC) 599 

estimation in the R package MCMCglmm57. The non-independence of data resulting 600 

from multiple species per family, phylogenetic relatedness between insect hosts and 601 

phylogenetic relatedness between symbiont lineages were modelled using random 602 

effects. For phylogenetic effects we fitted variance-co-variance matrix constructed from 603 

the insect and bacteria phylogenies. We estimated the amount of variation in response 604 

variables explained by random effects (RE), including phylogenetic effects, as the 605 

intraclass correlation coefficient (ICC) on the latent scale estimated as: 606 

Vi	/	VRE	+	Ve	607 

where Vi is the focal random effect, VRE is the sum of all random effects and Ve is the 608 

residual variance on the latent scale. For binomial error distributions Ve was calculated 609 

as the observed residual variance plus the variance associated with the link function 610 

(logit = pi^2/3. See 58,59 for discussion). 611 

Phylogenetic and residual correlations between traits were estimated using MR-BPMMs 612 

whereby unstructured phylogenetic and residual covariance matrices were fitted as 613 

random effects. Correlations between traits were calculated as: 614 
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COV	xy	/	square	root	(VAR	x	*	VAR	y)	615 

The global intercept was removed from MR-BPMMs to allow trait specific intercepts to 616 

be estimated. Parameter estimates from models are presented as posterior modes (PM) 617 

with 95% credible intervals (CIs). P values (pMCMC) were estimated as the number of 618 

posterior samples above or below a specified value divided by the total number of 619 

posterior samples, corrected for the finite number of MCMC samples57,60. For 620 

correlations and fixed effects the specified value was 0, and for testing differences 621 

between fixed effects it was the number of posterior samples where one level was greater 622 

than the other. 623 

Prior settings 624 

For random effects we began prior selection by assessing model convergence using 625 

inverse-Wishart priors (V = 1, nu=0.002). If the mixing properties of the MCMC chain 626 

were poor, which was often the case for binomial response variables, we examined two 627 

different parameter expanded priors (Fisher prior: V = 1, nu=1, alpha.mu = 0, alpha.V = 628 

1000) and (χ2 prior: V = 1, nu=1000, alpha.mu = 0, alpha.V = 1)59. For all other traits an 629 

inverse-Wishart prior was specified for residual variances (V = 1, nu=0.002). For fixed 630 

effects the default priors in MCMCglmm (independent normal priors with zero mean and 631 

large variance (10^10)) were used apart from in models with binomial response variables 632 

where a prior of mu = 0, V = σ2units + π2/3 was specified. This is approximately flat on 633 

the probability scale when a logit link function is defined57, and in all cases improved the 634 
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mixing of chains. The final prior settings used for each analysis are specified in the 635 

Supplementary R code (See R script “Analyses.R”). 636 

Model settings and examining model convergence 637 

Models with Gaussian, Binomial and Poisson error distributions were run for 2000000 638 

iterations, a burnin of 1000000 iterations and chains sampled every 1000 iterations. 639 

Binomial models were specified with logit link functions and Poisson models were 640 

specified with log link functions. 641 

We examined the convergence of models by repeating each analysis three times and 642 

examining the correspondence between chains using the R package ‘coda’61 in the 643 

following ways: (i) visually inspecting the traces of the MCMC posterior estimates and 644 

their overlap; (ii) calculating the autocorrelation and effective sample size of the 645 

posterior distribution of each chain; and (iii) using Gelman and Rubin’s convergence 646 

diagnostic test that compares within- and between- chain variance using a potential scale 647 

reduction factor (PSR). PSR values substantially higher than 1.1 indicate chains with 648 

poor convergence properties. For convergence checking see R script 649 

‘ModelCheckingCombining.R’. 650 

3.3	Stochastic	character	mapping	(SCM)	651 

SCM was used to estimate ancestral states of obligate symbiosis and feeding niches 652 

across the insect phylogeny in the R package ‘phytools’53. In brief, this approach 653 

calculates the conditional likelihood that each ancestral node is in a given state that 654 
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depends on the estimated transition rate matrix (Q) between states and the length of the 655 

branch associated with that node. Based on these conditional likelihoods, ancestral states 656 

at each node are stochastically simulated and used in combination with observations at 657 

the tips to reconstruct a character history along each branch. Each character history is 658 

simulated using a continuous-time Markov chain where changes between states and the 659 

time spent in each state is modelled as a Poisson process (see Bollback 200662 for more 660 

details). 661 

3.4	Transition	rate	models	662 

The DISCRETE module in BayesTraits V3 was used to estimate transition rates (q) 663 

between two binary traits with MCMC estimation. We used hyper priors where values 664 

are drawn from a uniform distribution with a range 0 to 10 to seed the mean and variance 665 

of an exponential prior to reduce uncertainty over prior selection56. We ran each model 666 

three times for a total of 11000000 iterations, a burnin of 1000000 iterations and sampled 667 

every 1000 iterations. We examined the convergence of models in the same way as 668 

section 3.2. 669 

Bayes factors (2(log marginal likelihood of complex model – log marginal likelihood of 670 

simple model)) were used to test if models that allowed coevolution provided a better fit 671 

to the data than models that assumed independent evolution. To calculate the log 672 

marginal likelihood, we used the stepping stones procedure as described in the 673 

BayesTraits V3 manual where 100 stones were run for 1000 iterations each. Bayes 674 
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factors over 2 are considered to offer positive evidence, over 5 strong evidence and over 675 

10 very strong evidence56. 676 

To test whether transitions rates were significantly different from each other, we 677 

calculated the posterior mode, 95% CIs and pMCMC value of the posterior distribution 678 

of differences between transition rates (see R markdown script ‘ExtendedData.Rmd’). 679 

3.5	Missing	nutrient	data	680 

There were missing values for some nutrients in the diets of some species in our dataset 681 

(Supplementary Table 4). In BPMMs missing data is permitted in response variables and 682 

is predicted with an accuracy relative to the phylogenetic signature in traits and the 683 

magnitude of correlations between traits in the case of MR-BPMMs. This can enable 684 

missing values to be predicted with high accuracy60,63. All traits analysed had high 685 

phylogenetic signature (phylo H2 = 0.65-0.95. Supplementary Table 7) and therefore 686 

missing nutrient values were included in MR-BPMMs models. For all other analyses and 687 

for explanatory variables in BPMMs missing data were removed. 688 

4.	Specific	analyses	689 

4.1	Evolutionary	history	of	obligate	symbioses	and	feeding	niche	colonization	690 

4.1.1	Estimating	the	number	of	origins	of	obligate	symbioses	using	BPMM	691 

The probability of each of node in the insect phylogeny having an obligate symbiont was 692 

estimated using a BPMM with the number of species with and without obligate 693 
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symbionts within each family as a binomial response variable. This accounts for 694 

variation in the number of species examined for obligate symbionts across insect 695 

families. The insect phylogeny was included as a random effect and the state of each 696 

node was estimated using the ‘predict’ function in MCMCglmm. Nodes were classified 697 

as ‘obligate’ where the posterior probability was greater than 0.5. We found support for 698 

13 origins and 9 losses of obligate symbiosis 699 

4.1.2	Estimating	the	number	of	origins	of	obligate	symbioses	using	SCM	700 

Insect families (n = 400) were classified as having evolved an obligate symbiosis (>0% 701 

species within families have obligate symbionts) or not (0% species within families have 702 

obligate symbionts). Data on obligate symbioses were used to build 1000 stochastic 703 

character maps across the insect phylogeny using an all-rates different Q matrix with 704 

empirical Bayes estimation. The proportion of the 1000 stochastic character maps that 705 

nodes were predicted to have obligate symbionts was used to classify the ancestral state 706 

of each node (>50% of stochastic character maps = ‘obligate’, <50% = ‘non-obligate’). 707 

Differences in state between ancestral and descendant nodes were used to identify the 708 

evolutionary origins and losses of obligate symbionts. We found support for 12 origins 709 

and 9 losses of obligate symbiosis and the relative amounts of time spent in each state 710 

were 27% obligate, 73% non-obligate (Supplementary Table 5). The estimates of 711 

ancestral states obtained using SCM were extremely similar to those from BPMM 712 

indicating our results were robust to the type of statistical techniques used 713 

(Supplementary Table 5). 714 
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4.1.3	Estimating	ancestral	feeding	niches	using	SCM	715 

Ancestral feeding niches were estimated using SCM analysis of the feeding niches of 716 

each insect family (n = 400). The settings for the model were the same as those in section 717 

4.1.2. Each node was assigned to a feeding niche according to the niche with the highest 718 

proportion of the 1000 stochastic character maps. Transitions between feeding niches 719 

were identified where ancestral and descendant nodes were in different states 720 

(Supplementary Table 5). 721 

4.1.4	Estimating	rates	of	obligate	symbiosis	across	different	feeding	niches	722 

using	a	BPMM	723 

The probability that insects occupying different feeding niches have obligate symbionts 724 

was modelled using a BPMM with the number of species with and without obligate 725 

symbionts within each family as a binomial response variable. The feeding niche of each 726 

family was fitted as an eight-level fixed effect and the insect phylogeny was fitted as a 727 

random effect (Supplementary Table 6). To determine if rates of obligate symbiosis were 728 

significantly different across niches, we calculated the pairwise differences between 729 

niches and examined if the 95% CIs spanned 0 (Supplementary Table 6). 730 
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4.2	Nutritional	deficiencies	and	the	evolution	of	obligate	symbiosis	731 

4.2.1	Estimating	the	phylogenetic	correlations	between	obligate	symbioses	and	732 

macro-	and	micro-nutrients	using	a	MR-BPMM	733 

The correlations between obligate symbiosis and nutrients within diets was estimated 734 

using a MR-BPMM with the number of species with and without obligate symbionts as a 735 

binomial response variable and Z-transformed concentrations of carbohydrate, protein, 736 

fat, vitamin A, vitamin B (sum of individual B vitamins), vitamin C, vitamin E and 737 

vitamin K as gaussian response variables. Unstructured phylogenetic and residual 738 

variance-covariance matrices were fitted as random effects (Supplementary Table 7). 739 

4.2.2	Estimating	the	nutrient	contents	of	each	feeding	niche	with	and	without	740 

obligate	symbionts	using	a	MR-BPMM	741 

Differences in the nutritional composition of different feeding niches were estimated 742 

using a MR-BPMM with carbohydrate, protein, fat, vitamin A, vitamin B, vitamin C, 743 

vitamin E and vitamin K as gaussian response variables and feeding niche (8-level 744 

factor) fitted as a fixed effect. Unstructured phylogenetic and residual variance-745 

covariance matrices were fitted as random effects. To test whether nutrient levels in each 746 

niche differed from background rates, we re-ran models including a two-level factor of 747 

focal feeding niche versus all other niches instead of the eight-level fixed effect of 748 

feeding niche (Supplementary Table 8). 749 
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4.2.3	Estimating	the	phylogenetic	correlations	between	obligate	symbioses	and	750 

individual	B	vitamins	using	a	MR-BPMM	751 

The phylogenetic correlation between obligate symbiosis and vitamin B was highly 752 

significant. We therefore analysed individual B vitamins (B5, B6 and B9) to examine if 753 

they varied in their association with obligate symbiosis using a MR-BPMM. The number 754 

of species with and without obligate symbionts was fitted as a binomial response variable 755 

and Z-transformed concentrations of vitamins B5, B6 and B9 were fitted as gaussian 756 

response variables. Unstructured phylogenetic and residual variance-covariance matrices 757 

were fitted as random effects (Supplementary Table 9). Data on vitamins B7 and B12 758 

were not analysed as there were large amounts of missing values (>30% of insect 759 

families). Data on B1, B2, and B3 were highly correlated to vitamin B5 levels (r > 0.9), 760 

but there was more data on vitamin B5. As a result, only vitamin B5 was analysed, but it 761 

is worth noting that the associations between B5 and obligate symbioses could also be 762 

due to the effects of B1, B2 and B3. 763 

4.3	Nutrient	deficiencies	and	the	evolutionary	gains	and	losses	of	obligate	764 

symbiosis	765 

4.3.1	Estimating	ancestral	vitamin	B5	and	B9	in	diets	of	families	that	gained	766 

and	lost	obligate	symbionts	using	a	MR-BPMM	767 

We examined how the levels of B5 and B9 vitamins differed between ancestors of 768 

families with and without obligate symbionts using a two-step approach: first, we used 769 
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the output of the model in section 4.1.1 to classify nodes as: (i) non-obligate node with 770 

non-obligate descendants (NonOb to NonOb); (ii) non-obligate node with at least one 771 

obligate descendant (NonOb to Ob); (iii) obligate node with obligate descendants (Ob to 772 

Ob); and (iv) obligate node with at least one non-obligate descendent (Ob to NonOb); . 773 

Second, nodal classifications were entered as a four-level fixed factor in a MR- BPMM 774 

with Z transformed B5 and B9 vitamin concentrations modelled as Gaussian response 775 

variables (Supplementary Table 10). Unstructured phylogenetic and residual variance-776 

covariance matrices were fitted as random effects with the phylogenetic covariance 777 

matrix being linked to node labels. We fitted interactions between the response trait and 778 

node classification to estimate B5 and B9 vitamin levels preceding the origin 779 

(comparison of classifications i versus ii), maintenance (comparison of classifications i 780 

versus iii) and loss of obligate symbioses (comparison of classifications iii versus iv). To 781 

account for uncertainty in our node classifications, we repeated the analysis 100 times, 782 

each time reclassifying nodes by resampling from the posterior distribution of the 783 

probability of nodes having an obligate symbiont. Posterior samples from across the 100 784 

models were then combined. Each model was run for 1100000 iterations with a burn-in 785 

of 1000000 iterations and thinning interval of 10000 samples, which across the re-786 

samplings resulted in 1000 posterior samples (100 re-samplings x 10 samples per 787 

resampling). 788 
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4.3.2	Estimating	transition	rates	between	obligate	symbioses	and	B5	and	B9	789 

vitamins	using	transition	rate	models	790 

We tested if models that allowed for the coevolution between obligate symbiosis and B5 791 

and B9 vitamins better explained our data than models that assumed independent 792 

evolution of each trait using transition rate models. Coevolution was modelled using an 793 

all rates different (ARD) Q matrix and separate sets of models were run for B5 and B9 794 

vitamins. For these analyses only binary classifications can be modelled. We therefore 795 

transformed data into obligate (>0% species within families have obligate symbionts) 796 

and non-obligate (0% species within families have obligate symbionts) insect families, 797 

and high and low B5 and B9 vitamins. For B vitamin classifications we choose two 798 

different cut-offs to establish the sensitivity of our results to different thresholds: above 799 

and below the 25% and 50% quantile for high and low B vitamins respectively 800 

(Supplementary Table 11). It was not necessary to examine the sensitivity of our results 801 

to the classification of obligate symbiosis as 96% of 400 insect families had 100% of 802 

species with or without obligate symbionts. 803 

4.4	Nutrient	deficiencies	and	the	evolution	of	host-symbiont	co-specialisation	804 

4.4.1	Estimating	the	effect	of	host	symbiont	interactions	on	the	evolution	of	805 

obligate	symbioses	using	BPMMS	and	parafit	806 

To examine how obligate symbioses have been influenced by the coevolutionary history 807 

between insects and bacteria, we constructed a dataset of pairwise combinations between 808 
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all insect families and all symbionts. Insect families that shared a symbiont due to 809 

vertically transmission from a common ancestor were removed for these analyses. For 810 

each combination, the number of insect species within a family with a particular obligate 811 

symbiont versus the number of species without that symbiont was calculated. This 812 

enabled differences in the sampling effort across different insect-bacteria associations to 813 

be accounted for. We analyzed the number of species in insect families with and without 814 

each symbiont using a BPMM with a binomial error distribution and logit link function. 815 

Differences in the probability of forming obligate partnerships between intra- and extra-816 

cellular symbionts was modelled by including a two-level fixed effect. We fitted three 817 

different variance-co-variance matrix as random effects to quantify the amount of 818 

variation in obligate symbiosis explained by: (i) insect hosts independent of their 819 

phylogenetic history (‘h’) e.g. certain hosts are more likely to form obligate relationships 820 

than others; (ii) insect hosts phylogenetic history (‘[h]’) e.g. certain host lineages are 821 

more likely to form obligate relationships than others; and (iii) phylogenetic interactions 822 

between hosts and symbionts (‘[hs]’) e.g. particular host phylogenetic lineages are more 823 

likely to form obligate symbioses with particular bacterial phylogenetic lineages 824 

(Supplementary Table 14). See Hadfield et. al. 2014 for methods on model fitting64. 825 

Each bacterial symbiont lineage was only found in a single insect family. The lack of 826 

replication of symbiont lineages across hosts meant that the following sources of 827 

variation in obligate symbioses were not identifiable: (iv) interspecific variation amongst 828 

symbionts independent of their phylogenetic history (s) e.g. certain bacteria are more 829 
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likely to form obligate relationships than others; (v) the phylogenetic history of bacteria 830 

(‘[s]’) e.g. certain bacterial lineages are more likely to form obligate relationships than 831 

others; (vi) interspecific interactions between hosts and symbionts independent of their 832 

phylogenetic history (hs) e.g. certain insect bacteria combinations are more likely to form 833 

obligate relationships than others; (vii) particular insect hosts, independent of their 834 

phylogenetic history, being more likely to form obligate symbioses with specific 835 

phylogenetic lineages of bacteria (‘h[s]’); and (viii) particular bacterial lineages, 836 

independent of their phylogenetic history, are more likely to form obligate symbioses 837 

with specific insect families ([s]h). 838 

To further examine whether phylogenetically related lineages of bacteria are more likely 839 

to form obligate symbioses with phylogenetically related lineages of insects we used 840 

parafit in the R package ‘ape’ (Supplementary Table 15). This tests the correlation 841 

between host and symbiont shared branch lengths against a randomised distribution 842 

generated from 1000 permutations of the data65. 843 

4.4.2	Estimating	the	effect	of	host	symbiont	interactions	on	dietary	levels	of	B5	844 

&	B9	vitamins	using	BPMMS	845 

To test if specific lineages of symbiotic bacteria specialise in providing B5 and B9 846 

vitamins to hosts we used the same BPMM approach described in section 4.4.1. We 847 

estimated variation in levels of B vitamins (Gaussian responses) explained by h, [h], [s] 848 

and [hs]. Separate models were run for B5 and B9 vitamins and data were restricted to 849 
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combinations of hosts and bacteria that formed obligate symbioses (>0% species within 850 

insect families with obligate symbionts) (Supplementary Tables 12-13). 851 

4.5	Obligate	symbioses	and	diversification	852 

4.5.1	Estimating	the	relationship	between	species	richness	and	obligate	853 

symbiosis	using	a	BPMM	854 

The relationship between obligate symbioses and diversification was estimated using a 855 

MR-BPMM with the number of species with and without obligate symbionts as a 856 

binomial response variable and species richness as a Poisson response variable. To 857 

control for older families potentially accumulating more species than younger families 858 

we included a fixed effect of family age. Family ages were estimated from the 859 

phylogenetic tree by (Rainford et al. 201411), which is time calibrated. A fixed effect of 860 

whether insect families were holo- or hemi-metabolous (two-level factor) was also 861 

included as a fixed effect, as it has previously been shown to influence diversification 862 

rates11. Unstructured phylogenetic and residual variance-covariance matrices were fitted 863 

as random effects (Supplementary Table 16). 864 

There were 23 insect families that were added to the Rainford phylogeny for the analyses 865 

of obligate symbioses (see below and Supplementary Table 1). It was not possible to 866 

estimate the age of these families so they were excluded from all diversification analyses. 867 
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4.5.2	Estimating	the	relationship	between	species	richness	and	obligate	868 

symbiosis	for	different	feeding	niche	using	a	BPMM	869 

The diversification rates of insects occupying different feeding niches were estimated 870 

using a BPMM with species richness as a Poisson response variable. The feeding niche 871 

(eight-level factor) of each family, family age and holo-hemi metabolism were fitted as 872 

fixed effects (Supplementary Table 17). To test whether the species richness of each 873 

niche differed from background levels, we re-ran models including a two-level factor of 874 

focal feeding niche versus all other niches instead of the eight-level fixed effect of 875 

feeding niche (Supplementary Table 17). 876 

4.5.3	Estimation	of	the	relationship	between	diversification	rate	and	obligate	877 

symbiosis	using	a	MR-BPMM	878 

To examine the correspondence between the rate at which species diversify versus the 879 

total number of species that accumulate in clades we repeated the analysis outlined 4.5.1. 880 

Diversification rates, calculated using the methods outlined by Magallon and 881 

Sanderson46, were modelled as a gaussian response variable and family age was removed 882 

from the model (Supplementary Table 18). 883 

4.5.4	Estimation	of	the	relationship	between	diversification	rate	and	feeding	884 

niche	using	a	BPMM	885 

To test if the rate at which species diversify differs between groups of insects with 886 

different feeding niches we repeated the analysis outlined 4.5.2 including diversification 887 
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rate as a gaussian response variable and removing family age from models 888 

(Supplementary Table 19). 889 

	890 

4.6	Verification	analyses	891 

We tested the robustness of our conclusions to several underlying data assumptions. 892 

These sensitivity analyses provided quantitatively similar results to our main analysis 893 

(Supplementary Tables 20-26). 894 

4.6.1	Re-analysis	of	4.2.1	after	removing	families	that	were	added	to	the	895 

Rainford	tree	896 

There were 23 families within our obligate symbiont dataset that were not represented in 897 

the Rainford insect phylogeny that were added to the phylogeny (see section 2). To 898 

examine the robustness of our results when including these families we re-ran the 899 

analyses detailed in section 4.2.1 (Supplementary Table 20) with the 23 additional 900 

families excluded. 901 

4.6.2	Re-analysis	of	4.2.1	including	only	bacterial	symbionts	902 

Bacteria made up the vast majority of obligate symbionts (79 out of 84 insect families 903 

had bacterial symbionts = 94%). To verify that our results were not explained by a few 904 

outlying eukaryotic symbionts, we re-ran the analyses detailed in section 4.2.1 including 905 

only insect families with bacterial symbionts (nfamilies=395. Supplementary Table 21). 906 
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4.6.3	Re-analysis	of	4.4.2	removing	co-occurring	obligate	symbionts	907 

There were 112 unique host-bacterial symbiont combinations. Of these 49% (n=55) had 908 

multiple co-occuring symbionts. It is possible that any signature of bacteria specializing 909 

in B5 and B9 vitamin production is obscured by the presence of co-residing obligate 910 

symbionts that may change nutrient provisioning roles. We therefore repeated the 911 

analyses in section 4.4.2 after removing hosts that had multiple co-occurring symbionts 912 

(Supplementary Tables 22-23). 913 

4.6.4	Re-analysis	of	4.2.1,	4.2.3	and	4.5.2	excluding	obligate	symbiont	data	914 

inferred	from	microscope	studies	915 

Out of the 400 insect families included in our analyses, 260 were inferred to not have 916 

obligate symbionts based on a lack of specialized symbiont organs within certain insect 917 

clades shown from microscopy studies by Buchner and colleagues. They indicated that 918 

insects in the orders Ephemeroptera, Plecoptera, Odontata, Neuroptera, Orthoptera, 919 

Lepidoptera, superfamily Tenthredinoidea, and subclade Aculeata (excluding 920 

Formicidae) all lacked bacteriocytes and in general do not depend on endosymbionts for 921 

survival20. To test the sensitivity of our results to inferring the absence of obligate 922 

symbionts within these insect groups, we re-ran the analyses outlined in sections 4.2.1, 923 

4.2.3 and 4.5.2 after removing these 260 families to focus on families and species where 924 

obligate symbioses had been studied directly (see section 1 ‘Criteria for assessing 925 

obligate symbiosis’ for more details). 926 
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The results of all verification analyses were quantitatively similar to our main analyses 927 

(Supplementary Tables 20-26). 928 

Data	and	code	availability	929 

R code, BayesTraits code, data and analysis results are available at the open science 930 

framework: DOI 10.17605/OSF.IO/TYK7C. Full citations of references in 931 

supplementary tables are given in the method references65-367. 932 
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