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ABSTRACT：Biogeography-based optimization (BBO) is not suitable for solving high-dimensional or multi-modal problems. 

To improve the optimization efficiency of BBO, this study proposes a novel BBO variant, which is named ZGBBO. For the 

selection operator, an example learning method is des igned to ensure inferior solution will not destroy the superior solution. 

For the migration opeartor, a convex migration is proposed to increase the convergence speed, and the probability of finding 

the optimal solution is increased by using opposition-based learning to generate opposite individuals. The mutation operator of 

BBO is deleted to eliminate the generation of poor solutions. A differential evolution with feedback mechanism is merged to 

improve the convergence accuracy of the algorithm for multi-modal and irregular problems. Meanwhile, the greedy selection 

is used to make the population always moves in the direction of a better area. Then, the global convergence of ZGBBO is 

proved with Markov model and sequence convergence model. Quantitative evaluations, compared with three self-variants, 

seven improved BBO variants and six state-of-the-art evolutionary algorithms, experimental results on 24 benchmark 

functions show that every improved strategy is indispensable, and the overall performance of ZGBBO is better. Besides, the 

complexity of ZGBBO is analyzed by comparing with BBO, and ZGBBO has less computation and lower complexity. 

KEYWORDS: Biogeography-based optimization (BBO); Convex migration; Opposition-based learning; Differential 

evolution; Feedback mechanism; Sequence convergence model 

1 Introduction 

Traditional optimization algorithms, such as linear programming, quadratic programming and convex optimization, usually require 

problems to be convex. But in real life, people often encounter many problems are not convex. The commonly used dynamic programming 

method can find the optimal solution, but its computational load increases exponentially with the size of the problem, so it is not suitable 

for large-scale problems. In contrast, although the population-based evolutionary algorithm can not guarantee to find the optimal solution 

of the problem, it has no requirements on the nature and scale of the problem, so it is more extensive and applicable. In half a century since 

the advent of genetic algorithm (Holland 1975), people have proposed a variety of evolutionary algorithms based on biological behavior 

and natural phenomena. Such as ant colony algorithm (ACO) (Dorigo 1992), particle swarm optimization (PSO) (Kennedy and Eberhart 

1995), differential evolution algorithm (DE) (Storn and Price 1995), immune algorithm (IA) (Dasgupta 1998), bacteria foraging 

optimization (BFO) (Passino 2002), artificial bee colony (ABC) (Teodorovic et al. 2006), harmony search (HS) (Kang et al. 2005), etc. The 

evolutionary algorithm in artificial intelligence and machine learning has been playing an important role. Many researchers have proposed 

solutions based on these evolutionary algorithms for various optimization problems, and described techniques for dealing with these 

problems. However, these evolutionary algorithms have the disadvantages of slow convergence and easy to fall into the local optimal 

solution. In recent years, with the rapid development of science and technology, the practical problems in life have higher and higher 

requirements for algorithms, and the convergence accuracy and convergence speed of evolutionary algorithms need to be improved 

urgently. Therefore, inspired by the theories of physics, chemistry, humanities and other disciplines, scholars from all over the world put 

forward a variety of new and more advanced swarm intelligence evolutionary algorithms with better performance (Sloss and Gustafson 

2020).  

In 2016, Mirjalili and Lewis  (2016) from Griffith University in Australia proposed the whale optimization algorithm (WOA) inspired 

by the hunting behavior of humpback whales. When whales hunt, they move their positions according to certain established rules. The 

whale with the best position guides other whales, and each whale updates the position according to the position updating equation provided 

by the mathematical model. WOA is a new population-based evolutionary algorithm, which has the advantages of simple operation, few 

parameters to adjust and strong ability to jump out of local optimum. Later, inspired by the phototaxis and flight modes of moths, 
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Mohamed et al. (2017) proposed moth swarm algorithm (MSA) by simulating the behavior of moths flying toward the moon at night in 

nature. Different from most intelligence algorithms,  the whole moth swarm is  divided into moths of different action types in the moth 

swarm algorithm model, which more truly reflects the cooperative behavior between the population and balances the detection and mining 

ability of the algorithm to a certain extent. MSA has the advantages of simple structure, low complexity, high precision and strong 

robustness. In 2018, Elsisi et al. (2018) proposed a innovative search algorithm, future search algorithm (FSA), by imitating human beings' 

yearning for a better life. The algorithm builds a mathematical model to simulate the best life between human and human (local search) and 

the best life in history (global search) to obtain the optimal solution. Compared with other algorithms, FSA has the advantages of strong 

exploration ability and difficulty in falling into local optimal value. In 2019, Dhiman and Kumar (2019) proposed a novel global 

optimization algorithm named seagull optimization algorithm (SOA) inspired by the population behavior of seagulls in nature. Similar to 

other intelligent optimization algorithms, SOA is also a population-based evolutionary algorithm, which simulates the migration and attack 

behavior of seagull population. At the same time, inspired by Coulomb's  law in physics, Anita and Yadav (2019) proposed the 

meta-heuristic artificial electric field algorithm (AEFA). AEFA simulates the motion of charged particles in an electrostatic field and 

evolves it into a random search for optimal solutions. AEFA is an outstanding nonlinear optimization algorithm with high 

convergence precision and wide adaptive range. In addition to AEFA, other evolutionary algorithm based on physics laws is electrostatic 

discharge algorithm (ESDA), which is a new meta-heuristic optimization algorithm proposed by Houssem et al. (2019) inspired by 

electrostatic discharge events. ESDA assumes that the fitness of electronic devices is related to the search position, and uses the 

phenomenon of direct or indirect electrostatic discharge between individuals electronic devices to change the location of electronic devices 

through the movement of electronic devices with low fitness value to electronic devices with high fitness value to obtain the optimal spatial 

position, which is the optimal solution of the problem. Compared with traditional intelligence algorithms, ESDA is a swarm intelligence 

evolutionary algorithm with excellent robustness, easy implementation and simple algorithm principle. In 2020, Faramarzi et al. (2020) 

proposed a new meta-heuristic optimization algorithm, which is named marine predator algorithm (MPA). It is inspired by the survival of 

the fittest theory in the ocean, in which marine predators choose the best foraging strategy between the Levy walk and the Brown walk. 

MPA is a novel evolutionary algorithm with advanced and applicability. Sparrow search algorithm (SSA) is also a population-based 

intelligent evolutionary algorithm proposed in the same year by Xue and Shen (2020). SSA is proposed mainly inspired by the foraging 

behavior and backfeeding behavior of sparrows. The core idea is that finders with better fitness values will get food first in the search 

process, which is the solution to the problem. This algorithm is novel and has the advantages of strong searching ability and fast 

convergence. 

The biogeography-based optimization (BBO) studied in this paper is a population-based intelligent evolutionary algorithm proposed 

by American scholar Simon in 2008 (Simon 2008). Simon studied the migration phenomenon between habitats in biogeography and 

simulated the migration and information exchange mechanism between habitats to establish the mathematical model for optimization, so as 

to obtain the intelligent optimization process. Compared with other evolutionary algorithms, BBO has fewer parameter setting and is easier 

to implement. BBO algorithm has good population information utilization ability, but BBO search ability is weak, prone to premature 

algorithm phenomenon, and the convergence rate in the late evolution is very slow (Guo et al. 2017). In order to enhance the search ability 

of the original BBO, improve its ability to jump out of the local optimal solution, and improve the convergence speed of the algorithm in 

the late stage, this paper proposes a novel biogeography-based optimization, referred to as ZGBBO. In the new algorithm, the mutation 

operator of the original BBO is deleted to reduce its computational complexity and eliminate the disadvantages caused by random mutation. 

Using the differential evolution with feedback mechanism to replace the original mutation operator, so the population can select the 

mutation mode intelligently according to the change of the current optimal value, which improve the optimization accuracy of the 

algorithm for multi-modal, irregular function. Secondly, the example learning method is used to replace the roulette selection operator of 

the original BBO, so that the poor solution will not have adverse effects on the better solution, and the algorithm reduces the calculation of 

habitat emigration rate, which further reduces the calculation amount. Thirdly, in view of the direct migration mode in which variables of 

emigration individual directly replace variables of immigration individual in the original BBO, convex migration mechanism is adopted in 

this paper to replace it, so that the immigration individual will definitely accept some variables  from the optimal solution. When the lower 

ranked individuals in the population are not selected for migration,  opposition-based learning is  used to update their positions. The 

opposite individuals with poor solutions are generated to improve the probability of finding the optimal solution of the problem. Finally, 

the greedy selection strategy is adopted to ensure that the optimal individual in each generation is not inferior to the optimal solution of the 
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previous generation, so the population always moves towards the direction of a better solution.  

The ZGBBO algorithm proposed in this paper can not only effectively use the information utilization ability of original BBO, but also 

effectively combine the search ability of DE to achieve the balance between information utilization and search. We compare the 

performance of ZGBBO with its three variant algorithms, seven improved BBO algorithms and other six state-of-the-art evolutionary 

algorithms, and find that ZGBBO has better overall performance, higher convergence accuracy and faster convergence rate among all 

comparison algorithms. At the same time, we use two methods to prove the convergence of ZGBBO algorithm. On the one hand, Markov 

model is used to prove the convergence of ZGBBO algorithm. On the other hand, a new method is proposed by establishing a sequence 

convergence model to prove that ZGBBO has global convergence. In addition, this research also analyzes the algorithm complexity of 

ZGBBO. By comparing the time consumption and computational amount of the original BBO, it can be seen that ZGBBO is an 

evolutionary algorithm with less computational amount and less time consumption. 

The graphical abstract of this paper is shown in Fig. 1. 

 

 

Fig. 1  Graphical abstract of this paper 

 

The rest of this paper is summarized as follows: Chapter 2 mainly introduces the standard biogeography optimization algorithm, 

including the calculation steps, related work and main shortcomings of BBO. Chapter 3 mainly describes the improvement strategy of BBO 

in this paper and proposes the improved algorithm ZGBBO. In Chapter 4, the global convergence of ZGBBO is proved in detail. Chapter 5 

is a numerical experiment in which the performance of ZGBBO is  compared with other algorithms  and the results are analyzed Chapter 6 

analyzes the complexity of the algorithm in this paper and compares it with the time consumption and calculation amount of the original 

BBO. Finally, the thesis is summarized in Chapter 7, and the future research direction is pointed out. 

2 Discussion of BBO 

Biogeography studies the formation, extinction and geographical distribution of biological species (Simon 2008). Therefore,  the 

mathematical model of biogeography-based optimization mainly describes species formation,  migration between is lands, and extinction. 

An "island" here refers to a habitat that is geographically isolated from other habitats. An island that is suitable for living organisms can be 

interpreted as having a high habitat suitability index (HSI). Factors that influence whether an island is  suitable for life include rainfall, 

surface temperature,  plant diversity, land area, and topographic features et al., which can be understood as features associated with HSI. 

These variables determine whether an island is habitable and are called suitability index variables (SIVs). Biogeography-based 

optimization algorithm is a relatively new evolutionary algorithm, which will be discussed systematically in this chapter. 

2.1  Standard BBO 

Suppose there is a global optimization problem and some candidate solutions, which are called individuals. Good individuals perform 

better on the problem, that is, the function value obtained is better; and bad individuals perform poorly on the problem, so the function 

value is worse. Good individuals are like is lands with high HSI, and bad individuals are like islands with low HSI. Good individuals are 

more likely to share their features (i.e. independent variables of candidate solutions) with poor individuals, and poor individuals are more 

likely to accept the features of good individuals. The addition of new features may improve the quality of poor individuals, so that the 

habitat can be improved and the target function value can be better, which is the core idea of BBO. The correspondence between BBO 

algorithm and biogeography theory is listed in Table 1. 



An Improved Biogeography-based Optimization with Hybrid Migration and Feedback Differential Evolution and its Performance Analysis 

4 
 

Table  1  Correspondence between BBO and biogeography theory 

Biogeography theory BBO algorithm 

Island Individual (candidate solution) 

Habitat suitability index (HSI) Objective function value 

Suitability index variables (SIVs) Independent variables of candidate solutions 

Catastrophic events transformed the Mutation 

The number of islands Population size (number of candidate solutions) 

Islands with low HSI tend to immigrate Poor individuals tend to accept variables from good 

Islands with high HSI tend to emigrate Good individuals tend to share variables with poor 

 

BBO mainly improves the quality of habitats through population evolution, and through migration between species to find the most 

suitable habitat for the survival of species, which is the optimal solution of the optimization problem. It is mainly accomplished by the 

following three steps.  

2.1.1 Initialization 

The initialization steps of BBO include parameter initialization and population initialization. Parameter initialization includes setting 

the population size NP, the maximum number of species that can be accommodated in each habitat Smax, the maximum immigration rate I 

and the maximum emigration rate E.  Only when Smax、I and E are determined, can we calculate the immigration rate i 、emigration rate 

i 、species number Si and species probability Pi for each habitat. In addition, in order to calculate the mutation rate mi of each habitat, the 

maximum mutation rate mmax of the habitat should be set. 

When initializing the population, NP habitats are randomly generated as the original population. The operation is that each habitat 

randomly generates a number within a range of values on each variable. Assuming that each habitat has n variables, each habitat is 

initialized according to Eq. (1). 

max min min( ) (0,1) ( )i k k kx k rand x x x=  − +                                       (1) 

Where {1,2, , } {1,2, , }i NP k n ， . ( )ix k  is the k-th variable of habitat ix ,while minkx  and maxkx  are the lower and upper 

bounds of the k-th variable of each habitat. (0,1)rand  represents a number in the range of (0,1) generated randomly to ensure that the 

variable does not exceed the bound. Once the population is initialized, the HSI, which is the evaluation function value, for each habitat can 

be calculated to measure the quality of each habitat.  

2.1.2 Migration 

BBO algorithm designs migration operators between habitats, and uses the migration rate of each individual to share information 

between individuals according to probability (Simon 2008). Therefore, there is a positive correlation between habitat HSI and species 

number S. This means that the higher the HSI, the greater the S, and vice versa. After the fitness values of NP habitats were calculated, 

each ix was sorted in descending order, that is, ix was rearranged according to HSI from high to low. Eq. (2) provides the calculation 

method of species quantity in the sorted habitats.  

max {1,2, , }.iS S i i NP= − ，                                          (2) 

According to the number of species in the habitat, the immigration rate and emigration rate of each habitat can be calculated. Different 

migration rate models will have an important impact on the optimization performance of the algorithm. Ma (2010) proved through 

experiments that the performance of complex migration rate model is better than that of simple migration rate model. Therefore, when 

BBO algorithm and other improved BBO algorithms are implemented in this paper, the cosine migration rate model proposed by Ma. is 

used to calculate the immigration rate and emigration rate of each habitat, as shown in Eq. (3).  

 
max max

(cos 1) ( cos 1).
2 2

i i
i i

I S E S

S S

   
=  + =  − +，                                  (3) 

Where, I is the maximum immigration rate, E is the maximum emigration rate, and Smax is the maximum number of species.  

BBO will first determine the feature k of habitat ix  to be migrated according to the immigration rate i  when performing the 

migration operation. In each generation, the probability of substitution for each independent variable of the i-th individual is i , that is, 

i  is equal to the probability of substitution for each independent variable of ix . (0,1)rand  is used to generate random numbers 

between (0,1). If the random number is smaller than the immigration rate, this dimension feature of habitat ix  need to be replaced, and 
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ix  is also known as the habitat to be immigrated. If we have choosed the variable of the solution to be replaced, then we choose to 

emigrate individual jx  with a probability proportional to the emigration rate { }i . According to Eq. (4), the original BBO uses the 

"roulette" method to determine the habitat jx  to be emigrated,  and finally replaces the k-dimension variable of ix  with the k-dimens ion 

variable of jx . Algorithm 1 gives the calculation flow of BBO migration operator. 

1

 selecte(  is )=d .
j

j N

i

i

P x



=
                                           (4) 

Algorithm 1  BBO migration operator 

for each habitat ix  

for each dimension variable k 

if rand(0,1)< i  

according to 1{ }NP

i i = , the habitat jx  to be emigrated is selected by roulette 

( ) ( )i jx k x k=  

    end if  

end for 

end for 

 

Fig. 2 is an example of a BBO algorithm migration. Where, iz  is the immigration habitat, ix  is the emigration habitat. From the 

example in Fig. 2, you can see the following migration decision: 

(1). The first dimension feature is selected for immigration, and 2x  is selected as the emigration individual according to Eq. (4). So 

the first dimension feature of iz  is replaced by the first dimension feature of 2x . 

(2). The second dimension feature is selected for immigration, and 1x  is selected as the emigration habitat according to Eq. (4). So 

the second dimension feature of iz  is replaced by the first dimension feature of 1x . 

(3). The third dimensional feature are not selected for immigration, so the third dimensional feature of iz  remain unchanged. 

(4). The fourth dimension feature is selected for immigration, and NPx is selected as the emigration habitat according to Eq. (4). So 

the fourth dimension feature of iz  is replaced by the fourth dimension feature of NPx . 

(5). The fifth dimension feature is selected for immigration, and 3x  is selected as the emigration individual according to Eq. (4). So 

the fifth dimension feature of iz  is replaced by the fifth dimension feature of 3x . 

(6). The sixth dimension feature is selected for immigration, and 2x  is selected as the emigration habitat according to Eq. (4). So the 

sixth dimension feature of iz  is replaced by the sixth dimension feature of 2x . 

 

Fig. 2  BBO migration example for 6-dimensional problems 

 

2.1.3 Mutation 

In biogeographical theory, HSI in each habitat may undergo drastic changes due to sudden disease or natural disaster of species (Ma et 
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al. 2017). Volcanic eruptions, for example, can strip islands of any species but make them more habitable, making the environment more 

hospitable to new immigrations. Therefore, the sharp change of HSI can make the habitat more livable or change the habitat from an 

environment suitable for living organisms to an environment not suitable for living organisms. In the standard BBO algorithm, the species 

probability is calculated by Eq. (5) according to the immigration rate and emigration rate of the habitats. 

 

1 1

1 1 1 1 max

1 1 max

1.

i i i i i i

i i i i i i i i i

i i i i i i

P P S

P P P P S S

P P S S

  
   
  

+ +

− − + +

− −

− +
= − + +   −
− + =

（ + ） ，       =0 

（ + ） ，1

（ + ） ，       

                              (5) 

The species probability of a habitat is inversely proportional to the mutation rate in that habitat. Habitats with high species probability 

had better environment and less mutation probability. Habitats with low species probability are poorer, less suitable for species and more 

likely to undergo environmental mutations. In the original BBO, Eq. (6) was used to calculate the habitat mutation rate mi. 

 max max 1

max

(1 ) max({ } ).NPi
i i i

P
m m P P

P
== −  =，                                      (6) 

Where, mmax is the maximum mutation rate and is given as the initial value. Like the immigration rate and the emigration rate, the 

mutation rate mi of habitat ix  is equal to the probability of mutation for each variable in ix . During mutation, a random number between 

(0,1) is generated for each habitat. If the random number is less than the mutation rate mi, a number within the value range is randomly 

generated for each dimension variable to replace the original variable value. Algorithm 2 gives the calculation flow of BBO mutation 

operator. 

 

Algorithm 2  BBO mutation operator 

for each habitat ix  

if rand(0,1)< im  

for each dimension variable k 

max min min( ) (0,1) ( )i k k kx k rand x x x=  − +  

    end for 

end if 

end for 

 

BBO algorithm abstracts the migration and mutation of species in biogeography by constructing a mathematical model to describe the 

dynamic distribution of species in biogeography. BBO is a new evolutionary algorithm with good utilization of population information. 

Now, we describe the computational pseudocode of the BBO algorithm in detail in Algorithm 3. 

Algorithm 3  BBO calculation process 

initialization parameters, including NP, Smax, mmax, etc 

use Eq. (1) to generate the initial population 

while (the termination condition is not met) 

calculate the fitness HSI for each habitat 

rank all habitats from highest to lowest in terms of suitability 

use Eq. (2) to calculate the species number iS  in each habitat 

use Eq. (3) to calculate the immigration rate i  and emigration rate i  of each habitat 

use Equations (5) and (6) to calculate the mutation rate mi of each habitat  

perform Algorithm1 to complete the migration operation 

perform Algorithm2 to complete the mutation operation 

end while 

 

2.2 The main disadvantages of BBO 

There are some defects in the three main operators (selection, migration and mutation) of BBO, and the convergence speed of the 
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algorithm is slow in the late stage, and it is easy to fall into the local optimal solution, which affects the optimization performance and 

running speed of the algorithm. The reasons for these shortcomings of BBO will be analyzed in depth below. 

（1） It can be seen from Eq. (4) that the original BBO algorithm uses roulette to select habitats for emigration. Although the 

probability of being selected is proportional to the emigration rate of habitats, it cannot avoid the immigration of inferior 

individuals to superior ones. For each habitat, if selected for immigration, the corresponding emigration habitat is selected 

from the remaining NP-1 habitats. If habitat ix  is immigrated, it is likely to be emigrated of habitat jx (j>i), which means 

that habitats with lower HSI immigrate to habitats with higher HSI, and variable values of poorer individuals replace 

variable values of better individuals, thus reducing fitness of better individuals and causing "negative action". Therefore,  the 

random selection method based on roulette tends  to bring in poor individuals, reduce the population quality and slow down 

the convergence rate. 

（2） The original BBO uses the method of direct migration to replicate the variables between candidate solutions, and the migration 

operator will directly replace the corresponding features of the immigration habitat with the features of the emigration 

habitat. However, if an individual performs  well on the questions, it does not mean that the individual performs well on the 

variable values of each dimension. Therefore, the original migration operator is completely possible to make a dimension of 

the habitat become worse after being replaced, and the suitability is reduced. Moreover, the single migration method is not 

suitable for solving the multi-modal problem, and it is easy to make the algorithm fall into the local optimal value, resulting 

in search stagnation. 

（3） The original BBO uses random mutation to improve population diversity and help the algorithm jump out of the local optimal 

solution. For individuals with low fitness, random mutation tends to produce better individuals and improve the quality of 

the population. However, for individuals with high fitness, random mutation can easily destroy them, leading to worse 

individuals  and lower population diversity. This way of mutation is blind and cannot guarantee the mutation to the direction 

of the optimal solution. In addition, the mutation operator needs to calculate the species probability and mutation rate of all 

habitats. From Eq. (5), it can be seen that the calculation of species probability is complicated and requires a lot of 

calculation, which consumes resources. Therefore, the random mutation strategy is not only easy to destroy the individuals 

with high fitness, but also increases the time consumption of the algorithm and reduces the convergence speed of the 

algorithm. 

（4） In the biogeography-based optimization, the information transfer mechanism between individuals makes it have good 

utilization ability of population information, and can efficiently utilize existing habitat information for optimization. 

However, the BBO search ability is weak. It only relies on the substitution of several variables to search the problem space, 

so there is less chance to generate new solutions. Due to the lack of BBO search ability, the population diversity of BBO 

decreases rapidly in the late iteration, and the convergence rate of the algorithm is slow in the late evolution. Improving 

BBO's mining capacity has also been a research focus. 

2.3  Review of BBO's work 

Since BBO was proposed, it has been widely favored by scholars around the world. In the first year after the algorithm was proposed, 

38 articles about BBO were published, 81 in the second year, and 145 in the third year. In recent years, the BBO algorithm is still emerging 

in an endless stream of articles. In order to improve the optimization performance of BBO algorithm, many scholars have conducted a lot 

of research. We will briefly review the research work on BBO in the past five years. 

Loon et al. (2016) integrated tabu search (TS) into BBO in 2016, replacing the original mutation operator with the tabu search process. 

Experimental results show that this hybrid algorithm (BBOTS) can overcome the deficiency caused by random mutation and find the ideal 

solution in a reasonable time. Later, Yogesh et al. (2016) developed the PSOBBO algorithm, which greatly improved the computing 

performance of the original BBO. In order to improve the slow speed of BBO in global search and improve the detection ability of BBO, 

PSOBBO integrated particle swarm optimization algorithm into BBO and designed a new particle speed and position update method. This 

algorithm improves the half of the particles  with poor fitness so that the particles are easily attracted to the global optimal position. Liu et 

al. (2018) then introduced NEH algorithm into BBO and obtained IBBO algorithm with good population quality and diversity. In order to 

improve the BBO algorithm, a migration operator based on insertion rules  and a mutation operator based on exchange rules  are proposed, 

and an neighborhood search algorithm is adopted to enhance the local search capability of IBBO. Then, Mehta et al. (2018) redesigned the 
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calculation of mutation rate for each habitat to reduce the possibility of mutation for excellent individuals (MBBO). MBBO improves the 

migration operator by introducing the exponential average of the optimal solution, and updates the habitat location by using the exponential 

average of the variable values of the existing habitat and the variable values of the selected habitat. In 2019, with the proposal of many new 

intelligent algorithms, Pushpa Farswan et al. (2019) integrated fireworks algorithm (FWA) (Tan et al.  2010) into biogeography-based 

optimization,and named this hybrid algorithm as FBBO. The main work of FBBO is to mix two different search techniques to improve the 

quality of the solution and achieve a balance between the information utilization and the search ability of the algorithm. Then Reihanian et 

al. (2019) designed NBBO algorithm to overcome the difficulty that BBO could not effectively balance its development ability and search 

ability. Under the framework of NBBO algorithm, only two or more sub-iterations are considered in each iteration to perform the search 

task. In each sub-iteration, a sub-population is selected from the current population according to the triangular probability distribution, and 

the migration habitat is selected from this sub-population. In addition, this algorithm also introduces a two-stage migration operator into 

BBO, which enables the algorithm to search for the optimal solution quickly. The overall framework of NBBO makes its development 

ability and search ability reach a good balance, and it is  not easy to fall into the local optimal state. Moreover, the mutation operator of the 

original algorithm is deleted, which makes up for the calculation amount brought by the new strategy. In order to reduce the computational 

complexity, Zhang et al. (2019a) also deleted the mutation operator in BBO, combined the differential mutation and sharing operator into 

BBO's migration operator, and combined the improved migration operator with one-dimensional and full-dimensional search strategies to 

conduct alternate search. Because many operators are integrated into the new algorithm to improve the search performance, it is named 

efficient and merged biogeography-based optimization (EMBBO). The same year, in order to alleviate the rotation variance of BBO and 

overcome its premature convergence problem, TDBBO was designed by Zhao et al. (2019). TDBBO adopts linear migration model and 

sinusoidal migration model respectively in the early and late evolution stage, and uses differential mutation operator to alleviate rotation 

variance. TDBBO is much better than the original BBO algorithm in solution quality, convergence speed and stability. In 2020, An et al. 

(2020) proposed an improved non-dominated sequencing biogeography-based optimization (INSBBO) to solve the multi-objective flexible 

job-shop scheduling problem. In order to overcome the pressure of individual selection in pareto dominance principle, INSBBO proposed a 

V-dominance algorithm based on the volume surrounded by the value of normalized objective function to enhance the convergence of the 

algorithm. On the other hand, in order to avoid the loss of some better solutions in the process of evolution, the author constructed an elite 

storage strategy (ESS) to store these better solutions, and improved the migration and mutation operators of the original BBO, which 

further improved the optimization ability of the algorithm. Meanwhile, BBO was  also des igned as  a binary algorithm for feature selection 

(FS) (Albashish et al. 2020). The support vector machine recurs ive feature elimination (SVM -RFE) is  embedded into the BBO to improve 

the quality of the obtained solutions in the mutation operator which striking an adequate balance between exploitation and exploration of 

the original BBO. The new method, BBO-SVM-RFE, outperforms the BBO method and other existing wrapper and filter methods in terms 

of accuracy and number of selected features. In 2021, Ghatte (2021) studied and discussed firefly algorithm (FA) and BBO, and fused the 

two algorithms to obtain a hybrid algorithm (FABBO). One defect of FA is that all the individuals will converge to a better solution at the 

end of iteration, so the algorithm will converge to a local optimal, which is not suitable for global optimization problems. Considering that 

the global search capability of FA is weak and the local search capability of BBO is weaker than FA, so the integration of FA and BBO can 

overcome the above defects. FABBO is essentially a two-stage algorithm: in the first stage, FA is used for preliminary optimization to find 

some local optimal solutions ; The second stage uses BBO to perform a more refined search of the solution obtained in the first stage.  

Recently, Sang et al.  (2021) proposed an improved BBO algorithm by hierarchical tissue-like P system with triggering ablation rules in 

view of many shortcomings of BBO in terms of global optimization, convergence speed and algorithm complexity, which is named 

DCGBBO. Sang et al. first proposed a dynamic crossover migration operator to improve the global search capability and increase species 

diversity. Then, dynamic Gaussian mutation operator is introduced to accelerate the convergence speed and improve the local search ability 

of the algorithm. Finally, the hierarchical tissue-like P system is combined with BBO to implement the migration and mutation of habitats 

by using evolutionary rules and communication rules, which fully reduces the computational complexity. 

The research on the BBO has been continuously since the algorithm was put forward, and it has  always been the hot spot of scholars 

in various countries. In just 13 years,  BBO has developed theoretical materials about it, including Markov model, dynamic system model, 

statistical mechanics  model,  etc. (Ma et al.  2017). Although the improvement of BBO by many scholars has improved the performance of 

the original algorithm to a certain extent, with the rapid development of modern science and technology, practical problems in life have 

higher and higher requirements on algorithm performance, so the overall performance of BBO still need to be improved. 
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3 ZGBBO algorithm 

In section 2.2, we analyze the shortcomings of the standard biogeography-based optimization in detail.  In order to improve the 

algorithm performance and make BBO algorithm more advanced and superior, this paper proposes four improvement strategies for the four 

defects of BBO in section 2.2 through a large number of experiments and studies, which effectively make up for the shortcomings of the 

original BBO. The new algorithm is a highly competitive improved algorithm with fast convergence speed and high convergence precis ion 

when searching the optimal solution. We named it ZGBBO after the surnames of the first two authors of this paper. The algorithm principle 

and calculation process of ZGBBO will be described in detail in this chapter. 

3.1 Selection operator based on example learning method 

In view of the first deficiency of the original BBO in section 2.2, we use example learning method to replace the original roulette 

wheel selection method. Random selection of roulette tends to bring in poor individuals, which reduce the population quality and slow 

down the convergence rate. The ranking of each individual in a population is related to its HSI value, which means the higher the HSI, the 

higher the habitat ranking, and the lower the HSI, the lower the ranking. Therefore, in the improvement strategy, we set examples based on 

the ranking of each habitat and proposed the example learning method. For habitat ix , it ranks i out of all habitats, and the HSI of other 

habitats higher than habitat ix  can only be 1 2 1, ix x x −， ， . These habitats rank higher than ix , so they become the role models of ix , 

and ix  becomes  the learner. In order to explain the principle of example learning method more intuitively, we will elaborate in detail 

according to Fig. 3.  

Assuming that all individuals in the population have been ranked, 1x  is the best individual and NPx  is the worst individual. As  

shown in Fig. 3 (a), it is a random selection mode. Each of the two habitats can migrate with each other. 1x  can be replaced by any lower 

quality solution, while NPx  can migrate variable values to any better solution. Therefore, the random selection operator will cause the bad 

solution to destroy the better solution, thus reducing the population diversity of the algorithm.  Fig. 3 (b) is example learning method. It can 

be observed that only one-way migration can be carried out between individuals, that is, the poor solution can only accept variable values 

from the better solution, and the poor solution cannot affect the better solution. For example, only 1x  is ranked higher than 2x , so 2x  

can only accept features from 1x , while individuals ranked lower than 2x  can accept features from 2x , but cannot migrate to 2x . For an 

individual, those who are better than itself are role models, while those who rank lower than itself are learners. Therefore, 1x  can only be 

a role model, not a learner. NPx  can only be a learner, not a role model.  

       

(a) Random selection                                (b) Example learning 

Fig. 3  Schematic diagram of random selection operator and example learning method 

During the migration of ix , a habitat from ( 1, i -1) is randomly selected as a role model for migration. The role model jx  of ix  can 

be selected by Eq. (7): 

( (1, 1)).j round unifrnd i= −                                            (7) 

unifrnd(*) is a random number between 1 and i-1,while round(*) is an integer function that computes the ranking of sample 

individuals. In section 2.3, all the work on BBO uses random selection operators, so none of these algorithms avoids the bad influence of 

poor solutions on better ones. The comparison algorithm in this paper, PRBBO (Feng et al.  2017), takes this problem into account and 

adopts a selection method based on random topological rings, so that the habitat can only migrate between adjacent individuals . However, 
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this operation only reduces the probability of the inferior solution replacing the superior one, and does not eliminate this phenomenon. 

Moreover, the loop topology reduces  the algorithm's  ability to utilize population information, which makes the algorithm converge slowly. 

Using the example learning method to select the emigrating habitat can ensure that the migrating habitat to ix has a higher fitness than ix , 

while the better solution cannot be replaced by the poor solution, avoiding the situation that the good solution is destroyed by the poor 

solution. In addition, the example learning method does not need to calculate the emigration rate of each habitat, which reduces one 

calculation step and reduces the calculation amount. 

3.2 Hybrid migration strategy 

Section 2.2 points out that the second disadvantage of the biogeography-based optimization is the use of direct migration operators. 

This single migration method is not suitable for solving the multi-modal problem, and it is easy to make the algorithm fall into the local 

optimal value, resulting in search stagnation. Aiming at the above shortcomings, we integrate convex migration mechanism and 

opposition-based learning strategy into BBO, and obtain a hybrid migration operator. Firstly, the convex migration mechanism is used to 

replace the original migration operator. In convex migration, the variable of immigration habitat is  no longer a duplicate of the variable of 

emigration, but is replaced by a convex combination of the variables of the two habitats. In migration, the emigration habitat is selected by 

example learning method in section 2.1, and the other paternal gene is from the optimal individual of the current population. The specific 

calculation equation is shown in Eq. (8) : 

( ) ( ) (1 ) ( ).t

i best jx k x k x k =  + −                                          (8) 

Where (0,1)rand  , 
t

bestx  is the current optimal individual, t is the current iteration number, and jx  is the example selected 

through Eq. (7). It can be seen that when =0 , Eq. (8) degenerates into the original migration operator of BBO. Convex migration is 

suitable for continuous solution characteristic problems and can also be adjusted for discrete solution characteristic problems. Compared 

with the original migration operator, there are three advantages of migration using Eq. (8): (1) The good individuals are less likely to 

degenerate due to migration, because part of their original characteristics will be retained in the process of migration. (2) The poor 

individuals will accept the characteristics of the solution from at least part of the optimal individual in the migration. (3) Such migration 

ensures that the population evolves towards the direction of the optimal value of each generation, no longer blindly searches, and can 

quickly converge towards the direction of the optimal solution. 

Second, the opposition-based learning strategy is integrated into the original BBO. Convex migration mechanism can only ensure the 

selected individuals to move towards the optimal solution direction, but can not help the rest of the individuals to obtain a better 

position. Therefore, it is necessary to design the updating formula for the position of the remaining individuals.  When the random number 

generated on a variable of habitat ix  is greater than the immigration rate i , this dimensional variable still needs to be replaced. The 

specific operation is to generate the opposite individual ix  of habitat ix , and replace the variable of habitat ix  with the variable of 

opposite individual ix . Since Ergezer et al.  (2014) proved that the quas i-reflective opposite individual has a large probability to approach 

the optimal solution of the problem. The opposite individual ix  of ix  is generated by Eq. (9):  

min max( ) ( ( ), ), (1,2, , ).
2

k k
i i

x x
x k unifrnd x k k D

+
= =                                  (9) 

It can be seen from Eq. (9) that the variable value of each dimension of the opposite individual ix  is equal to the random number 

between the variable value of each dimension of ix  and the median value of the upper and lower bounds of the variable of this dimension. 

However, implementing the opposition-based learning strategy requires a lot of computing resources, and an additional fitness evaluation is 

required for each generated opposite individual. When performing evolutionary algorithms, opposite individuals cannot be generated 

randomly, only when there is  reason to believe that additional calculations will lead to better results. Although quasi-reflective opposite is 

used in literature (Ergezer et al. 2014) to generate opposite individuals, it carries out opposition-based learning for all individuals in the 

population. In fact, the top individual is not worth generating its opposite individual. EMBBO (Zhang et al. 2019a) generates its opposite 

individual for only one individual in the population, which fully reduces the complexity of the algorithm. But this individual is  not the last 

one, it is chosen at random. Therefore, it is possible to generate opposite solutions of the better solutions, thus reducing the diversity of the 

population. Therefore,  when the opposition-based learning strategy is applied to the BBO in this paper, only NP/2 individuals from the less 

adaptable part of the population are taken to generate opposite individuals. A well-adapted individual is unlikely to produce an opposite 

individual that is stronger than the original. In other words, the solution closer to the optimal value is not worth generating its opposite 

solution. Random generation of opposite individuals will not only waste the evaluation times of the function, but also reduce the quality of 
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the population, so only the opposite solution of poor individuals will be generated. 

Combined with the example learning method in section 3.1, convex migration mechanism and opposition-based learning strategy in 

section 3.2, the pseudo-code of migration operator of ZGBBO is given in Algorithm 4. 

Algorithm 4  ZGBBO migration operator 

for each habitat ix  

for each dimension variable k 

if rand(0,1)< i  

Eq. (7) is used to select example habitat jx  

use Eq. (8) for convex migration 

    else 

       use Eq. (9) to generate the opposite individual ix  of ix  

       ( ) ( )iix k x k=  

    end if 

end for 

end for 

 

3.3 Feedback differential evolution mechanism  

The improvement strategies in Sections 3.1 and 3.2 are mainly used to improve the search efficiency of the algorithm, but cannot 

effectively help the algorithm jump out of the local optimal solution. The mutation operator can add new individuals to the population, so 

the algorithm is not easy to fall into the local optimal state. However, as can be seen from section 2.2,  the random mutation method of the 

original BBO is easy to generate low-quality individuals and reduces population diversity. Random mutation can not effectively help the 

algorithm to jump out of the local optimal solution, and the calculation of species probability consumes CPU resources. Therefore, in the 

calculation process of ZGBBO, we delete the random mutation operator, which further reduces the computational complexity and 

eliminates the bad solution caused by random mutation. Meanwhile, in view of the weakness of BBO's weak search ability pointed out in 

section 2.2, this paper integrates the differential evolution algorithm into BBO, and uses DE's search ability to balance the information 

utilization capacity and new solution development capacity of BBO. Therefore, we design differential evolution with feedback mechanism 

in ZGBBO to replace the original mutation operator, so that the population can select the mutation mode intelligently according to the 

change of the current optimal value. 

In the differential evolution algorithm, each generation of population adds new genetic information to the individuals through the 

addition, subtraction and scaling operation between multiple different vectors to generate mutant individuals, so as to realize the population 

replacement. Mutation operation is a key step to help the algorithm jump out of local optimal state and search for optimal value. The 

original differential evolution algorithm has a variety of mutation mechanisms. Through comparative analysis, the characteristics and 

suitable situations of various mutation formulas are listed in Table 2. 

The vector mutation mode of the traditional differential evolution algorithm is always set in advance and will not be affected by  the 

change of the overall fitness value of the population. In other words, the whole differential evolution system is a "static" evolution process. 

However, a s ingle mutation method cannot be suitable for all objective functions and optimization problems, and a single mutation 

mechanism will lead to low adaptability and small scope of application of the algorithm. In addition, different mutation modes are 

applicable to different search states, and the population cannot adjust its search direction in time according to individual distribution in the 

search space during evolution. For example, when an individual falls into the local opt imal solution, it is very likely to bring the whole 

population into the local optimal state, so the population diversity decreases. At this time, random individuals are needed t o help the 

population jump out of the local optimal solution. In this case, the mutation approach is suitable for using DE/ rand /1 and DE/ rand /2. For 

a large search range, the population is  easy to be distributed in each region of each space during initialization, so the search directions are 

different, and the algorithm is easy to diverge. At this time, it is necessary to make the population move towards the direction of the 

optimal individual to improve the search efficiency and the convergence speed of the algorithm. In this case, mutation approaches DE/ best 

/1 and DE/ best /2 are optimal choices. Any single mutation method can not adjust the search direction of the population in time during the 

javascript:;
javascript:;


An Improved Biogeography-based Optimization with Hybrid Migration and Feedback Differential Evolution and its Performance Analysis 

12 
 

evolution process, which reduces the flexibility and convergence accuracy of the algorithm. 

Table  2  Mutation strategies of differential evolution algorithm 

Differential type Mutation formula Characteristics Suitable situation 

DE/rand/1 1 2 3( )i r r rv x F x x= + −  
High population diversity is maintained, but the 

convergence rate is slow 
Multimodal function 

DE/best/1 1 2( )t

i best r rv x F x x= + −  

The population as a whole moves towards the optimal 

solution with fast convergence speed, but it  is easy to 

fall into the local optimal solution 

Unimodal function 

DE/rand-to-best/1 1 2( )t

i i best i r rv x F x x x x= + − + −  

Combined with the characteristics of random model 

and optimal model, it  is beneficial to balance the 

convergence speed and accuracy, but it  is difficult  to 

select  parameters 

Multimodal or unimodal 

functions 

DE/best/2 1 2 3 4( )t

i best r r r rv x F x x x x= + − + −  

Similar to DE/ best /1, adding random individuals can 

maintain population diversity and have strong 

anti-rotation ability 

Multimodal functions, 

rotation problems 

DE/rand/2 1 2 3 4 5( )i r r r r rv x F x x x x= + − + −  

Similar to DE/ rand /1, the number of random 

individuals increases, which improves the search 

success rate, but the calculation time increases 

Higher dimensional 

multimodal functions 

 

If the traditional differential evolution algorithm is static, the purpose of the improvement is to make the algorithm dynamic and 

flexible,  and can dynamically choose the mutation mode according to the search environment. EMBBO (Zhang et al. 2019a), TDBBO 

(Zhao et al. 2019)  and DCGBBO (Sang et al. 2021) all add differential mutation operator to improve the search ability of original 

BBO. However, these algorithms only design dynamic transformation modes with two mutation modes at most. The algorithm is not 

universal and can not search effectively when faced with multi-modal problem. These algorithms are actually static, that is, the population 

cannot adaptively adjust the search direction. In order to make the population select the mutation formula intelligently according to the 

current evolution situation, we set up a loop with feedback mechanism. The algorithm is formed into a closed-loop evolution process so 

that the search direction can be adjusted according to the current population standard deviation. The specific operation is : the standard 

deviation of habitat suitability value is taken as feedback information, so the mutation mode is dynamically selected according to the 

standard deviation of the population in each iteration to form an evolution process with feedback mechanism. The standard deviation and 

relative standard deviation of the population are calculated as follows: 

2

1

1
( )

N

i

i

HSI
N

 
=

=  −                                             (10) 

2

max( ) , 1,2, , .

( )

i

i i

i NP

HSI




 

 =
=

 = −

                                    (11) 

Where,   is the mean value of fitness of all individuals in the population, and   is a temporary variable to measure the relative 

size of the population standard deviation. According to Eqs. (10) and (11), a differential evolution process with feedback mechanism is 

designed, and this calculation step is used to replace the mutation operator in the original BBO. Algorithm 5 describes  the specific 

calculation process of feedback differential evolution. 

The standard deviation of the population can be used to feedback the degree of aggregation and dispersion of the population, and the 

mutation mode of the algorithm can be dynamically adjusted in real time to ensure that the population always carries out global search  in 

the direction of the optimal solution. At the same time, the powerful search ability of differential evolution also enables  BBO to make full 

use of the existing population information and constantly develop new individuals in the search space. This feedback mechanis m greatly 

improves the convergence velocity and precision of the algorithm, and improves the comprehensive performance of the algorithm. 
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Algorithm 5  Feedback differential evolution mechanism in ZGBBO 

for each habitat ix  

   if rand(0,1)<Cr 

switch   

case  >=0.8 

DE/best/1 

         case  >=0.6 && <0.8 

          DE/best/2 

 case  >=0.4 && <0.6 

          DE/rand-to-best/1 

case  >=0.2 && <0.4 

DE/rand/1 

         case  <0.2 

            DE/rand/2 

end switch 

end 

end for 

 

3.4 Greedy selection for the best individual 

In order to ensure that the population always searches in a better direction, we do greedy selection of the optimal individuals in each 

generation in the algorithm, so that the optimal individuals in each generation of the population will not be worse than the previous 

generation. Algorithm 6 gives the specific operation of the greedy selection strategy for optimal individuals. 

Algorithm 6  Greedy selection strategy for optimal individuals in ZGBBO 

if fitness(
t

bestx )  fitness(
1t

bestx
−

) 

   
t

bestx =
1t

bestx
−

 

end if 

 

The reason for designing Algorithm 6 is that the optimal individuals of the current population are used in both Eq. (8) and Algorithm 5. 

Only when the best individual of each generation does not degenerate can we ensure that the population does not degenerate during 

evolution. If the optimal individual of the previous generation is better than the optimal individual of the current generation,  the population 

will search in the opposite direction and start to reverse evolution, which not only affects the convergence accuracy of the algorithm, but 

also leads to the blind search of the population in the solution space. INSBBO (An et al. 2020) uses an elite storage strategy to preserve 

superior individuals. But the way it works is that the elite of the previous generation directly replaces the inferior individuals of the current 

generation, which means that there are likely to be several identical individuals in the population, thus reducing the divers ity of the 

population. And the elite storage strategy does not guarantee that the population will search in a better direction. Therefore, this paper uses 

the optimal individual greedy choice to replace the elite storage. 

ZGBBO removes the mutation operator of the original BBO, reduces the computational cost, and replaces it with a differential 

evolution mechanism with feedback loop. We improve the migration operator of the original algorithm, design a convex migration operator, 

and incorporate a opposition-based learning strategy. Example learning method is adopted to select excellent individuals  for migration, 

which reduces the calculation of habitat emigration rate and further reduces  the computational complexity. In Algorithm 7, we describe in 

detail the pseudo-code of ZGBBO's calculation process. In each iteration of the original BBO algorithm, the immigration rate and 

emigration rate of each habitat in the population need to be recalculated. But the immigration rate and emigration rate are based on 

rankings. In other words, the immigration rate and emigration rate are only related to the ranking of habitats. According to Eq. (3), when 

the ranking of an individual is determined, the immigration and emigration rate of the individual can be determined. Therefore, in the 

ZGBBO algorithm, only the immigration rate of all habitats in the population is calculated once. 
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Algorithm 7  ZGBBO calculation process 

initialization parameters, including NP, Smax, Cr, etc 

use Eqs. (1) and (2) to generate the initial population and calculate the species number iS  in each habitat 

use Eq. (3) to calculate the immigration rate i  of each habitat 

calculate the fitness value HSI for each habitat in the initial population 

while (the termination condition is not met) 

rank all habitats according to their HSI from highest to lowest 

perform Algorithm 4 to complete the migration 

calculate the standard deviation and relative standard deviation of the population through Eqs. (10) and (11) 

perform Algorithm 5 and use feedback differential evolution to search for optimization 

calculate the fitness value HSI for each habitat in the current population 

perform Algorithm 6 to retain the optimal individual 

end while 

 

4 ZGBBO convergence proof 

In this chapter, we will use two methods to prove the convergence of ZGBBO algorithm. In section 4.1, Markov model is used to 

prove the convergence of ZGBBO. In section 4.2, a new proof method is proposed to prove that ZGBBO has global convergence again by 

establishing a sequence convergence model.

4.1 Markov model 

This section uses Markov model to prove the convergence of ZGBBO algorithm. The following explanations should be made: (1) the 

ZGBBO algorithm proposed in this paper is based on real number coding and is proposed for continuous variables, so when proving global 

convergence,  the search space of the algorithm is a continuous state space. (2) The improved BBO is composed of selection, migration and 

feedback differential evolution, which is  independent of the maximum number of iterations, and the population size of the algorithm is 

fixed. Therefore, it can be considered that the optimization process of ZGBBO satisfies the finite homogeneous Markov model. 

Theorem 1 Stability theorem of reducible random matrix (Kingman 1981). 

The n-order matrix Q  is a reducible matrix, if Q  can be obtained Eq. (12) by the same row and column transformations: 

   
.

   

C O
Q

R T

 
=  
 

                                                 (12) 

Where, C  is a primitive matrix of order ( )m m n , while R  and T  are non-zero matrices of order n m− . If 
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 ,                                 (13) 

then the matrix Q


 is a stable random matrix, and 
'=1Q Q

 
,

0
Q Q Q

 =   is uniquely determined and independent of the initial 

distribution (Kingman 1981). 

If Q


is a stable random matrix, then Q


satisfies the following conditions: 

0,1 ,1
( ) .

0,1 ,

ij

ij n n

ij

q i n j m
Q q

q i n m j n




    = =  =    
                                    (14) 

The population of ZGBBO is randomly divided into w subsets, so when the iteration number is t, the population can be expressed as 

1 2( ) { ( ), ( ), , ( )}wX t x t x t x t= . According to the above description, for sub-population ( ), 1,2, ,ix t i w= , it can be equivalent to a state on 

finite Markov chain, and ( )ip t  represents the probability of being in ( )ix t . Then the probability of moving from state ( )ix t  to state 

( )jx t  can be represented by ijp : 

0,      
.

0,    

ij

ij

p if i j

p else

= 
 

                                             (15) 

Therefore, the state transition matrix P  of Markov chain based on ZGBBO algorithm is a lower triangular matrix: 
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We make: 

22

1

2

    0

       ,

    w ww

p

S

p p

 
 =  
  

                                              (17) 

2 21 31 1( , , , ) .wS p p p
=                                             (18) 

Then, we can get: 
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                                                  (19) 

According to Eqs. (15) to (18), 1 2,S S  are non-zero matrices. The sum of probabilities of each line of Markov transition matrix is 1, 

so 11 1p = , that is, 11p is the first-order primitive matrix. Therefore, Markov state transition matrix P meets the condition requirements of 

Theorem 1, so P is a reducible random matrix. 

Therefore, the following formula can be obtained: 
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We know that 11 1p =  , so we have 11 11 1p p
 = = , and 1S O

 = . The sum of probabilities of each line of Markov state transition 

matrix is 1, so there must be 2 (1,1, ,1)S
 = . Then the following formula can be obtained: 

1  0    0

1  0    0
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                                                 (21) 

According to Eq. (21), when the evolutionary algebra t → , the probability 1 1ip
 = , where, 1,2, ,i w= . Therefore, regardless of 

the initial state, after countless iterations, each state ( )ix t  will converge to the global optimal solution with probability 1. That is, the 

following formula holds: 

lim ( ( ) (*)) 1.
t

P fitness t f
→

= =                                            (22) 

Where, ( )fitness t  is the optimal fitness value of sub-population ( )ix t , (*)f  is the global optimal value, and ( )P  is the 

probability that the optimal value of the t-th iteration of the algorithm converges to the global optimal value. According to Eq. (22), the 

ZGBBO algorithm proposed in this paper must converge to the global optimal value after several iterations, so the algorithm has global 

convergence. 

4.2 Sequence convergence model 

In this section, we will prove the global convergence of ZGBBO with a new method. For a global optimization problem, assuming 

that its optimal solution is 
*

x , then 
*( )f x  is the global optimal value. The optimal solution of ZGBBO algorithm in the t-th iteration is 

t

bestx , and ( )t

bestf x  is the current optimal value. According to the sequence convergence theorem, the equivalent condition that ZGBBO 

algorithm can find the global optimal value 
*( )f x  is that a certain ( )t

bestf x  is in the   domain of the global optimal value 
*( )f x , that 

is, 
*|| ( ) ( ) ||t

bestf x f x −  .  

During the evolution of ZGBBO, there exists a best individual in each iteration of population. The set formed by these individuals is: 

 
1 2{ , , , , , }.t T

best best best best bestX x x x x=                                       (23) 
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Where, T represents the maximum number of iterations. Thus, sequence A can be constructed according to Eq. (24) : 

1 2{ , , , }
.

( ), 1,2, ,

T

i

i best

A a a a

a f x i T

=


= =
                                          (24) 

As can be seen from section 3.4, since greedy selection is adopted for the optimal individual of each generation in ZGBBO, the 

optimal value of each generation population must be better or equivalent that of the previous  generation. Therefore, the following formula 

must be true: 

1 2 .Ta a a                                                   (25) 

With the evolution,  the population will gradually move closer to the range where the optimal solution exists, that is, the probability of 

the optimal individual in the population entering the   domain of the global optimal solution increases gradually. Eq. (26) is used to 

express the probability that the optimal value ( )t

bestf x  of the current population converges to the global optimal value:  
*{|| ( ) ( ) || }, 1,2, , .t

t bestp f x f x t T= −  =                                     (26) 

According to Eq. (25), the following relationship must exist: 

1 2 , 1,2, , .tp p p t T   =                                          (27) 

Therefore, after the t-th iteration, the probability that the current optimal value does not converge to the global optimal value is: 

1 2(1 )(1 ) (1 ).t tP p p p= − − −                                          (28) 

From Eq. (27), it can be seen that tp  is monotone and does not decrease, so the following formula is true: 

1 2 1

1 1 1 1

1

(1 )(1 ) (1 )(1 )

   (1 )(1 ) (1 )(1 )

    =(1 )

t t t

t

P p p p p

p p p p

p

−= − − − −

 − − − −

−
                                      (29) 

And since 1p  is the probability, so 10 1p  , then we have 10 1- 1p （ ） . After many iterations, Eq. (30) must hold. 

lim(1 ) 0t

t
t

p
→

− =                                                     (30) 

According to Eq. (30), after a large number of iterations, the probability that the algorithm does not converge to the optimal value is 0.  

Therefore, as the number of iteration t increases, ZGBBO will eventually converge to the global optimal value 
*( )f x  in the form of 

probability 1, so the proof is completed. 

5 Experiment and analysis 

In order to test and verify the practicality and advancement of the ZGBBO algorithm proposed in this paper, a series of comparative 

experiments are carried out in this chapter. Firstly, the parameter sensitivity of the proposed algorithm is analyzed. Secondly, the ZGBBO 

is compared with its own variant algorithm, that is, the new algorithm obtained by ZGBBO without any improved strategy is compared and 

analyzed with the complete ZGBBO, in order to prove the effectiveness and necessity of the three improved strategies proposed in this 

paper. Then, ZGBBO is compared with the original BBO and other 6 excellent BBO variants proposed in the resent 5 years. Finally, 

ZGBBO is compared with 6 new state-of-the-art population intelligence evolutionary algorithms proposed in the resent 3 years to fully 

prove its advanced nature. All experiments in this paper were carried out on the computer with Intel(R) Core(TM) I5-8500 CPU @ 3.00ghz 

processor, 8.00 GB running memory and 64-bit operating system, and the development environment was Matlab R2020a. 

At present, the test functions of evolutionary algorithms are mainly derived from Congress on Evolutionary Computation (CEC), the 

most widely used are CEC2013 (Liao et al.  2013), CEC2014 (Erlich et al. 2014) and CEC2017 (Awad et al.  2017). This paper summarizes 

and selects 24 different types of high-dimensional benchmark functions to test, and the specific information is shown in Table 3.  

Table  3  Benchmark Functions 

F Name Function Search Space f(x*) 

f1 SumSquares 2

=1

( )
D

i

i

f x ix=  [-10,10]
D
 0 

f2 Schwefel 2.22 
1 1

( ) | | | |
DD

i i

i i

f x x x
= =

= +   [-10,10]
D
 0 

f3 Zakharov 2 2 4

=1 1 1

( ) ( 0.5 ) ( 0.5 )
D D D

i i i

i i i

f x x ix ix
= =

= + +    [-5,10]
D
 0 
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f4 Schwefel 2.21 
1

( ) max{| |}
D

i
i

f x x
=

=  [-100,100]
D
 0 

f5 
Schwefel 1.2 

with noise 

2

1 1

( ) ( ) (1 0.4 | (0,1) |)
D i

j

i j

f x x N
= =

=  +   [-100,100]
D
 0 

f6 Schwefel 1.2 2

1 1

( ) ( )
D i

j

i j

f x x
= =

=   [-100,100]
D
 0 

f7 Quartic 4

1

( ) [0,10
D

i

i

f x ix random
=

= + ） [-100,100]
D
 0 

f8 Dixon-Price 2 2 2
1

2

( ) ( 2) (2 1)
D

i i

i

f x x i x x
=

= − + − −  [-10,10]
D
 0 

f9 SumPower 1

1

( ) | |
D

i

i

i

f x x
+

=

=  [-1,1]
D
 0 

f10 Exponential 
1

( ) exp(0.5 | |) 1
D

i

i

f x x
=

= −  [-1.28,1.28]
D
 0 

f11 Griwank 2

1 1

1001
( ) [ ( 100) ] [ cos( )] 1

4000

DD
i

i

i i

x
f x x

i= =

−
= − − +   [-600,600]

D
 0 

f12 Step 
2

1

( ) 0.5
D

i

i

f x x
=

= +    [-100,100]
D
 0 

f13 Rastrigin 2

1

( ) [ 10 cos(2 ) 10]
D

i i

i

f x x x
=

= − +  [-5.12,5.12]
D
 0 

f14 
Noncontinuous 

Rastrigin 

2

1

,         | |<0.5
( ) [ 10 cos(2 ) 10],

round(2 )/2,else

D
i i

i i i

i i

x x
f x z z z

x


=

= − + = 


  [-5.12,5.12]
D
 0 

f15 Ackley 
2

1 1

1
( ) 20 exp( 0.2 ) exp[ cos(2 )] 20

D D
i

i

i i

x
f x x e

D D


= =

= − − − + +   [-32,32]
D
 0 

f16 Alpine 
1

( ) | sin( ) 0.1 |
D

i i i

i

f x x x x
=

= +  [-10,10]
D
 0 

f17 Elliptic 
1

6 21

1

( ) (10 )
iD

D
i

i

f x x

−

−

=

=  [-100,100]
D
 0 

f18 Salomon 2 2( ) cos(2 ) 0.1 1
D D

i i

i i

f x x x= − +  +   [-100,100]
D
 0 

f19 Weierstrass 
max max

max
1 0 0

( ) { [ cos(2 ( 0.5))]} [ cos(2 0.5)], 0.5, 3, 20
k kD

k k k k

i

i k k

f x a b x D a b a b k 
= = =

= + −  = = =    [-0.5,0.5]
D
 0 

f20 Penalized 1 

2 2 2 2 2
1

1 1

( ) 0.1{sin (3 ) ( 1) [1 sin (3 1)] ( 1) [1 sin (2 )]} ( , 5,100, 4)

( ) ,

( , , , ) 0,

( ) ,

D D

i i D D i

i i

m

i i

i i

m

i i

f x x x x x x u x

k x a x a

u x a k m a x a

k x a x a

  
= =

= + − + + + − + +

 − 


= = −  
 − −  −

 

 
[-50,50]

D
 0 

f21 Penalized 2 

1
2 2 2 2

1 1
1 1

( ) 0.1{sin (3 ) ( 1) [1 sin (3 )] ( 1)[1 sin (2 )]} ( , 5,100, 4)

( ) ,

( , , , ) 0,

( ) ,

D D

i i D D i

i i

m

i i

i i

m

i i

f x x x x x x u x

k x a x a

u x a k m a x a

k x a x a

  
−

+
= =

= + − + + − + +

 − 


= = −  
 − −  −

 

 [-50,50]
D
 0 

f22 Levy 
1

2 2 2 2 2
1 1

1

( ) ( 1) [1 10 sin (3 )] sin (3 ) | 1 | [1 sin (3 )]
D

i i D D

i

f x x x x x x  
−

+
=

= − + + + − +  [-100,100]
D
 0 

f23 Bohachevsky_2 
1

2 2
1 1

1

( ) [ 2 0.3 cos(3 ) cos(3 ) 0.3]
D

i i i i

i

f x x x x x 
−

+ +
=

= + − +  [-100,100]
D
 0 

f24 NCRastrigin 2

1

, | | 0.5
( ) [ 10 cos(2 ) 10],

(2 ) / 2, | | 0.5

D
i i

i i i

i i i

x x
f x y y y

round x x


=

= − + =  
  [-5.12,5.12]

D
 0 

 

Among them, f1-f10 are static single objective functions with only one optimal value, which is usually used to test the convergence 

speed and optimization accuracy of the algorithm, and the execution abil ity of the algorithm. f11-f24 are high-dimensional multi-modal 

functions, and the number of their local minimum increases exponentially with the dimension. It is mainly used to test the ab ility of the 

algorithm to jump out of the local optimal state and the global search ability of the algorithm. In order to fully prove the algorithm testing 
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ability of these multi-modal functions selected in this paper, we take the two-dimens ional search space as an example to plot figures of 

several representative multi-modal functions, as shown in Fig. 4. 

 

f13                                   f16                                   f18  

 

f19                                   f22                                   f24  

Fig. 4  The two-dimensional graphs of multi-modal functions 

 

It can be seen from the six sub-graphs of Fig. 4 that these multi-modal functions have many local minima in the two-dimensional 

problem environment. As the dimension of the problem increases, the number of these local optimal values will increase e xponentially. For 

example, the function f22 has only one minimum, but it is very shallow at the minimum and there are many local minima nearby,  so it is 

difficult to find the theoretical minimum with high accuracy. Searching for the optimal solution on these irregular multi-modal problems is 

a huge challenge to the algorithms. Therefore, these benchmark functions can be used to effectively test the optimization performance of 

the algorithms. 

5.1 Parameter sensitivity analysis  

In this section, we will analyze the parameter sensitivity of the proposed algorithm. An appropriate parameter value is very important 

to the optimization performance of the algorithm, and even affects the ability of the algorithm to solve most problems.  According to 

Algorithm 5, Cr is a parameter that needs to be initialized in addition to the original parameter. Cr means the individual crossover rate in 

feedback differential evolution mechanism, which can also be understood as mutation rate in our algorithm.  For convenience, the 

maximum immigration rate I and emigration rate E are set as 1, and the optimal value of Cr is determined by adjusting the value of Cr. Cr 

value is adjusted and is set to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 , then the optimal values of the 24 benchmark functions in 

Table 3 are searched in a 50-dimensional problem environment. Other parameters for this experiment are set as follows: the population size 

NP=5D (D is the problem dimension), the maximum species number Smax=2NP, the maximum iteration times T=1000. In order to briefly 

illustrate the experimental results, the specific experimental data table is not listed and only the Friedman test results with different Cr 

values are shown. The Friedman test results are shown in Table 4. 

Table 4  Friedman test results of different Cr values 

Cr 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Mean Rank 4.5190 4.2315 4.1983 4.1444 4.0155 3.8575 3.8115 2.7838 2.5714 3.3435 4.3680 

Final Rank 11 9 8 7 6 5 4 2 1 3 10 

 

From Table 4, it can be found that when Cr value is 0.8, its Friedman test result is the best and its average ranking is the highest  
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(2.5714). When Cr value is 0.0 or 1.0, the experimental results are the worst. It shows that the lack of feedback differential evolution 

mechanism or too frequent use it will serious ly reduce the optimization efficiency of the algorithm.  In addition, the value of Cr also has a 

very serious influence on the optimization results of some problems. As shown in Fig. 5, for example, on the functions f7, f8, f9 f10, f18 

and f22, different values of Cr will significantly affect the optimization performance of the algorithm. On these functions, Cr equals 0.8 is 

the best choice. So the parameter of our algorithm is suggested that Cr is 0.8. 

 

f7                                   f8                                   f9 

 

f10                                   f18                                   f22  

Fig. 5  Optimization results of functions f7, f8, f9, f10, f18 and f22 on different crossover rates Cr  

5.2 Comparison between ZGBBO and its own variants 

In this paper, ZGBBO algorithm is compared with its own three variants to prove the necessity of three main improvement strategies. 

Since the greedy selection of optimal individual in section 3.4 makes the optimal value of each generation population not worse than that 

of the previous generation, which improves the convergence accuracy of the algorithm, the improved strategy in Section 3.4 need not be 

verified. The three variant algorithms used for comparison in this section are the algorithm formed by the lack of one of the three improved 

mechanisms in section 3.1, 3.2 and 3.3. The specific information is shown in Table 5. There are three variants: ZGBBO_1, which lacks the 

example learning method in section 3.1, that is, BBO algorithm using roulette selection operator, improved migration operator and 

feedback difference mechanism; ZGBBO_2, which lacks the improved migration operator in section 3.2, that is, BBO algorithm using 

example learning method, original migration operator and feedback difference mechanism; ZGBBO_3, lacks the feedback difference 

mechanism in section 3.3, that is, BBO algorithm using example learning method, improved migration operator and random mutation 

operator. 

Table 5  The composition of three ZGBBO’s variant algorithms 

Name Algorithm constitute Missing strategy 

ZGBBO_1 BBO+ section 3.2+ section 3.3 Example learning method 

ZGBBO_2 BBO+ section 3.1+ section 3.3 Convex migration mechanism and opposition-based learning 

ZGBBO_3 BBO+ section 3.1+ section 3.2 Feedback differential evolution 

 

5.2.1 Optimize performance comparison 

The maximum immigration rate I and maximum emigration rate E of the four ZGBBO algorithms are 1, the population size NP=5D 

(D is the problem dimens ion), the maximum species number Smax=2NP, the maximum iteration times T=1000, and the maximum mutation 

rate max 0.05m =  of ZGBBO_3. In order to avoid contingency and keep the experiment scientific,  four algorithms will independently run 
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for 50 times on each test function (D=50). The mean value (Mean) and standard deviation (Std) of the results of 50 times  will be counted. 

At the significance level of 0.05 = , Wilcoxon rank sum test is performed (Joaquín Derrac et al. 2011). The comparison results of the 

four algorithms are shown in Table 6. The bold data represents the optimal results of the four algorithms. The Wilcoxon rank sum test 

results of the 24 test functions are (w/t/l), and the representative meaning is w(+:win)/t(=:tie)/l(-:lose). For each test function in the table, 

"-" means that the performance of the contestant algorithm is worse than that of ZGBBO, "+" means that the performance of the contestant 

algorithm is superior, and "=" means that the result of the contestant algorithm is the same as that of ZGBBO, that is, there is no statistical 

significance in their performance difference. 

Table 6  Comparison between ZGBBO and three self-variant algorithms 

F 
ZGBBO_1 ZGBBO_2 ZGBBO_3 ZGBBO 

Mean Std Mean Std Mean Std Mean Std 
f1 3.54E-141 2.01E-281 2.01E-19 6.69E-39 4.59E-04 7.94E-08 1.70E-146 9.27E-293 
f2 6.80E-81 5.41E-161 8.90E-15 5.94E-29 5.23E-03 1.95E-06 1.09E-83 7.62E-167 
f3 7.84E-141 2.10E-280 2.87E-19 3.74E-38 7.69E-04 4.08E-08 1.84E-146 2.39E-292 
f4 2.72E-37 3.13E-74 3.73E+01 5.56E+01 1.01E+00 2.14E-02 9.47E-38 2.84E-75 
f5 2.90E-264 0.00E+00 1.14E-28 1.11E-57 2.05E+00 1.45E+00 1.16E-272 0.00E+00 

f6 3.07E-137 4.37E-273 6.92E-17 7.70E-34 2.96E-01 5.54E-03 9.03E-142 1.93E-282 
f7 1.26E-03 2.36E-07 3.55E-02 6.34E-05 7.34E-03 2.93E-06 1.19E-03 1.52E-07 
f8 2.09E-08 3.32E-16 8.45E+00 2.36E+01 4.50E-03 1.93E-05 2.28E-11 2.54E-22 
f9 0.00E+00 0.00E+00 1.85E-07 1.03E-13 3.90E-13 6.09E-25 0.00E+00 0.00E+00 

f10 1.78E-16 9.86E-32 6.37E-15 7.02E-30 3.57E-04 8.49E-09 1.48E-16 1.64E-33 

f11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.21E-03 2.02E-05 0.00E+00 0.00E+00 
f12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
f13 0.00E+00 0.00E+00 3.54E+01 3.93E+02 9.68E-04 3.90E-07 0.00E+00 0.00E+00 
f14 0.00E+00 0.00E+00 1.85E+01 4.51E+01 9.11E-04 2.34E-07 0.00E+00 0.00E+00 
f15 4.44E-15 0.00E+00 1.20E+01 1.24E+01 8.35E-03 7.43E-06 4.44E-15 0.00E+00 

f16 3.77E-16 7.12E-31 3.08E+00 3.23E+00 9.41E-04 1.18E-07 3.81E-62 4.34E-123 
f17 2.50E-137 1.28E-273 2.70E-15 2.24E-30 3.40E+01 1.58E+03 3.92E-142 5.64E-284 
f18 1.67E-01 3.33E-03 7.00E-01 1.00E-02 1.26E+00 1.80E-02 1.20E-01 2.00E-03 
f19 0.00E+00 0.00E+00 2.64E-02 2.25E-04 1.31E-01 7.17E-04 0.00E+00 0.00E+00 
f20 2.26E-11 1.46E-21 3.78E+00 6.66E+01 3.55E-06 5.90E-12 4.05E-15 1.47E-29 

f21 8.79E-03 3.86E-04 2.21E-03 2.41E-05 4.03E-05 7.78E-10 1.47E-09 2.44E-18 
f22 7.39E+00 7.76E+00 5.34E+04 1.21E+08 1.82E+00 2.02E+00 1.74E-01 3.16E-02 
f23 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.38E-01 1.17E-01 0.00E+00 0.00E+00 
f24 0.00E+00 0.00E+00 2.07E+01 2.83E+01 1.18E-03 2.96E-07 0.00E+00 0.00E+00 

b/w/l  0/9/15 0/3/21   0/1/23   

As can be seen from Table 6, the overall optimization performance of the three ZGBBO variants is not as good as that of ZGBBO. 

ZGBBO_1 without the example learning method has the same results on 9 problems as ZGBBO, but is inferior to ZGBBO on 15 problems. 

ZGBBO_2, which lacks convex migration mechanism and opposition-based learning, tied with ZGBBO on 3 problems, and is inferior to 

ZGBBO on 21 problems. The convergence of ZGBBO_3 without feedback differential evolution is the same as that of ZGBBO in only one 

problem, and the convergence accuracy is not as high as  that of ZGBBO on the remaining 23 problems. None of the three variants showed 

better performance than ZGBBO, indicating that the lack of any improvement strategy would reduce the search capability  of the algorithm. 

ZGBBO, which integrates all the improved mechanisms, shows obvious advantages on 24 test functions and has higher convergence 

accuracy, which indicates that the improved strategies proposed in this paper are effective and can improve the performance of the 

algorithm. Moreover, all three improvement mechanisms are indispensable. 

5.2.2 Comparison of convergence rates 

This section compares the convergence speed of ZGBBO and the three variants on different test functions, so as to compare the 

algorithm performance. The specific operation is to take the optimal value of each algorithm and the search results of each generation in 

the 50 times of operation in section 5.2.1, and plot the optimal convergence images of the four algorithms on different test functions 

(D=50), as shown in Fig. 6. 

 

f1                              f2                              f3                              f4 
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f5                              f6                              f7                             f8 

 

f9                          f10                         f11                         f12 

 

f13                          f14                         f15                         f16 

 

f17                          f18                         f19                         f20 

 

f21                          f22                         f23                         f24 

Fig. 6  Convergence of ZGBBO and three self-variant algorithms in different test functions 

As can be seen from Fig. 6, ZGBBO's convergence speed and convergence accuracy are significantly higher than those of the other 

three self-variant algorithms, no matter on single-modal functions or multi-modal functions. Therefore, the three improved strategies are all 

resultful. The overall convergence s ituation of the four variants on different test functions is roughly the same, ZGBBO has the fastest 

convergence speed and the highest accuracy, while ZGBBO_2 has the slowest convergence speed. From Fig. 6, the convergence of the four 

comparison algorithms is bas ically the same on the single-peak functions f1-f9 and multi-modal functions f16, f17 and f21. The 

convergence accuracy of ZGBBO is rapidly improved and 20 to 100 exponential levels higher than that of the other three variants. The 

optimization performance of ZGBBO_1 and ZGBBO_3 is between ZGBBO and ZGBBO_2. For the multi-modal functions f9-f11, f13-f22, 

f24, ZGBBO_2 can not jump out of the local optimal solution,  and the convergence accuracy of it is low. Therefore, the convex migration 

mechanism and opposition-based learning strategy adopted in this paper can not only accelerate the convergence speed of the algorithm, 

javascript:;
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but also effectively help the algorithm to jump out of the local optimal state. In the case of single peak, the convergence speed of 

ZGBBO_3 without feedback difference mechanism is obviously faster than that of ZGBBO_1 without example learning method. However, 

in the case of multi-modal problem, ZGBBO_3 without feedback differential mechanism can not select the mutation mode intelligently 

according to the population information,  so it is difficult to jump out of the local optimal solution and the search speed is slower than that 

of ZGBBO_1. It can be seen that the feedback difference mechanism can help the intelligent evolution of the population, change the 

direction of optimization and improve the calculation accuracy. In addition, ZGBBO_1 without example learning method has  faster 

convergence speed than ZGBBO_2 on all test functions and better search performance than ZGBBO_3 on functions f1-f3, f5-f11 and 

f16-f23. However, the convergence speed and accuracy of ZGBBO_1 are always worse than that of ZGBBO. Therefore, the example 

learning method effectively improves the convergence speed of the algorithm and enables the algorithm to converge to the global optimal 

value more quickly. 

In general, ZGBBO is the best algorithm among the four algorithms, and its competitiveness is significantly stronger than the other 

three variants. Therefore, this paper is essential to the three improvement mechanisms of BBO. In addition, ZGBBO_1 algorithm and 

ZGBBO_3 algorithm are obviously superior to ZGBBO_2 algorithm, and show obvious advantages in the convergence accuracy of most 

test functions, which indicate that the convex migration operator and opposition-based learning strategy adopted in this paper have the 

greatest influence on the performance of the improved algorithm. 

5.3 Comparison between ZGBBO and congeneric algorithms 

This section compares ZGBBO with BBO and other six state-of-the-art improved BBO algorithms. Six algorithms with the strongest 

competitiveness and obvious improvement effect in the past five years are selected for simulation experiments to compare the overall 

performance. Table 7 shows the detailed information of six BBO congeneric algorithms. 

Table 7  Details of six improved BBO algorithms 

Article Time Strategy Name 

(Feng et al. 2017) 2017 
BBO+ Random ring topology mixed migrati 

+ Adaptive Powell method 
PRBBO 

(Xiong et al. 2018) 2018 BBO+ Brain Storm Optimization (BSO)+ Greedy select BBOSB 

(Zhao et al. 2019) 2019 BBO+ Two-stage mechanism + Gaussian mutation TDBBO 

(Zhang et al. 2019b) 2019 
BBO+ Random scale differential mutation + Dynamic 

heuristic crossover + Elitist strategy 
WRBBO 

(Zhao et al. 2020) 2020 BBO+Rotation invariant migration +CMA-ES algorithm HBBO-CMA 

(Sang et al. 2021) 2021 
BBO+ Dynamic cross migration + dynamic Gaussian mutation 

+ Trigger ablation rule hierarchical tissue P-system 
DCGBBO 

5.3.1 Parameter settings 

Consistent with section 5.2, the maximum immigration rate I and maximum emigration rate E of the eight BBO algorithms are all 1, 

the population size NP=5D (D is the problem dimension), and the maximum species number Smax=2NP. Other parameters are set according 

to the original references for each algorithm, as shown in Table 8. As can be seen from Table 8, the ZGBBO proposed in this paper has few 

parameter settings, so the algorithm has good robustness. The algorithm performance is basically not affected by parameter settings. 

Table 8  Parameter setting of eight BBO algorithms 

Algorithm Parameter setting 

BBO max 0.05m =  

PRBBO max 0.005 =0.1 100m = =， ，limit  

BBOSB max 0.05 20 0.2 0.6 0.8 25e rep e onem perc p p p K= = = = = =， ， ， ， ，   

TDBBO max 0.01 =0, =1, 0.3m c = =， ， 

WRBBO 4 / 2 (1 / )d hrand t T t T  = = =  −， ，  

HBBO-CMA max 0.01 3ln 80m D= = +，  

DCGBBO max 0.01 10 0.02m K a= = =， ，  

ZGBBO (0.4, 0.9), 0.8F unifrnd Cr= =  
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5.3.2 Optimize performance comparison 

This section compares the optimization performance of ZGBBO with other seven BBO algorithms. Eight algorithms search for 

optimal solutions on 24 test functions in Table 3. The specific operation is to set the maximum evaluation times (FEs) of each test function, 

and record the optimal value searched when FEs is reached. According to the setting method of FEs of test function in CEC2017, FEs of 

each test function is equal to 104D (D is the problem dimension). Each algorithm searches for the optimal values of 24 test functions in the 

search space of D=10, D=30 and D=50 respectively. In order to avoid contingency, each algorithm will independently run for 50 times in 

different problem dimensions, and the algorithm performance of the algorithm will be showed by taking the best value (Best), mean value 

(Mean) and standard deviation (Std) as evaluation indexes. For the three evaluation indexes, the best value reflects the convergence 

accuracy of the algorithm, the mean value reflects the optimization ability of the algorithm, and the standard deviation represents the 

stability of the algorithm. Therefore, mean value are the focus of comparison. Tables 9-11 show the optimization results of eight algorithms 

on 24 test functions in 10, 30 and 50 dimensions respectively, where the best results of the eight algorithms are shown in bold. 

Table 9  The results of eight BBO algorithms (10-demensional benchmark functions) 

F Index BBO PRBBO BBOSB TDBBO WRBBO HBBO-CMA DCGBBO ZGBBO 

f1 
best 

mean 
std 

2.66E-03 
9.18E-03 
3.07E-05 

9.97E-140 
1.58E-135 
2.62E-269 

5.86E-08 
2.44E-06 
7.08E-12 

1.7E-120 
2.80E-05 
1.60E-08 

1.00E-136 
3.50E-133 
5.73E-264 

2.59E-82 
8.11E-79 
7.82E-156 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f2 
best 

mean 
std 

4.00E-02 
1.01E-01 
1.02E-03 

4.42E-81 
4.32E-79 
1.44E-156 

3.42E-04 
1.30E-03 
5.18E-07 

4.42E-63 
5.56E-05 
1.55E-07 

5.73E-77 
2.44E-75 
1.30E-149 

9.35E-49 
4.91E-47 
1.62E-92 

0.00E+00 

0.00E+00 
0.00E+00 

4.08E-222 
4.49E-219 
0.00E+00 

f3 
best 

mean 
std 

2.64E-02 
1.39E-01 
1.14E-02 

6.79E-150 
1.28E-146 
1.30E-291 

4.80E-09 
3.46E-07 
1.52E-13 

5.3E-130 
6.34E-06 
1.99E-09 

2.96E-149 
2.08E-145 
3.00E-289 

9.44E-93 
1.73E-87 
1.03E-172 

0.00E+00 
3.68E-28 
6.78E-54 

0.00E+00 
0.00E+00 
0.00E+00 

f4 
best 

mean 
std 

3.56E-01 
9.39E-01 
9.41E-02 

4.48E-39 
2.13E-37 
1.35E-73 

2.24E-03 
5.39E-03 
4.90E-06 

1.05E-02 
1.02E+00 
1.02E+00 

5.14E-42 
2.91E-32 
2.07E-62 

1.04E-24 
3.04E-22 
1.43E-42 

1.74E-06 
7.52E+00 
2.13E+02 

2.91E-142 
8.72E-137 
1.06E-271 

f5 
best 

mean 
std 

1.49E-01 
1.36E+01 
2.74E+02 

7.29E-255 
8.40E-248 
0.00E+00 

2.34E-12 
1.78E-09 
1.61E-17 

3.2E-226 
2.57E-15 
3.30E-28 

4.70E-259 
5.81E-251 
0.00E+00 

1.49E-151 
4.49E-139 
1.01E-275 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

6.15E-01 
4.30E+00 
9.29E+00 

2.44E-136 
5.00E-133 
1.88E-264 

7.76E-08 
1.56E-05 
4.93E-10 

1.5E-118 
7.36E-04 
1.72E-05 

1.95E-135 
3.74E-131 
1.82E-260 

2.47E-81 
2.15E-77 
1.88E-153 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f7 
best 

mean 
std 

5.19E-04 
4.08E-03 
7.90E-06 

7.82E-05 
5.89E-04 
5.85E-08 

9.84E-04 
7.36E-03 
2.18E-05 

8.59E-05 
8.90E-04 
6.72E-07 

1.35E-04 
5.71E-04 
5.56E-08 

3.24E-03 
2.09E-02 
1.81E-04 

4.19E-05 
4.77E-04 
7.59E-08 

2.40E-05 

3.71E-05 
1.87E-08 

f8 
best 

mean 
std 

1.62E-03 
2.30E-02 
4.34E-04 

0.00E+00 
2.18E-26 
2.38E-50 

6.87E-07 
5.54E-05 
9.94E-09 

0.00E+00 
2.03E-01 
4.07E-01 

0.00E+00 
4.40E-18 
5.08E-34 

0.00E+00 
9.37E-05 
4.39E-07 

7.22E-09 
1.50E-04 
1.71E-07 

0.00E+00 
0.00E+00 
0.00E+00 

f9 
best 

mean 
std 

4.04E-12 
1.98E-06 
1.63E-11 

8.26E-264 
5.89E-256 
0.00E+00 

1.26E-15 
1.98E-08 
7.84E-15 

4.98E-23 
2.66E-10 
1.19E-18 

8.64E-239 
3.64E-197 
0.00E+00 

5.61E-170 
6.66E-159 
0.00E+00 

9.38E-28 
6.62E-25 
1.67E-48 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

2.58E-03 
6.22E-03 
3.92E-06 

0.00E+00 
0.00E+00 
0.00E+00 

5.18E-05 
5.44E-04 
1.17E-07 

0.00E+00 
2.10E-13 
2.19E-24 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
4.44E-18 
9.86E-34 

6.40E-06 
1.77E-05 
7.54E-11 

0.00E+00 
0.00E+00 
0.00E+00 

f11 
best 

mean 
std 

1.27E-01 
3.01E-01 
9.47E-03 

0.00E+00 
1.02E-05 
5.21E-09 

4.80E-09 
3.76E-02 
4.74E-04 

7.40E-03 
1.04E-01 
5.90E-03 

3.39E-07 
1.99E-03 
1.84E-05 

1.72E-02 
7.96E-02 
1.82E-03 

0.00E+00 
7.77E-02 
5.53E-03 

0.00E+00 
0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
6.00E-02 
5.76E-02 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 
1.80E-01 
4.36E-01 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 
2.00E-02 
2.00E-02 

0.00E+00 

0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

7.13E-03 
1.05E-01 
5.20E-03 

0.00E+00 
0.00E+00 
0.00E+00 

2.33E-06 
1.92E-04 
1.09E-07 

1.99E+00 
9.19E+00 
2.85E+01 

0.00E+00 
7.21E-09 
1.11E-15 

0.00E+00 
2.94E+00 
3.02E+00 

0.00E+00 
1.51E+00 
7.53E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

2.73E-02 
9.45E-02 
2.64E-03 

0.00E+00 
2.00E-02 
2.00E-02 

4.88E-06 
1.21E-04 
1.19E-08 

4.00E+00 
9.07E+00 
1.22E+01 

2.69E-06 
4.03E-02 
3.92E-02 

0.00E+00 
2.82E-02 
1.02E-02 

0.00E+00 
1.02E+01 
1.04E+02 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

7.30E-02 
2.56E-01 
1.42E-02 

8.88E-16 
2.38E-15 
3.14E-30 

1.73E-04 
9.30E-04 
3.13E-07 

4.44E-15 
6.95E-02 
7.68E-02 

8.88E-16 
8.39E-01 
1.51E+01 

4.44E-15 
7.24E-02 
2.62E-01 

8.88E-16 
4.51E-15 
5.38E-29 

8.88E-16 
8.88E-16 
0.00E+00 

f16 
best 

mean 
std 

1.88E-03 
4.70E-03 
1.75E-06 

1.29E-159 
2.11E-23 
9.03E-45 

2.20E-05 
1.23E-04 
6.89E-09 

1.8E-103 
4.35E-02 
3.70E-02 

5.80E-126 
2.15E-11 
5.09E-21 

1.62E-91 
1.64E-03 
8.54E-05 

1.32E-05 
4.38E-03 
1.39E-04 

2.84E-221 
1.78E-16 
7.62E-32 

f17 
best 

mean 
std 

1.36E+03 
2.57E+04 
1.12E+09 

2.11E-134 
7.18E-131 
3.42E-260 

1.15E-05 
7.94E-02 
2.32E-02 

1.4E-116 
1.44E+01 
8.09E+03 

7.88E-134 
5.15E-128 
1.30E-253 

5.48E-79 
6.93E-75 
3.92E-148 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

f18 
best 

mean 
std 

3.00E-01 
6.01E-01 
1.16E-02 

9.99E-02 

9.99E-02 
1.45E-21 

2.00E-01 
2.35E-01 
3.45E-03 

9.99E-02 
2.10E-01 
1.57E-02 

9.99E-02 
2.85E-01 
2.34E-02 

9.99E-02 
2.15E-01 
5.55E-03 

2.00E-01 
3.65E-01 
2.45E-02 

9.99E-02 

9.99E-02 
8.25E-34 
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f19 
best 

mean 
std 

2.38E-01 
4.28E-01 
1.08E-02 

0.00E+00 
0.00E+00 
0.00E+00 

3.32E-02 
1.19E-01 
1.78E-03 

0.00E+00 
1.02E-02 
4.23E-03 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
4.26E-16 
1.88E-30 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

3.15E-04 
9.37E-03 
2.88E-04 

4.71E-32 
4.71E-32 
2.75E-94 

8.46E-10 
1.51E-07 
1.92E-13 

4.71E-32 
2.91E-02 
1.06E-02 

4.71E-32 
4.71E-32 
2.75E-94 

4.71E-32 
4.71E-32 
2.75E-94 

1.22E-10 
6.11E-01 
2.93E+00 

4.71E-32 
4.71E-32 
2.75E-94 

f21 
best 

mean 
std 

2.11E-03 
1.59E-02 
1.16E-04 

1.35E-32 
1.35E-32 
1.22E-94 

1.51E-09 
8.07E-07 
6.50E-12 

1.35E-32 
4.10E-03 
6.19E-04 

1.35E-32 
1.35E-32 
1.22E-94 

1.35E-32 
1.35E-32 
1.22E-94 

2.88E-10 
2.50E-03 
4.98E-05 

1.35E-32 
1.35E-32 
8.03E-96 

f22 
best 

mean 
std 

3.12E-01 
1.41E+00 
8.11E-01 

1.35E-31 
1.35E-31 
3.13E-92 

2.19E-07 
1.27E-05 
8.54E-10 

1.47E-31 
8.87E-01 
1.37E+01 

1.35E-31 
1.81E+02 
5.71E+05 

1.35E-31 
1.35E-31 
3.13E-92 

1.35E-31 
3.62E+00 
6.59E+01 

1.35E-31 
1.35E-31 
0.00E+00 

f23 
best 

mean 
std 

1.14E+00 
2.84E+00 
4.89E-01 

0.00E+00 

0.00E+00 
0.00E+00 

7.41E-07 
1.61E-01 
4.14E-01 

0.00E+00 
1.94E-01 
1.47E+00 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

1.07E-05 
1.07E-01 
2.82E-01 

0.00E+00 

0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

1.37E-02 
1.16E-01 
7.86E-03 

0.00E+00 
6.00E-02 
5.76E-02 

3.81E-06 
1.07E-04 
8.61E-09 

6.00E+00 
9.93E+00 
1.04E+01 

1.68E-06 
2.04E-02 
2.00E-02 

0.00E+00 
7.24E-03 
5.95E-04 

3.64E-07 
6.00E-02 
5.76E-02 

0.00E+00 
0.00E+00 
0.00E+00 

 

It can be seen from Table 9 that the optimization performance of the original BBO is not as good as that of the other 7 improved 

algorithms on the 10-dimensional test functions. Therefore, the research of other scholars and the algorithm proposed in this paper have 

improved the performance of the original BBO algorithm to some extent. Except for the original BBO, the other algorithms can converge 

to the optimal value accurately on at least one test function, and the standard deviation is 0. In contrast, the ZGBBO proposed in this paper 

has the best overall performance, which can accurately converge to the global optimal value every time on 15 test functions, such as 

single-peak functions  f1, f3, f5, f6, f8-f10 and multi-modal functions f11-f14, f17, f19, f23, f24, etc. Although ZGBBO does not converge 

to the global optimal value every time on the test functions f4, f7, f15, f18 and f20-f22, its mean value and standard deviation are the best 

among the eight comparison algorithms, which showing better searching ability. It can be seen that the ZGBBO not only has high 

convergence accuracy in searching, but also is not easy to fall into local optimal state when solving multimodal problems. In addition, 

PRBBO, WRBBO, HBBO-CMA and DCGBBO all show strong competitiveness in the 10-dimensional search space. The mean value of 

PRBBO converges to the optimal value successfully on five problems, and the result is the best on one problem. On four problems, 

PRBBO and ZGBBO do not converge to the optimal value,  but the obtained mean value is the same. WRBBO converges to the global 

optimal value on four problems, and the search results on two problems are consistent with ZGBBO. HBBO-CMA finds the global optimal 

value on three problems, and the mean value on five problems is the same as that of ZGBBO, which does not find the best solution. 

DCGBBO accurately finds the optimal result on five test questions, that is, the mean value and standard deviation obtained are all 0. 

Therefore,  in the 10-dimensional optimization environment, the overall performance of ZGBBO algorithm is the best. It is not easy to fall 

into the local optimal solution, and the convergence accuracy is significantly higher than the other seven comparison algorithms. 

 

Table 10  The results of eight BBO algorithms (30-demensional benchmark functions) 

F Index BBO PRBBO BBOSB TDBBO WRBBO HBBO-CMA DCGBBO ZGBBO 

f1 
best 

mean 
std 

1.50E-02 
3.90E-02 
2.54E-04 

1.80E-50 
1.68E-49 
9.05E-99 

5.01E-06 
3.61E-05 
6.80E-10 

7.32E-66 
2.35E-62 
1.0E-123 

2.34E-59 
1.41E-58 
7.41E-117 

1.74E-28 
1.93E-27 
5.48E-54 

4.30E-13 
3.42E-12 
7.82E-24 

0.00E+00 

0.00E+00 
0.00E+00 

f2 
best 

mean 
std 

9.49E-02 
1.90E-01 
1.61E-03 

2.78E-31 
5.96E-31 
4.93E-62 

1.31E-03 
3.27E-03 
1.45E-06 

4.89E-34 
1.64E-33 
9.76E-67 

1.59E-32 
4.30E-32 
3.68E-64 

2.28E-17 
1.18E-16 
5.53E-33 

1.87E-08 
8.91E-08 
3.81E-15 

8.79E-182 
2.84E-179 
0.00E+00 

f3 
best 

mean 
std 

9.16E-02 
2.20E-01 
6.13E-03 

4.12E-49 
1.78E-48 
1.40E-96 

5.79E-07 
2.67E-06 
4.44E-12 

6.45E-66 
7.39E-62 
5.9E-122 

1.91E-58 
2.02E-57 
2.57E-114 

1.39E-27 
1.41E-26 
1.21E-52 

3.77E-12 
2.59E-11 
6.36E-22 

0.00E+00 
0.00E+00 
0.00E+00 

f4 
best 

mean 
std 

1.33E+00 
1.96E+00 
1.40E-01 

5.22E-08 
8.55E-08 
4.90E-16 

1.69E-02 
2.75E-02 
2.98E-05 

1.46E+00 
4.77E+00 
2.49E+00 

1.04E-11 
3.57E-10 
8.10E-19 

1.29E-04 
8.92E-04 
1.20E-06 

2.32E+00 
3.19E+01 
3.03E+02 

5.05E-90 
3.68E-89 
1.29E-177 

f5 
best 

mean 
std 

1.19E+02 
1.43E+03 
8.85E+05 

1.71E-77 
6.93E-76 
8.54E-151 

2.23E-07 
9.09E-06 
6.92E-11 

9.9E-120 
1.6E-111 
7.6E-221 

1.39E-102 
1.73E-100 
1.33E-199 

1.83E-44 
2.33E-41 
1.72E-81 

1.50E-15 
2.90E-13 
2.55E-25 

0.00E+00 

0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

1.25E+01 
3.64E+01 
2.91E+02 

3.39E-47 
1.18E-46 
4.90E-93 

1.34E-05 
3.91E-04 
1.10E-07 

6.18E-63 
4.44E-60 
1.2E-118 

1.69E-56 
7.98E-56 
3.68E-111 

1.17E-25 
1.50E-24 
1.46E-48 

2.22E-10 
2.82E-09 
6.98E-18 

0.00E+00 
0.00E+00 
0.00E+00 

f7 
best 

mean 
std 

1.67E-03 
1.08E-02 
2.17E-05 

1.42E-03 
3.32E-03 
9.89E-07 

1.12E-02 
2.97E-02 
1.17E-04 

9.99E-04 
2.84E-03 
7.10E-07 

1.28E-03 
2.27E-03 
3.24E-07 

2.74E-02 
9.53E-02 
1.37E-03 

7.35E-04 
1.79E-03 
4.85E-07 

1.65E-04 
6.53E-04 
6.33E-08 

f8 
best 

mean 
std 

2.98E-02 
8.46E-02 
1.45E-03 

2.44E-04 
1.24E-02 
1.15E-04 

3.96E-05 
2.81E-04 
3.30E-08 

1.48E-31 
7.98E-02 
1.71E-01 

0.00E+00 
1.50E-04 
8.54E-07 

2.01E-27 
5.86E-03 
1.72E-03 

2.74E-10 
1.62E+00 
1.31E+02 

0.00E+00 
5.20E-30 
4.75E-59 
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f9 
best 

mean 
std 

2.18E-11 
2.99E-07 
2.58E-13 

1.45E-128 
3.11E-124 
6.36E-247 

2.08E-19 
1.45E-09 
2.00E-17 

1.13E-39 
5.83E-22 
1.51E-41 

5.17E-145 
2.00E-127 
1.48E-252 

7.63E-101 
5.30E-93 
2.29E-184 

1.37E-22 
7.35E-20 
2.47E-38 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

7.54E-03 
1.16E-02 
3.61E-06 

2.22E-16 
2.22E-16 
0.00E+00 

5.02E-04 
1.34E-03 
2.17E-07 

2.22E-16 
2.31E-16 
1.93E-33 

0.00E+00 
2.13E-16 
1.93E-33 

2.22E-16 
2.62E-16 
7.43E-33 

4.94E-03 
7.42E-03 
1.33E-06 

0.00E+00 
0.00E+00 
0.00E+00 

f11 
best 

mean 
std 

1.41E-01 
3.31E-01 
8.00E-03 

0.00E+00 
0.00E+00 
0.00E+00 

1.16E-08 
1.43E-03 
1.17E-05 

0.00E+00 
1.38E-03 
1.27E-05 

0.00E+00 
1.48E-04 
1.09E-06 

0.00E+00 
7.82E-03 
1.64E-04 

3.11E-12 
8.85E-03 
2.15E-04 

0.00E+00 
0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
2.00E-02 
2.00E-02 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.00E-01 
1.33E-01 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

3.80E-02 
1.17E-01 
2.08E-03 

5.20E-10 
2.87E-03 
7.54E-05 

8.03E-05 
5.60E-04 
1.79E-07 

1.29E+01 
3.70E+01 
1.86E+02 

2.20E+00 
6.35E+00 
3.78E+00 

8.96E+00 
2.22E+01 
4.96E+01 

3.77E-09 
2.37E+00 
5.81E+00 

0.00E+00 

0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

5.21E-02 
1.18E-01 
2.52E-03 

6.91E+00 
9.10E+00 
5.32E-01 

1.07E-04 
5.39E-04 
1.39E-07 

2.10E+01 
5.50E+01 
3.15E+02 

1.82E+01 
2.15E+01 
2.20E+00 

0.00E+00 
3.17E-01 
5.21E-01 

1.62E-10 
5.60E-01 
1.19E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

9.18E-02 
1.51E-01 
1.52E-03 

4.44E-15 
4.44E-15 
0.00E+00 

4.04E-04 
1.13E-03 
1.08E-07 

4.44E-15 
6.71E-15 
2.97E-30 

4.95E+00 
1.88E+01 
1.41E+01 

1.15E-14 
1.93E+00 
3.43E+01 

3.35E-07 
1.20E-06 
3.96E-13 

4.44E-15 
4.44E-15 
0.00E+00 

f16 
best 

mean 
std 

5.43E-03 
9.00E-03 
2.75E-06 

3.92E-07 
1.45E-04 
6.00E-09 

1.05E-04 
3.64E-04 
2.41E-08 

1.79E-34 
3.66E-05 
6.00E-08 

1.38E-26 
3.30E-07 
4.59E-12 

2.22E-15 
2.95E-02 
1.73E-02 

5.14E-06 
8.89E-02 
3.94E-01 

5.13E-181 
2.04E-101 
3.46E-201 

f17 
best 

mean 
std 

2.23E+03 
1.54E+04 
2.06E+08 

4.51E-46 
1.82E-45 
1.05E-90 

8.71E-04 
5.57E-02 
3.85E-03 

5.41E-62 
7.14E-58 
3.94E-114 

5.34E-56 
2.97E-55 
5.47E-110 

1.32E-24 
2.00E-23 
4.64E-46 

3.21E-09 
4.43E-08 
5.54E-15 

0.00E+00 
3.35E-305 
0.00E+00 

f18 
best 

mean 
std 

7.00E-01 
1.31E+00 
5.93E-02 

9.99E-02 
1.39E-01 
1.94E-03 

3.00E-01 
5.75E-01 
1.78E-02 

3.00E-01 
3.65E-01 
2.39E-03 

2.00E-01 
4.95E-01 
7.52E-02 

4.00E-01 
7.10E-01 
2.73E-02 

4.00E-01 
1.57E+00 
5.58E-01 

9.99E-02 

1.10E-01 
1.00E-03 

f19 
best 

mean 
std 

7.29E-01 
9.75E-01 
1.43E-02 

0.00E+00 
0.00E+00 
0.00E+00 

1.52E-01 
3.16E-01 
6.29E-03 

0.00E+00 
3.34E-04 
5.42E-06 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

3.48E-06 
4.13E-05 
4.70E-10 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

2.27E-04 
2.26E-03 
6.63E-06 

1.57E-32 
1.57E-32 
3.06E-95 

3.60E-09 
3.65E-08 
2.56E-15 

1.57E-32 
2.07E-03 
2.15E-04 

1.57E-32 
1.57E-32 
3.06E-95 

9.20E-30 
8.29E-03 
8.07E-04 

1.74E-12 
2.68E-01 
3.20E-01 

1.57E-32 
1.94E-32 
4.09E-65 

f21 
best 

mean 
std 

3.62E-03 
1.48E-02 
6.63E-05 

1.35E-32 
1.35E-32 
1.22E-94 

4.37E-08 
9.07E-07 
4.94E-12 

1.47E-32 
8.79E-04 
9.07E-06 

1.35E-32 
1.35E-32 
1.22E-94 

5.06E-29 
4.39E-04 
4.73E-06 

5.46E-12 
2.20E-04 
2.41E-06 

1.35E-32 
1.35E-32 
8.32E-96 

f22 
best 

mean 
std 

7.28E-01 
1.55E+00 
3.13E-01 

1.35E-31 
1.35E-31 
3.13E-92 

1.81E-06 
5.48E-06 
1.42E-11 

1.60E-31 
9.07E-04 
1.65E-05 

1.35E-31 
1.60E+04 
8.24E+08 

1.44E-16 
1.97E+01 
4.18E+03 

2.86E-22 
4.82E+02 
5.16E+05 

1.35E-31 
1.35E-31 
0.00E+00 

f23 
best 

mean 
std 

3.50E+00 
6.88E+00 
1.92E+00 

0.00E+00 

0.00E+00 
0.00E+00 

2.78E-05 
8.83E-05 
2.67E-09 

0.00E+00 
2.22E-18 
2.47E-34 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

2.09E+00 
5.96E+00 
2.58E+00 

0.00E+00 

0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

3.61E-02 
1.12E-01 
2.03E-03 

7.83E+00 
9.10E+00 
4.01E-01 

5.69E-05 
4.90E-04 
1.20E-07 

2.10E+01 
5.24E+01 
3.61E+02 

1.73E+01 
2.11E+01 
2.11E+00 

0.00E+00 
3.17E-01 
2.06E+00 

1.40E+01 
1.86E+01 
4.11E+00 

0.00E+00 
0.00E+00 
0.00E+00 

 

It can be seen from Table 10 that the ZGBBO algorithm proposed in this paper gets the best mean value among the eight algorithms 

on 23 test functions in a 30-dimens ional search space, so the overall performance is still better than the other seven BBO algorithms. With 

the increase of the dimension, the searching ability of the other seven comparison algorithms decreases to varying degrees, and only 

ZGBBO still maintains excellent search performance. For example, DCGBBO can accurately search the global optimal value on the test 

functions f1, f2, f5, f6 and f17 in the 10-dimens ional search space, the mean value and standard deviation are all 0. However, in the 

30-dimensional search environment, DCGBBO's optimization performance decreases significantly, and the convergence accuracy 

decreases rapidly, so the algorithm is not suitable for the problem environment with higher dimensions. In contrast, ZGBBO algorithm 

shows obvious advantages over other seven comparison algorithms in terms of mean values for s ingle-peak problems f1-f10. For 

multimodal problems, on all functions, ZGBBO converges to the global optimal value or the result is the best except the mean obtained on 

problem f20 is not as accurate as PRBBO and WRBBO. Especially for functions f2, f4, f16 and f17, the mean obtained by ZGBBO is at 

least 100 exponential levels higher than other algorithms. Besides, PRBBO also shows well competitiveness. For instance, with the mean 

value of seven test functions being the same as that of ZGBBO, and the result of one test function being better than that of ZGBBO. 

According to the above analysis, ZGBBO algorithm can still maintain outstanding search performance in the 30-dimensional optimization 

environment, and is more effective than other comparison algorithms. 
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Table 11  The results of eight BBO algorithms (50-demensional benchmark functions) 

F Index BBO PRBBO BBOSB TDBBO WRBBO HBBO-CMA DCGBBO ZGBBO 

f1 
best 

mean 
std 

7.74E-02 
1.31E-01 
1.58E-03 

5.69E-28 
2.59E-27 
1.15E-54 

1.37E-03 
3.05E-03 
8.14E-07 

1.20E-46 
8.00E-44 
1.65E-85 

2.23E-38 
6.03E-38 
7.86E-76 

7.76E-18 
2.79E-17 
3.56E-34 

1.42E-06 
5.32E-06 
3.35E-12 

3.16E-298 

8.65E-295 
0.00E+00 

f2 
best 

mean 
std 

2.19E-01 
3.26E-01 
2.43E-03 

6.62E-18 
9.78E-18 
4.22E-36 

1.93E-02 
3.05E-02 
2.79E-05 

8.08E-26 
3.49E-25 
3.42E-50 

1.63E-20 
3.76E-20 
1.75E-40 

6.38E-11 
1.27E-10 
1.93E-21 

4.45E-04 
7.47E-04 
2.63E-08 

6.52E-171 
1.06E-169 
0.00E+00 

f3 
best 

mean 
std 

2.01E-01 
5.21E-01 
2.78E-02 

1.28E-27 
3.06E-27 
1.48E-54 

7.51E-05 
1.36E-04 
2.28E-09 

4.00E-47 
8.34E-45 
3.36E-88 

2.38E-38 
6.99E-38 
1.08E-75 

9.99E-18 
6.52E-17 
2.02E-33 

4.51E-06 
1.58E-05 
4.34E-11 

2.23E-299 
1.19E-295 
0.00E+00 

f4 
best 

mean 
std 

2.68E+00 
3.64E+00 
3.25E-01 

3.54E-03 
4.69E-03 
5.35E-07 

8.01E-02 
1.14E-01 
1.78E-04 

3.86E+00 
7.52E+00 
3.77E+00 

3.31E-05 
8.76E-05 
3.76E-09 

5.21E-01 
2.22E+00 
1.80E+00 

3.41E+01 
4.84E+01 
5.76E+01 

3.69E-79 
6.19E-78 
4.90E-155 

f5 
best 

mean 
std 

1.53E+04 
9.15E+04 
4.11E+09 

9.24E-35 
1.39E-33 
1.96E-66 

1.54E-02 
9.09E-02 
2.93E-03 

5.57E-81 
1.48E-75 
2.28E-149 

3.57E-60 
4.51E-59 
3.60E-117 

1.85E-21 
1.51E+07 
6.08E+15 

1.31E-04 
2.91E-03 
7.99E-06 

0.00E+00 

0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

7.00E+01 
2.05E+02 
6.62E+03 

9.44E-25 
2.96E-24 
1.85E-48 

1.68E-02 
4.26E-02 
1.95E-04 

5.32E-44 
2.84E-41 
4.10E-81 

1.92E-35 
4.98E-35 
4.09E-70 

3.78E-15 
3.52E-14 
8.39E-28 

1.69E-03 
6.42E-03 
6.56E-06 

3.03E-294 
3.91E-291 
0.00E+00 

f7 
best 

mean 
std 

1.18E-02 
2.53E-02 
5.52E-05 

3.74E-03 
6.77E-03 
3.22E-06 

4.52E-02 
8.44E-02 
3.87E-04 

4.76E-03 
7.44E-03 
2.90E-06 

3.62E-03 
5.13E-03 
6.21E-07 

7.92E-02 
1.81E-01 
4.63E-03 

2.31E-03 
4.80E-03 
3.36E-06 

2.16E-04 
6.33E-04 
9.66E-08 

f8 
best 

mean 
std 

1.22E-01 
3.21E-01 
1.24E-02 

2.51E+00 
3.86E+00 
4.53E-01 

8.74E-03 
2.18E-02 
6.88E-05 

7.78E-30 
6.58E-02 
2.16E-01 

5.76E-27 
6.35E-03 
1.87E-03 

9.44E-17 
1.42E-02 
1.01E-02 

3.85E-05 
1.13E+01 
8.06E+02 

6.09E-18 
7.28E-16 
6.34E-30 

f9 
best 

mean 
std 

6.88E-12 
1.61E-07 
4.39E-14 

8.95E-83 
1.10E-80 
7.54E-160 

1.98E-19 
1.63E-09 
3.21E-17 

6.64E-46 
5.06E-36 
3.96E-70 

1.10E-108 
1.19E-100 
3.17E-199 

4.14E-80 
3.80E-69 
5.17E-136 

3.43E-20 
9.53E-17 
3.96E-32 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

1.69E-02 
2.21E-02 
8.24E-06 

2.22E-16 
2.22E-16 
0.00E+00 

7.23E-03 
1.20E-02 
6.49E-06 

2.22E-16 
3.86E-16 
9.68E-33 

2.22E-16 
2.22E-16 
0.00E+00 

3.84E-12 
8.76E-12 
1.07E-23 

6.19E-02 
8.48E-02 
1.51E-04 

0.00E+00 

1.18E-16 
1.27E-32 

f11 
best 

mean 
std 

3.05E-01 
4.43E-01 
7.06E-03 

0.00E+00 
0.00E+00 
0.00E+00 

1.63E-06 
1.83E-03 
1.73E-05 

0.00E+00 
8.38E-04 
6.60E-06 

0.00E+00 
1.18E-10 
6.98E-19 

0.00E+00 
2.17E-03 
1.65E-05 

1.46E-05 
8.17E-03 
8.61E-05 

0.00E+00 
0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
6.00E-02 
5.76E-02 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.80E-01 
2.73E-01 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

1.02E-01 
2.51E-01 
8.22E-03 

1.72E+01 
2.17E+01 
3.32E+00 

8.95E-03 
2.56E-02 
6.35E-05 

2.49E+01 
6.35E+01 
3.88E+02 

2.98E+01 
4.64E+01 
3.29E+01 

3.18E+01 
5.14E+01 
1.28E+02 

6.97E+00 
1.51E+01 
1.57E+01 

0.00E+00 
0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

1.04E-01 
2.47E-01 
5.30E-03 

2.64E+01 
2.89E+01 
9.86E-01 

7.81E-03 
2.37E-02 
8.35E-05 

4.80E+01 
1.07E+02 
1.42E+03 

4.45E+01 
5.41E+01 
1.31E+01 

2.05E-07 
1.26E+00 
4.39E+00 

5.00E+00 
1.27E+01 
9.06E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

1.19E-01 
1.79E-01 
1.35E-03 

1.87E-14 
2.50E-14 
1.72E-29 

4.52E-03 
6.73E-03 
1.25E-06 

7.99E-15 
9.06E-15 
3.74E-30 

2.00E+01 
2.01E+01 
1.19E-03 

1.12E-09 
9.08E+00 
9.88E+01 

5.06E-04 
8.56E-04 
7.09E-08 

4.44E-15 

4.44E-15 
0.00E+00 

f16 
best 

mean 
std 

1.08E-02 
1.64E-02 
5.47E-06 

3.89E-03 
4.59E-03 
1.35E-07 

2.07E-03 
3.13E-03 
5.15E-07 

3.29E-19 
1.45E-05 
1.06E-08 

6.46E-12 
3.38E-05 
1.60E-08 

8.03E-08 
4.96E-02 
3.51E-02 

8.82E-04 
2.68E-01 
1.13E+00 

9.12E-172 
1.62E-124 
3.21E-247 

f17 
best 

mean 
std 

3.09E+03 
2.30E+04 
2.31E+08 

5.16E-24 
1.48E-23 
5.72E-47 

1.37E-01 
5.44E-01 
1.17E-01 

5.32E-42 
4.55E-40 
6.19E-79 

2.85E-35 
7.56E-35 
7.49E-70 

7.65E-14 
3.41E-13 
7.68E-26 

1.53E-02 
6.41E-02 
2.71E-03 

6.74E-294 
6.93E-290 
0.00E+00 

f18 
best 

mean 
std 

1.60E+00 
1.94E+00 
4.89E-02 

2.00E-01 
2.00E-01 
1.28E-11 

8.00E-01 
8.95E-01 
9.97E-03 

4.00E-01 
4.95E-01 
8.92E-03 

9.99E-02 
5.80E-01 
9.54E-02 

1.00E+00 
1.40E+00 
1.07E-01 

7.00E-01 
3.11E+00 
4.46E+00 

9.99E-02 
1.33E-01 
2.30E-03 

f19 
best 

mean 
std 

1.22E+00 
1.67E+00 
3.11E-02 

0.00E+00 
0.00E+00 
0.00E+00 

9.57E-01 
1.38E+00 
4.90E-02 

0.00E+00 
3.78E-03 
3.31E-04 

0.00E+00 
0.00E+00 
0.00E+00 

6.55E-11 
2.75E-02 
1.72E-02 

1.85E-02 
2.93E-02 
2.63E-05 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

3.53E-04 
1.54E-03 
3.58E-06 

6.56E-28 
2.39E-27 
1.85E-54 

2.82E-07 
8.17E-07 
8.76E-14 

9.42E-33 
7.46E-03 
5.75E-04 

9.42E-33 

9.42E-33 
1.91E-96 

5.83E-19 
2.24E-02 
5.03E-03 

4.19E-08 
6.26E-02 
1.72E-02 

7.71E-22 
1.07E-14 
3.42E-27 

f21 
best 

mean 
std 

1.06E-02 
2.39E-02 
4.33E-05 

6.73E-27 
1.85E-26 
7.70E-53 

6.88E-06 
2.00E-05 
5.20E-11 

2.21E-32 
1.52E-03 
1.90E-05 

1.35E-32 
1.35E-32 
1.22E-94 

6.39E-18 
1.54E-03 
4.44E-05 

6.39E-07 
1.98E-06 
5.35E-13 

9.02E-21 
3.30E-03 
3.26E-04 

f22 
best 

mean 
std 

1.51E+00 
3.42E+00 
1.10E+00 

4.22E-23 
1.05E-22 
3.07E-45 

4.82E-05 
9.20E-05 
1.18E-09 

2.95E-31 
1.04E+00 
1.29E+01 

2.09E+01 
4.52E+04 
2.99E+09 

1.15E-01 
3.40E+03 
2.83E+07 

4.72E+02 
1.73E+04 
2.22E+08 

4.67E-17 
4.59E-01 
5.15E-01 

f23 
best 

mean 
std 

7.75E+00 
1.23E+01 
3.56E+00 

0.00E+00 
0.00E+00 
0.00E+00 

2.56E-03 
6.39E-03 
6.66E-06 

0.00E+00 
8.78E-02 
7.27E-02 

0.00E+00 
0.00E+00 
0.00E+00 

1.05E-15 
5.51E-14 
5.46E-26 

2.77E+01 
4.34E+01 
6.34E+01 

0.00E+00 
0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

1.19E-01 
2.43E-01 
4.93E-03 

2.60E+01 
2.89E+01 
1.60E+00 

1.08E-02 
2.48E-02 
6.29E-05 

4.30E+01 
8.98E+01 
1.08E+03 

4.57E+01 
5.29E+01 
8.68E+00 

1.76E-07 
6.84E-02 
1.54E+00 

5.50E+01 
1.04E+02 
5.97E+02 

0.00E+00 
0.00E+00 
0.00E+00 
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As can be seen from Table 11, in the 50-dimensional problem environment, ZGBBO still has the best overall performance among the 

eight comparison algorithms. Obvious ly, ZGBBO shows an absolute advantage on the s ingle-peak functions f1-f10, and the mean value 

obtained on all the single-peak functions is the smallest among the eight algorithms. This is because the convex migration mechanism and 

example learning approach proposed in this paper can effectively improve the speed of the population moving to the global optimal 

solution, so that the algorithm can quickly converge. On the multi-modal functions, the performance of ZGBBO on the functions f20-f22 

decreases with the increase of the problem dimension, and the result obtained is not as desired as WRBBO and PRBBO. However,  for 

other multi-modal problems, the search results of ZGBBO are the best among the eight algorithms, such as the multi-modal functions 

f11-f14, f19, f23 and f24, ZGBBO converges to the global optimal value accurately, and the mean and standard deviation are all 0, which 

showing excellent search performance. Therefore, on the 50-dimens ion problems, ZGBBO maintains good overall performance, and its 

search ability basically does not decrease with the increase of dimension, which has good robustness. 

From the overall observation of Tables  9-11, it can be found that the optimization performance of ZGBBO algorithm is less sensitive 

to the problem dimension, and it can still maintain excellent searching ability on high-dimens ional problems. For the single-peak problems, 

ZGBBO algorithm can always move to the global optimal solution quickly in high dimensional environment, and keep high calculation 

accuracy. On multi-modal problems, ZGBBO algorithm can always successfully jump out of the local optimal state and converge to the 

global optimal value in high dimensional environment. The other seven BBO variants, such as PRBBO, WRBBO and DCGBBO, have 

strong competitiveness in the 10-dimensional problem environment, and the overall performance is wonderful.  However, with the problem 

dimens ion increas ing, only PRBBO maintains better competitiveness in the 30-dimensional problem environment. In the 50-dimensional 

problem environment, The performance of these algorithms reduces quickly, and is not as stable as ZGBBO algorithm. The convergence 

accuracy of ZGBBO algorithm decreases s lightly with the increase of problem dimension. Especially for the functions  f5, f9, f11-f14, f19, 

f23 and f24, the convergence accuracy of ZGBBO algorithm is not affected by the problem dimension, and it can still find the global 

optimal value precisely. However, the convergence precis ion of the other seven comparison algorithms decreases greatly with the increase 

of the problem dimension, so these algorithms do not have ideal robustness and are not suitable for high-dimensional problems. With the 

development of modern society, the requirements of algorithms to solve practical problems in life have gradually increased, and algorithms 

must be able to solve high-dimens ional problems effectively. The ZGBBO algorithm proposed in this paper maintains excellent 

optimization performance in high dimensions. Therefore,  ZGBBO algorithm is more advanced and effective, which is worth adopting and 

promoting. 

In order to fully compare the overall performance of the eight BBO algorithms, Friedman test is performed on the eight algorithms 

according to the optimization results of the algorithms in Table 11 in a 50-dimensional search environment. The specific results are shown 

in Table 12 and Fig. 7. 

It can be seen from Table 12 that the search results of ZGBBO algorithm on 21 test functions are the best among eight BBO 

algorithms, and the search results only on functions f20-f22 are not as  ideal as other algorithms. According to the average ranking of eight 

algorithms in Fig. 7, PRBBO and WRBBO are two BBO variant algorithms with strong competitiveness, which are effective and advanced 

among BBO improved algorithms. However, the DCGBBO algorithm proposed in 2021 is only better than BBO algorithm in the search  

results, so its competitiveness is weak. According to Table 12 and Fig. 7, ZGBBO ranks  the highest in average and the first in total among 

the eight comparison algorithms, which has the best overall performance. Therefore, ZGBBO is an advanced algorithm with stron g 

competitiveness and high optimization performance. 

Table 12  The Friedman test of eight BBO algorithms according to the Table 11 

 BBO PRBBO BBOSB TDBBO WRBBO HBBO-CMA DCGBBO ZGBBO 

f1 8 4 7 2 3 5 6 1 

f2 8 4 7 2 3 5 6 1 

f3 8 4 7 2 3 5 6 1 

f4 6 3 4 7 2 5 8 1 

f5 7 4 6 2 3 8 5 1 

f6 8 4 7 2 3 5 6 1 

f7 6 4 7 5 3 8 2 1 
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f8 6 7 4 5 2 3 8 1 

f9 8 3 7 5 2 4 6 1 

f10 7 2 6 4 2 5 8 1 

f11 8 2 5 4 3 6 7 1 

f12 7 1 1 8 1 1 1 1 

f13 3 5 2 8 6 7 4 1 

f14 3 6 2 8 7 4 5 1 

f15 6 3 5 2 8 7 4 1 

f16 6 5 4 2 3 7 8 1 

f17 8 4 7 2 3 5 6 1 

f18 7 2 5 3 4 6 8 1 

f19 8 1 7 4 1 5 6 1 

f20 5 2 4 6 1 7 8 3 

f21 8 2 4 5 1 6 3 7 

f22 5 1 2 4 8 6 7 3 

f23 7 1 5 6 1 4 8 1 

f24 3 5 2 7 6 4 8 1 

Mean Rank 6.50 3.2917 4.88 4.38 3.2917 5.33 6.00 1.42 

Final Rank 8 2 5 4 2 6 7 1 

 

 

Fig. 7  Average ranking of eight BBO algorithms 

5.3.3 Comparison of convergence rates 

The experiment in this section is to compare the convergence speed of ZGBBO and other seven BBO variant algorithms on 24 

different test functions in 50 dimensions, so as to compare the algorithm performance. The specific operation is to set the maximum 

number of iterations T=1000 and the population size NP=5D. Each algorithm is run independently for 50 times. The optimal running result 

and the search results of each generation are taken to plot the optimal convergence images of the eight algorithms on different test 

functions, as shown in Fig. 8. 

 

f1                              f2                              f3                             f4 
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f5                              f6                              f7                             f8 

 

f9                             f10                             f11                            f12 

 

f13                             f14                             f15                            f16 

 

f17                             f18                             f19                            f20 

 

f21                             f22                             f23                            f24 

Fig. 8  Convergence of eight BBO algorithms on different  test functions 

It can be observed from the 24 sub-graphs in Fig. 8, the convergence speed of the ZGBBO algorithm proposed in this paper is 

significantly faster than that of other seven comparison algorithms on 20 test functions, which showing obvious advantages. On the 

single-peak functions f1-f7, f9 and f10, ZGBBO rapidly converges to the global optimal solution from the beginning of iteration, and the 

convergence precision is 10 to 150 exponential levels higher than other algorithms. On the function f8, ZGBBO's convergence speed is not 

as fast as TDBBO and WRBBO, but it is better than the other five algorithms. Therefore, ZGBBO is more competitive than other BBO 

algorithms with higher search efficiency and rapider convergence rate on single-peak problems. On the multi-modal problems, ZGBBO 

also reflects a huge advantage. On the functions f11-f19, f23 and f24, the convergence rate of ZGBBO is significantly faster than that of the 

other seven BBO variants. Especially on f11, f12, f19, f23 and f24, the convergence curve of ZGBBO is almost invisible, and it rapidly 

javascript:;


An Improved Biogeography-based Optimization with Hybrid Migration and Feedback Differential Evolution and its Performance Analysis 

30 
 

approaches to the optimal value from the beginning of evolution. It can also be seen from Fig. 8 that on the multi-modal functions f11, 

f16-f19, f23 and f24, the other seven comparison algorithms fall into local optimal solution, resulting in search stagnation, while ZGBBO 

does not fall into local optimal value, and the algorithm is always in convergence state. Therefore, ZGBBO can effectively jump out of the 

local optimal solution, and the overall performance is better than other congeneric algorithms. Although ZGBBO is not the fastest 

convergent on f20-f22, it is only slower than WRBBO or TDBBO. In contrast, WRBBO and TDBBO show strong competitiveness in 

algorithm convergence speed. It is impossible for an algorithm to show optimal performance on all problems, so ZGBBO is still an 

algorithm worth adopting and developing. 

5.4 Comparison between ZGBBO and other evolutionary algorithms 

In this section, we compare the performance of ZGBBO with six state-of-the-art evolutionary algorithms proposed in the resent three 

years. Six highly advanced and competitive new population intelligence optimization algorithms are selected for comparison, they are 

electrostatic discharge algorithm (ESDA) (Houssem et al. 2019), fitness dependent optimizer (FDO) (Abdullah and Rashid 2019), artificial 

electric field algorithm (AEFA) (Anita and Yadav 2019), chimpanzee optimization algorithm (ChOA) (Khishe and Mosavi 2020), marine 

predator algorithm (MPA) (Faramarzi et al. 2020), archimedes optimization algorithm (AOA) (Hashim et al. 2021). The parameter settings 

of the six state-of-the-art evolutionary algorithms are consistent with their original references, as shown in Table 13. 

Table 13  Parameter setting of six state-of-the-art algorithms 

Article Time Algorith Parameter setting 

(Houssem et al. 2019) 2019 ESDA 1 2 30.7, 0.2, ~ ( , ), ~ ( , ), ~ ( , )N N N          = =   

(Abdullah and Rashid 2019) 2019 FDO [ 1,1], [0,1]r unifrnd fw= −    

(Anita and Yadav 2019) 2019 AEFA 0 500, 30K = =  

(Khishe and Mosavi 2020) 2020 ChOA 1 2 2, , 2 , _r rand r rand c r m Chaotic value= = = = (Chaos vector) 

(Faramarzi et al. 2020) 2020 MPA 0.5, , , 0.2P R rand r rand FADs= = = =  

(Hashim et al. 2021) 2021 AOA 1 2 3 42, 6, 2, 0.5C C C C= = = =  

 

5.4.1 Optimize performance comparison 

Consistent with section 5.3, seven algorithms search for optimization on 24 test functions in Table 3, set the maximum evaluation 

times (FEs) of each test function, and record the optimal value searched when FEs is reached. The FEs of each test function is also the 

same as section 5.3. Each algorithm searches for the optimal values of 24 test functions in the search space of D=10, D=30 and D=50 

respectively, D is the problem dimension. Similarly, in order to avoid contingency, each algorithm is independently run for 50 times on 

different problem dimensions, and the best result (Best), mean value (Mean) and standard deviation (Std) among the 50 results as 

evaluation indexes, among which the mean value is the focus of comparison. Tables 14-16 show the optimization results of seven 

evolutionary algorithms on 24 test functions in 10 dimens ions, 30 dimensions and 50 dimensions respectively, where the best results of the 

seven algorithms are shown in bold. 

Table 14  The results of ZGBBO and six state-of-the-art algorithms (10-demensional benchmark functions) 

F Index ESDA FDO AEFA ChOA MPA AOA ZGBBO 

f1 
best 

mean 
std 

1.80E-16 
8.03E-07 
1.84E-06 

4.00E-158 
5.58E-155 
0.00E+00 

1.23E-24 
2.40E-24 
8.94E-25 

1.55E-192 
3.25E-117 
1.78E-116 

2.02E-136 
4.25E-131 
1.78E-130 

2.81E-70 
9.64E-58 
2.43E-57 

0.00E+00 

0.00E+00 
0.00E+00 

f2 
best 

mean 
std 

1.42E-08 
6.86E-04 
1.36E-03 

8.73E-113 
2.04E-109 
3.70E-109 

9.47E-13 
1.42E-12 
2.15E-13 

2.11E-113 
9.05E-76 
4.85E-75 

2.97E-76 
2.06E-70 
7.62E-70 

1.20E-36 
1.71E-30 
3.84E-30 

4.08E-222 
4.49E-219 
0.00E+00 

f3 
best 

mean 
std 

1.21E-10 
4.59E-05 
1.58E-04 

4.92E-161 
7.59E-158 
0.00E+00 

1.03E-25 
3.04E-25 
9.38E-26 

1.22E-206 
6.89E-126 
3.77E-125 

8.80E-140 
2.59E-133 
1.01E-132 

3.79E-88 
8.05E-62 
3.60E-61 

0.00E+00 
0.00E+00 
0.00E+00 

f4 
best 

mean 
std 

4.38E-05 
2.08E-03 
2.07E-03 

1.73E-64 
5.35E-64 
4.61E-64 

1.70E-13 
3.50E-13 
6.11E-14 

6.73E-76 
2.17E-32 
1.12E-31 

9.33E-56 
2.31E-53 
8.85E-53 

3.70E-17 
1.39E-14 
5.00E-14 

2.91E-142 

8.72E-137 
1.06E-271 

f5 
best 

mean 
std 

1.13E-23 
2.04E-07 
6.69E-07 

3.03E-184 
2.05E-177 
0.00E+00 

4.41E-46 
1.90E-21 
8.49E-21 

0.00E+00 
3.58E-220 
0.00E+00 

3.09E-252 
1.34E-240 
0.00E+00 

2.52E-130 
8.03E-100 
2.86E-99 

0.00E+00 
0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

2.45E-12 
2.18E-03 
3.92E-03 

2.18E-154 
1.61E-152 
2.41E-152 

1.64E-09 
2.55E-02 
5.71E-02 

1.82E-194 
3.76E-116 
2.06E-115 

6.93E-134 
1.09E-128 
2.56E-128 

4.88E-67 
2.30E-54 
1.02E-53 

0.00E+00 
0.00E+00 
0.00E+00 
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f7 
best 

mean 
std 

1.42E-05 
3.99E-04 
2.40E-04 

3.38E-01 
5.94E-01 
3.00E-01 

8.56E-04 
2.52E-03 
1.01E-03 

1.57E-07 
1.11E-06 
9.66E-06 

6.16E-06 
1.20E-04 
7.56E-05 

1.74E-04 
6.24E-04 
3.89E-04 

2.40E-05 
3.71E-05 
1.87E-08 

f8 
best 

mean 
std 

9.85E-13 
1.61E-05 
5.60E-05 

0.00E+00 
8.68E-31 
6.53E-31 

1.42E-04 
6.40E-01 
8.41E-01 

1.12E+00 
2.88E+00 
1.66E+00 

1.80E-13 
1.51E-12 
8.52E-13 

2.56E-20 
7.46E-09 
2.09E-08 

0.00E+00 
0.00E+00 
0.00E+00 

f9 
best 

mean 
std 

1.09E-30 
1.71E-11 
5.80E-11 

1.82E-196 
3.14E-194 
0.00E+00 

2.31E-08 
5.77E-07 
8.31E-07 

0.00E+00 
4.44E-183 
0.00E+00 

1.13E-263 
4.26E-235 
0.00E+00 

9.86E-148 
1.86E-110 
8.31E-110 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

3.93E-08 
8.00E-05 
1.59E-04 

2.22E-16 
2.22E-16 
0.00E+00 

5.54E-13 
7.33E-13 
1.18E-13 

2.22E-16 
3.18E-16 
1.12E-16 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
2.00E-16 
9.93E-17 

0.00E+00 
0.00E+00 
0.00E+00 

f11 
best 

mean 
std 

0.00E+00 
1.16E-04 
2.88E-04 

3.95E-02 
5.50E-02 
1.27E-02 

0.00E+00 
5.05E-03 
6.80E-03 

0.00E+00 
3.61E-02 
5.79E-02 

0.00E+00 

0.00E+00 
0.00E+00 

1.23E-02 
1.28E-01 
1.31E-01 

0.00E+00 

0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

5.76E-13 
3.57E-05 
1.32E-04 

1.92E-10 
1.04E+00 
1.03E+00 

9.95E-01 
3.13E+00 
1.42E+00 

0.00E+00 
1.94E-01 
8.81E-01 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.14E+00 
9.29E-01 

0.00E+00 
0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

3.54E-11 
1.61E-05 
4.24E-05 

0.00E+00 
2.00E-01 
4.47E-01 

1.00E+00 
4.36E+00 
2.04E+00 

0.00E+00 
6.59E-01 
1.56E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
2.05E+00 
1.54E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

2.36E-09 
1.41E-03 
1.97E-03 

4.44E-15 
4.44E-15 
0.00E+00 

5.84E-13 
7.81E-13 
1.17E-13 

4.44E-15 
5.84E+00 
8.82E+00 

8.88E-16 
8.88E-16 
0.00E+00 

4.44E-15 
5.15E-15 
1.46E-15 

8.88E-16 
8.88E-16 
0.00E+00 

f16 
best 

mean 
std 

7.64E-08 
4.92E-05 
6.16E-05 

7.29E-107 
8.73E-16 
1.39E-15 

9.06E-14 
1.39E-13 
2.51E-14 

3.67E-99 
1.07E-05 
3.46E-05 

2.40E-74 

1.14E-70 
3.79E-70 

2.77E-13 
3.54E-05 
5.71E-05 

2.84E-221 
1.78E-16 
7.62E-32 

f17 
best 

mean 
std 

2.56E-06 
1.30E+00 
3.06E+00 

2.40E-150 
9.29E-149 
1.31E-148 

5.69E+03 
9.15E+04 
8.39E+04 

6.38E-196 
2.36E-112 
1.26E-111 

5.46E-133 
8.46E-126 
2.20E-125 

5.14E-67 
1.59E-53 
6.82E-53 

0.00E+00 
0.00E+00 
0.00E+00 

f18 
best 

mean 
std 

9.11E-08 
8.71E-05 
1.33E-04 

9.99E-02 
1.80E-01 
4.47E-02 

9.99E-02 
1.68E-01 
4.41E-02 

7.96E-02 
9.92E-02 
3.71E-03 

9.99E-02 
9.99E-02 
7.06E-17 

9.99E-02 
1.60E-01 
5.03E-02 

9.99E-02 
9.99E-02 
8.25E-34 

f19 
best 

mean 
std 

2.73E-04 
1.80E-02 
1.88E-02 

0.00E+00 
0.00E+00 
0.00E+00 

4.82E-11 
1.04E-10 
3.57E-11 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

6.31E-14 
2.18E-06 
6.63E-06 

4.71E-32 
5.33E-32 
1.39E-32 

4.20E-13 
7.55E-03 
3.38E-02 

3.02E-03 
1.08E-02 
9.23E-03 

4.07E-26 
8.26E-25 
1.38E-24 

3.17E-21 
4.67E-02 
1.14E-01 

4.71E-32 
4.71E-32 
2.75E-94 

f21 
best 

mean 
std 

2.73E-23 
7.81E-06 
2.48E-05 

1.35E-32 
1.82E-32 
5.11E-33 

1.93E-23 
2.08E-08 
8.09E-08 

5.36E-01 
9.37E-01 
3.10E-01 

5.20E-25 
3.32E-23 
5.07E-23 

1.50E-23 
1.46E-10 
6.52E-10 

1.35E-32 

1.35E-32 
8.03E-96 

f22 
best 

mean 
std 

3.34E-11 
1.75E-04 
4.77E-04 

1.47E-31 
1.63E-05 
3.64E-05 

8.70E-18 
9.59E-08 
3.85E-07 

5.53E+00 
8.93E+00 
2.74E+00 

2.64E-20 
2.52E-17 
5.52E-17 

4.02E-26 
4.49E-01 
2.01E+00 

1.35E-31 
1.35E-31 
0.00E+00 

f23 
best 

mean 
std 

2.22E-16 
2.17E-03 
7.72E-03 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.34E-01 
6.00E-01 

0.00E+00 
0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

3.55E-15 
1.09E-05 
2.92E-05 

3.05E-10 
4.00E-01 
8.94E-01 

1.00E+00 
3.45E+00 
1.36E+00 

0.00E+00 
3.69E-01 
1.25E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.35E+00 
1.46E+00 

0.00E+00 
0.00E+00 
0.00E+00 

As can be seen from Table 14, in a 10-dimensional problem environment, six state-of-the-art algorithms and ZGBBO all show 

excellent optimization performance. Especially for the multimodal problem f12, all the seven algorithms successfully jump out of the local 

optimal state and converge to the global optimal value, with the mean and standard deviation equal to zero. On multimodal problem f23, 

except ESDA and AOA algorithms, which do not show good performance, the mean value and standard deviation obtained by other 

algorithms are all 0, and the theoretical optimal solution is successfully searched. In contrast, in the low-dimensional search environment, 

the MPA showes strong competitiveness, and the mean value obtained on 10 problems is better than other algorithms or the same as 

ZGBBO, and the mean value is zero on 8 problems, successfully converging to the global optimal value. The mean value of ZGBBO is 

better than that of other algorithms on 21 test functions,  and the mean value of ZGBBO on 15 functions is equal to the theoretical optimal 

value. Therefore, in the 10-dimensional problem environment, the overall performance of ZGBBO algorithm is better, and other algorithms 

also show the performance of advanced algorithms. 

Table 15  The results of ZGBBO and six state-of-the-art algorithms (30-demensional benchmark functions) 

F Index ESDA FDO AEFA ChOA MPA AOA ZGBBO 

f1 
best 

mean 
std 

1.68E-10 
4.15E-06 
6.60E-06 

5.98E-92 
2.58E-88 
5.49E-88 

1.94E-05 
6.98E-02 
1.23E-01 

8.42E-123 
1.46E-71 
4.65E-71 

2.58E-108 
3.41E-104 
1.01E-103 

6.94E-28 
5.37E-26 
1.35E-25 

0.00E+00 

0.00E+00 
0.00E+00 
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f2 
best 

mean 
std 

1.83E-05 
3.63E-03 
6.60E-03 

2.68E-39 
3.22E-38 
4.16E-38 

2.12E-12 
2.80E-12 
3.05E-13 

6.89E-70 
1.17E-44 
6.18E-44 

1.05E-59 
1.80E-56 
3.97E-56 

5.30E-17 
9.93E-16 
1.10E-15 

8.79E-182 
2.84E-179 
0.00E+00 

f3 
best 

mean 
std 

1.12E-08 
1.01E-04 
4.48E-04 

1.17E-89 
4.13E-85 
9.20E-85 

3.50E-25 
6.78E-25 
1.24E-25 

1.71E-96 
5.27E-67 
2.88E-66 

3.89E-109 
1.24E-102 
2.94E-102 

1.20E-26 
4.55E-25 
1.34E-24 

0.00E+00 
0.00E+00 
0.00E+00 

f4 
best 

mean 
std 

7.44E-05 
3.32E-03 
3.25E-03 

5.01E-04 
3.18E-03 
2.58E-03 

2.70E-13 
3.36E-13 
3.56E-14 

1.21E-32 
1.46E-16 
5.18E-16 

4.30E-41 
1.53E-39 
2.04E-39 

1.17E-03 
7.27E-03 
5.31E-03 

5.05E-90 
3.68E-89 
1.29E-177 

f5 
best 

mean 
std 

1.28E-20 
9.55E-05 
4.69E-04 

5.37E-110 
3.15E-103 
5.96E-103 

1.71E+03 
3.33E+04 
2.83E+04 

1.12E-223 
3.84E-123 
2.10E-122 

1.14E-194 
1.95E-187 
0.00E+00 

6.21E-42 
2.86E-36 
9.49E-36 

0.00E+00 
0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

8.71E-07 
1.38E-02 
3.57E-02 

3.38E-87 
5.59E-83 
1.24E-82 

1.42E+01 
2.35E+02 
1.66E+02 

1.17E-102 
1.63E-67 
8.60E-67 

5.99E-106 
1.90E-101 
4.44E-101 

6.21E-25 
7.59E-23 
2.51E-22 

0.00E+00 

0.00E+00 
0.00E+00 

f7 
best 

mean 
std 

1.02E-05 
4.89E-04 
3.62E-04 

3.69E-01 
6.54E-01 
2.56E-01 

6.56E-04 
3.05E-03 
1.95E-03 

1.02E-05 
8.91E-05 
1.08E-04 

8.43E-05 
2.46E-04 
1.28E-04 

7.35E-04 
2.22E-03 
1.27E-03 

1.65E-04 
6.53E-04 
6.33E-08 

f8 
best 

mean 
std 

5.07E-11 
1.25E-04 
2.58E-04 

3.00E-30 
9.80E-30 
6.37E-30 

7.37E+00 
3.04E+01 
1.70E+01 

1.08E+02 
1.43E+02 
2.20E+01 

3.78E-09 
3.25E-05 
1.05E-04 

1.58E-03 
7.09E-01 
1.72E+00 

0.00E+00 
5.20E-30 
4.75E-59 

f9 
best 

mean 
std 

2.63E-22 
3.38E-10 
1.27E-09 

8.41E-164 
9.15E-160 
0.00E+00 

5.59E-10 
2.68E-08 
5.54E-08 

2.71E-222 
9.72E-163 
0.00E+00 

2.95E-259 
5.79E-234 
0.00E+00 

6.27E-89 
4.11E-77 
1.11E-76 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

2.09E-07 
1.79E-04 
2.13E-04 

4.44E-16 
6.66E-16 
1.57E-16 

1.16E-12 
1.39E-12 
1.71E-13 

4.44E-16 
6.00E-16 
1.03E-16 

0.00E+00 
0.00E+00 
0.00E+00 

1.11E-15 
2.20E-15 
8.21E-16 

0.00E+00 
0.00E+00 
0.00E+00 

f11 
best 

mean 
std 

9.88E-10 
6.56E-04 
2.74E-03 

0.00E+00 
3.53E-03 
4.89E-03 

6.91E-05 
6.78E-01 
4.47E-01 

0.00E+00 
9.37E-04 
3.64E-03 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 
9.68E-03 
8.27E-03 

0.00E+00 

0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
2.50E-01 
6.39E-01 

0.00E+00 
0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

6.48E-10 
1.64E-04 
6.53E-04 

4.05E+00 
7.94E+00 
2.94E+00 

9.95E-01 
4.93E+00 
2.05E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

1.78E-15 
3.65E+00 
2.37E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

4.11E-09 
5.12E-05 
1.48E-04 

2.00E+00 
8.60E+00 
3.72E+00 

3.00E+00 
6.70E+00 
1.89E+00 

0.00E+00 
6.16E-01 
1.71E+00 

0.00E+00 
0.00E+00 
0.00E+00 

1.00E+00 
7.25E+00 
3.64E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

1.13E-06 
7.85E-04 
9.62E-04 

7.99E-15 
1.30E-14 
3.18E-15 

4.20E-13 
5.12E-13 
5.76E-14 

2.00E+01 
2.00E+01 
1.42E-03 

8.88E-16 
3.14E-15 
1.74E-15 

5.77E-14 
2.70E-13 
3.82E-13 

4.44E-15 
4.44E-15 
0.00E+00 

f16 
best 

mean 
std 

1.63E-07 
2.36E-04 
2.83E-04 

8.74E-16 
4.18E-15 
2.81E-15 

1.71E-03 
9.66E-03 
5.03E-03 

1.43E-57 
1.81E-07 
9.92E-07 

3.31E-60 
5.04E-57 
1.15E-56 

5.77E-04 
3.21E-03 
4.24E-03 

5.13E-181 

2.04E-101 
3.46E-201 

f17 
best 

mean 
std 

6.48E-05 
1.53E+01 
4.51E+01 

5.80E-86 
3.72E-82 
5.34E-82 

1.08E+05 
3.79E+05 
1.79E+05 

2.58E-93 
1.66E-67 
8.84E-67 

1.88E-104 
2.58E-99 
9.39E-99 

6.18E-24 
4.70E-22 
8.37E-22 

0.00E+00 
3.35E-305 
0.00E+00 

f18 
best 

mean 
std 

4.06E-06 
3.23E-04 
5.63E-04 

4.00E-01 
4.80E-01 
1.30E-01 

2.00E-01 
3.08E-01 
5.20E-02 

9.99E-02 
9.99E-02 
2.44E-09 

9.99E-02 
9.99E-02 
7.06E-17 

3.00E-01 
3.85E-01 
4.89E-02 

9.99E-02 
1.10E-01 
1.00E-03 

f19 
best 

mean 
std 

4.57E-03 
5.36E-02 
5.44E-02 

0.00E+00 
0.00E+00 
0.00E+00 

1.22E-10 
1.96E-10 
4.33E-11 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

1.42E-14 
3.37E-06 
7.72E-06 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

2.27E-11 
9.43E-07 
3.19E-06 

1.57E-32 
5.17E-06 
9.76E-06 

3.61E-04 
4.97E-02 
8.12E-02 

6.72E-02 
1.30E-01 
9.79E-02 

6.18E-13 
3.29E-12 
1.62E-12 

1.76E-07 
1.56E-02 
3.80E-02 

1.57E-32 
1.94E-32 
4.09E-65 

f21 
best 

mean 
std 

1.07E-11 
1.44E-05 
3.65E-05 

1.60E-32 
5.34E-19 
1.69E-18 

3.67E-05 
4.79E-01 
6.61E-01 

2.47E+00 
3.60E+00 
1.29E+00 

1.38E-11 
3.51E-11 
2.01E-11 

2.44E-06 
1.66E-03 
4.02E-03 

1.35E-32 

1.35E-32 
8.32E-96 

f22 
best 

mean 
std 

7.60E-09 
3.38E-04 
5.98E-04 

3.83E+01 
7.23E+02 
6.77E+02 

4.80E-06 
5.85E-04 
1.37E-03 

2.62E+01 
1.40E+05 
1.25E+05 

2.45E-10 
1.54E+00 
3.97E+00 

4.15E+00 
1.57E+02 
2.44E+02 

1.35E-31 
1.35E-31 
0.00E+00 

f23 
best 

mean 
std 

2.94E-08 
2.97E-03 
8.73E-03 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
2.55E-16 
1.47E-16 

0.00E+00 
0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

4.45E-10 
4.82E-05 
8.66E-05 

5.00E+00 
9.42E+00 
3.54E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
3.63E-01 
1.51E+00 

0.00E+00 
0.00E+00 
0.00E+00 

3.38E-14 
8.40E+00 
4.33E+00 

0.00E+00 
0.00E+00 
0.00E+00 

As can be seen from Table 15, in the 30-dimensional problem environment, ZGBBO algorithm maintains excellent search 

performance, and its mean values on 21 problems are optimal among seven comparison algorithms. Compared with the 10-dimensional 

problem environment, the convergence performance of ZGBBO remains  stable,  while the searching ability of the other s ix state-of-the-art 

algorithms  decreases to varying degrees. For example, the MPA obtains better results on nine test problems than the other comparison 

algorithms, which is less superior than the calculation results in the 10-dimens ional problem environment. But as advanced algorithms, 
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they still keep high convergence accuracy on some problems. For instance, for multimodal problems  f12, f14, and f23, most of the s ix 

excellent algorithms give the same results as 10 dimensions, with a mean value of zero. ChOA still has the smallest mean value on f7, and 

ESDA still has the highest convergence accuracy on f18, which is at least 4 exponential levels higher than other algorithms. In contrast, the 

convergence accuracy of ZGBBO does not decrease obvious ly, which is basically the same as the calculation result in the 10-dimensional 

problem environment. Therefore, in the 30-dimensional search environment, ZGBBO still maintains superior search performance and has 

better robustness. 

Table 16  The results of ZGBBO and six state-of-the-art algorithms (50-demensional benchmark functions) 

F Index ESDA FDO AEFA ChOA MPA AOA ZGBBO 

f1 
best 

mean 
std 

2.59E-08 
2.24E-05 
5.98E-05 

3.13E-40 
3.68E-37 
7.38E-37 

3.94E-02 
5.41E-01 
4.47E-01 

1.76E-70 
1.06E-52 
3.21E-52 

4.30E-101 
6.79E-97 
1.81E-96 

2.04E-19 
5.62E-18 
7.11E-18 

3.16E-298 
8.65E-295 
0.00E+00 

f2 
best 

mean 
std 

3.22E-05 
4.64E-03 
6.55E-03 

1.22E-19 
2.00E-18 
3.36E-18 

3.26E-12 
3.81E-12 
3.20E-13 

1.63E-42 
6.25E-34 
1.52E-33 

5.29E-58 
2.16E-53 
7.24E-53 

1.15E-11 
2.98E-11 
1.47E-11 

6.52E-171 
1.06E-169 
0.00E+00 

f3 
best 

mean 
std 

6.35E-10 
1.40E-04 
3.77E-04 

4.12E-39 
2.37E-37 
3.25E-37 

7.37E-25 
1.07E-24 
2.52E-25 

3.65E-67 
1.64E-54 
4.82E-54 

1.42E-101 
1.25E-96 
2.85E-96 

7.30E-19 
1.43E-17 
2.80E-17 

2.23E-299 

1.19E-295 
0.00E+00 

f4 
best 

mean 
std 

9.69E-05 
3.32E-03 
3.73E-03 

7.04E-01 
2.21E+00 
1.12E+00 

2.77E-13 
3.98E-13 
4.52E-14 

1.05E-14 
1.48E-12 
2.83E-12 

5.01E-37 
6.76E-36 
6.69E-36 

8.83E-02 
2.62E-01 
9.62E-02 

3.69E-79 
6.19E-78 
4.90E-155 

f5 
best 

mean 
std 

2.63E-13 
4.26E-03 
2.27E-02 

6.59E-49 
1.64E-40 
5.03E-40 

1.44E+05 
1.10E+06 
8.21E+05 

1.81E-138 
1.89E-90 
6.03E-90 

8.22E-180 
1.12E-171 
0.00E+00 

8.40E-24 
2.92E-21 
6.80E-21 

0.00E+00 
0.00E+00 
0.00E+00 

f6 
best 

mean 
std 

1.11E-09 
9.23E-02 
2.62E-01 

7.07E-36 
1.60E-33 
2.49E-33 

7.92E+02 
1.80E+03 
5.50E+02 

5.84E-65 
3.20E-49 
7.01E-49 

2.86E-97 
5.91E-94 
1.48E-93 

2.65E-16 
5.35E-15 
6.27E-15 

3.03E-294 
3.91E-291 
0.00E+00 

f7 
best 

mean 
std 

2.09E-05 
5.36E-04 
4.11E-04 

9.43E-02 
1.36E-01 
3.49E-02 

1.40E-03 
5.51E-03 
3.12E-03 

9.09E-06 
7.73E-05 
5.33E-05 

7.85E-05 
3.09E-04 
1.66E-04 

1.59E-03 
3.83E-03 
1.67E-03 

2.16E-04 
6.33E-04 
9.66E-08 

f8 
best 

mean 
std 

5.00E-07 
4.70E-04 
1.29E-03 

1.47E-17 
4.45E-12 
1.41E-11 

2.80E+02 
3.60E+02 
4.96E+01 

4.90E+01 
5.51E+02 
1.47E+02 

8.88E-07 
1.01E+00 
1.49E+00 

6.99E-02 
8.15E+00 
9.21E+00 

6.09E-18 

7.28E-16 
6.34E-30 

f9 
best 

mean 
std 

8.50E-20 
2.06E-10 
5.83E-10 

6.94E-132 
8.78E-127 
2.67E-126 

1.14E-11 
8.66E-09 
1.39E-08 

0.00E+00 
5.79E-171 
0.00E+00 

4.13E-251 
2.83E-231 
0.00E+00 

2.15E-72 
2.23E-58 
9.97E-58 

0.00E+00 
0.00E+00 
0.00E+00 

f10 
best 

mean 
std 

5.98E-07 
2.52E-04 
2.35E-04 

8.88E-16 
1.24E-15 
2.15E-16 

1.57E-12 
2.01E-12 
1.98E-13 

1.14E-16 
7.26E-16 
2.00E-16 

0.00E+00 
0.00E+00 
0.00E+00 

3.67E-13 
1.67E-12 
1.10E-12 

0.00E+00 
1.18E-16 
1.27E-32 

f11 
best 

mean 
std 

8.85E-08 
3.16E-04 
8.26E-04 

0.00E+00 
5.42E-03 
6.12E-03 

1.30E+00 
1.85E+00 
4.00E-01 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

4.44E-16 
9.90E-03 
9.07E-03 

0.00E+00 
0.00E+00 
0.00E+00 

f12 
best 

mean 
std 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
1.15E+00 
1.39E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f13 
best 

mean 
std 

6.85E-09 
7.66E-05 
2.52E-04 

1.06E+01 
2.28E+01 
1.05E+01 

0.00E+00 
4.33E+00 
2.22E+00 

0.00E+00 

0.00E+00 
0.00E+00 

0.00E+00 

0.00E+00 
0.00E+00 

2.13E-14 
1.91E+00 
1.47E+00 

0.00E+00 

0.00E+00 
0.00E+00 

f14 
best 

mean 
std 

2.87E-09 
2.63E-05 
4.37E-05 

1.60E+01 
2.30E+01 
5.41E+00 

3.00E+00 
6.45E+00 
2.21E+00 

0.00E+00 
1.80E-01 
5.42E-01 

0.00E+00 
0.00E+00 
0.00E+00 

1.00E+00 
7.40E+00 
3.95E+00 

0.00E+00 
0.00E+00 
0.00E+00 

f15 
best 

mean 
std 

4.79E-05 
1.74E-03 
2.25E-03 

7.19E-14 
1.79E-13 
1.92E-13 

4.13E-13 
4.98E-13 
4.64E-14 

6.61E-04 
1.86E+01 
5.15E+00 

8.88E-16 
4.52E-15 
6.49E-16 

1.47E-10 
1.45E-09 
2.83E-09 

4.44E-15 
4.44E-15 
0.00E+00 

f16 
best 

mean 
std 

6.00E-06 
2.81E-04 
2.56E-04 

7.20E-12 
2.37E-10 
2.79E-10 

4.64E-02 
5.17E-02 
4.62E-03 

3.88E-38 
1.46E-25 
4.04E-25 

2.81E-58 
2.04E-54 
6.40E-54 

2.76E-03 
4.51E-03 
1.38E-03 

9.12E-172 
1.62E-124 
3.21E-247 

f17 
best 

mean 
std 

2.96E-04 
1.03E+01 
2.20E+01 

4.05E-37 
1.68E-33 
3.27E-33 

2.18E+05 
6.16E+05 
3.09E+05 

6.66E-69 
7.60E-52 
2.01E-51 

4.21E-95 
2.74E-92 
7.40E-92 

3.41E-15 
5.17E-14 
7.53E-14 

6.74E-294 
6.93E-290 
0.00E+00 

f18 
best 

mean 
std 

5.54E-06 

4.51E-03 
1.81E-02 

5.00E-01 
7.00E-01 
1.05E-01 

4.13E-01 
5.81E-01 
1.10E-01 

6.62E-04 
9.35E-02 
2.57E-02 

9.99E-02 
1.07E-01 
2.54E-02 

5.00E-01 
6.00E-01 
9.73E-02 

9.99E-02 
1.33E-01 
2.30E-03 

f19 
best 

mean 
std 

1.25E-02 
1.64E-01 
2.08E-01 

0.00E+00 
1.28E-14 
1.24E-14 

1.59E-10 
3.01E-10 
6.53E-11 

0.00E+00 
2.59E-16 
8.28E-16 

0.00E+00 
0.00E+00 
0.00E+00 

3.62E-05 
5.01E-04 
1.27E-03 

0.00E+00 
0.00E+00 
0.00E+00 

f20 
best 

mean 
std 

1.38E-10 
5.88E-07 
1.48E-06 

2.41E-20 
1.82E-11 
5.77E-11 

2.10E-02 
8.72E-02 
5.51E-02 

1.14E-01 
2.86E-01 
1.26E-01 

2.15E-11 
7.20E-11 
3.25E-11 

2.81E-06 
3.17E-02 
3.76E-02 

7.71E-22 
1.07E-14 
3.42E-27 

f21 
best 

mean 
std 

3.21E-12 
6.54E-06 
1.12E-05 

3.14E-18 
3.42E-07 
1.08E-06 

2.55E+00 
5.05E+00 
1.65E+00 

2.39E+00 
6.63E+00 
2.58E+00 

3.36E-10 
1.50E-09 
7.22E-10 

4.44E-05 
4.87E-02 
7.42E-02 

9.02E-21 
3.30E-03 
3.26E-04 
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f22 
best 

mean 
std 

1.46E-08 
6.61E-04 
2.66E-03 

2.12E+03 
4.90E+03 
2.48E+03 

1.03E-03 
2.21E-01 
3.73E-01 

4.80E+01 
3.88E+05 
1.84E+05 

3.54E+01 
4.13E+01 
2.35E+00 

3.74E+01 
5.60E+02 
3.49E+02 

4.67E-17 
4.59E-01 
5.15E-01 

f23 
best 

mean 
std 

7.57E-09 
8.61E-03 
1.72E-02 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
3.69E-02 
1.15E-01 

0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 

1.67E-15 
6.09E-15 
8.62E-15 

0.00E+00 
0.00E+00 
0.00E+00 

f24 
best 

mean 
std 

2.04E-08 
5.00E-05 
1.40E-04 

1.54E+01 
2.53E+01 
1.12E+01 

1.00E+00 
6.05E+00 
2.42E+00 

0.00E+00 
6.87E-01 
1.64E+00 

0.00E+00 
0.00E+00 
0.00E+00 

2.52E-09 
7.05E+00 
4.66E+00 

0.00E+00 
0.00E+00 
0.00E+00 

 

It can be seen from Table 16 that in the 50-dimensional search environment, ZGBBO still has the best search performance among 

seven comparison algorithms, and the mean value obtained on 18 test functions is the smallest, and on nine questions is zero. This shows 

that in 50 searches,  the ZGBBO converges to the theoretical optimal value every time. The ESDA keeps the best convergence precision on 

the function f18, while the competitiveness of MPA algorithm decreases obvious ly, which only the mean and standard deviation obtained 

on the function f21 are better than that of ZGBBO. Tables 14-16 show that with the increase of problem dimension, the solving ability of 

various algorithms decreases to varying degrees. However, the algorithm performance of ZGBBO is not affected by the problem dimens ion, 

and it can still maintain outstanding search performance in high dimensional problem space. In order to fully compare the performance of 

ZGBBO with the six state-of-the art algorithms, Friedman test is executed on the seven algorithms according to the optimization results of 

the algorithms in Table 16 in a 50-dimensional search space. The specific results are shown in Table 17 and Fig. 9. 

Table 17  The Friedman test of BBO and six state-of-the-art algorithms according to the Table 16 

 ESDA FDO AEFA ChOA MPA AOA ZGBBO 

f1 6 4 7 3 2 5 1 

f2 7 4 5 3 2 6 1 

f3 7 4 5 3 2 6 1 

f4 5 7 3 4 2 6 1 

f5 6 4 7 3 2 5 1 

f6 6 4 7 3 2 5 1 

f7 3 7 6 1 2 5 4 

f8 3 2 6 7 4 5 1 

f9 6 4 7 3 2 5 1 

f10 7 4 6 3 1 5 2 

f11 4 5 7 1 1 6 1 

f12 1 1 1 1 1 7 1 

f13 4 7 6 1 1 5 1 

f14 3 7 5 4 1 6 1 

f15 6 3 4 7 2 5 1 

f16 5 4 7 3 2 6 1 

f17 6 4 7 3 2 5 1 

f18 1 7 5 2 3 6 4 

f19 7 4 5 3 1 6 1 

f20 4 2 6 7 3 5 3 

f21 3 2 6 7 1 5 4 

f22 1 6 2 7 4 5 3 

f23 6 1 7 1 1 5 1 

f24 3 7 5 4 1 6 1 

Mean Rank 4.58 4.33 5.50 3.50 1.88 5.46 1.58 

Final Rank 5 4 7 3 2 6 1 

javascript:;
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Fig. 9  Average ranking of ZGBBO and six state-of-the-art algorithms 

 

As can be seen from Table 17, the optimization result of ZGBBO algorithm on 18 benchmark functions is the best among seven 

evolutionary algorithms, and the success rate of ZGBBO algorithm in six state-of-the-art algorithms reaches 75%. According to the average 

ranking of six comparison algorithms in Fig. 9, MPA proposed in 2020 is the most competitive among all competitors, ranking only second 

to ZGBBO on average, and is an excellent algorithm among the new evolutionary algorithms proposed in recent two years. In contrast, the 

search results of AOA proposed in 2021 on 24 test functions are only better than AEFA proposed in 2019. The rest of the state-of-the-art 

algorithms show unique high performance and excellent search ability on different text functions, but they also have low convergence 

accuracy and slow search speed on other text functions, and their comprehensive competitiveness is general. According to Table 17 and Fig. 

9, ZGBBO has the best overall performance among the seven evolutionary algorithms and is more competitive than the other six 

state-of-the-art algorithms. Therefore, ZGBBO is a new evolutionary algorithm with advanced and superiority. 

5.4.2 Comparison of convergence rates 

In order to fully verify the advancement of ZGBBO, we compare the convergence rate of ZGBBO and six state-of-the-art evolutionary 

algorithms on 24 different benchmark functions of 50 dimensions in this section. If section 5.4.1 compares the convergence accuracy of the 

algorithms under the same maximum evaluation times, then this section compares the convergence speed of the algorithms under the same 

iteration times. The specific operation is the same as the section 5.2.3, the maximum iteration times T=1000 and the population size 

NP=5D are set, and each algorithm is independently run for 50 times. The optimal running result and the calculation results of each 

generation are recorded, and the optimal convergence image of seven comparison algorithms on the high-dimensional test function is 

drawn, as shown in Fig. 10. 

 

f1                              f2                              f3                             f4 

 

f5                              f6                              f7                             f8 
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f9                             f10                             f11                            f12 

 

f13                         f14                         f15                        f16 

 

f17                           f18                             19                            f20 

 

f21                           f22                            f23                            f24   

Fig. 10  Convergence of seven evolutionary algorithms on different test functions 

 

It can be observed from Fig. 10 that under the same number of evolutions, ZGBBO has a faster convergence speed than the other 6 

state-of-the-art algorithms  on 75% of the test functions. Especially for the single-peak functions  f1-f10, the convergence curve of ZGBBO 

decreases rapidly and is obviously better than other algorithms. Although the convergence speed of ZGBBO on f8 is not the fastest among 

the seven algorithms, it is second only to the electrostatic discharge algorithm. For multimodal problems, the ZGBBO algorithm combined 

with differential evolution shows outstanding performance among six new evolutionary algorithms. For example, on the multi-modal 

functions f11-f13, f15-f17, f19, f23 and f24, ZGBBO does not fall into the local optimal solution like other evolutionary algorithms, but 

rapidly converges  to the global optimal solution, and the convergence curve decreases  significantly. In contrast, the electrostatic discharge 

algorithm proposed in 2019 and the marine predator algorithm proposed in 2020 also show strong competitiveness in convergence speed. 

For example, on f11-13, f15, f19 and f23, the convergence curve of MPA almost coincides with the convergence curve of ZGBBO. On 

multi-modal function f14, the convergence curve of MPA decreases faster than that of ZGBBO, while on f20-f22, the convergence rate of 

ESDA algorithm is the most ideal among the seven comparison algorithms. Even so, the convergence speed of ZGBBO on multi-modal 

functions f14 and f20-f22 is only second to MPA or ESDA, and better than other state-of-the art algorithms. In addition, ESDA algorithm 

has the best convergence speed on 20.8% of the test questions, while ZGBBO has the fastest convergence speed on 75% of the test 

questions. Therefore, the convergence of ZGBBO is still more competitive than the other six state-of-the-art evolutionary algorithms, and 
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the algorithm has better performance on the whole. So ZGBBO is a ideal algorithm to choose and use. 

6 ZGBBO complexity analysis 

The evaluation of an algorithm includes three aspects: optimization performance, convergence speed and complexity. Previously, we 

have verified that ZGBBO has excellent optimization performance and search ability. Now, the complexity of ZGBBO is analyzed to fully 

prove the effectiveness and advancement of ZGBBO algorithm. In the same development environment, the number of function evaluations 

and the calculation design of the algorithm jointly determine the running time of the algorithm. However, in the experimental settings of 

this paper, all the algorithms set the same maximum evaluation times for each benchmark function, so the reason for ZGBBO's fast 

convergence speed and short running time is not caused by the use of more function evaluation times, but that this paper fully reduces the 

computational complexity in the search process of ZGBBO. We will analyze and discuss it in detail in this chapter. 

6.1 Time consumption 

In the experiment of the Chapter 5, we can find ZGBBO algorithm's convergence speed is quicker than the other algorithms. But  the 

algorithm convergence speed running time is short, doesn't mean algorithm complexity is low. In real life there are many problems need to 

be within a certain amount of time we find a solution. Therefore, sacrifice a lot of time to get the solution is not desirabl e. In order to verify 

that ZGBBO is also an acceptable algorithm in terms  of time consumption, we compare and analyze the running time of ZGBBO and 

original BBO. We measure the average CPU running time of each iteration when BBO and ZGBBO are solving 24 benchmark problems,  

so as to compare the results of time sacrifice of the algorithm, as shown in Fig. 11. 

As can be seen from Fig. 11, although several improvement strategies are added to ZGBBO, the time consumption of the algorithm 

does not increase. Moreover, on some functions, such as f19, ZGBBO has a shorter average running time than BBO. This is  because when 

ZGBBO adds the improved strategy, it also deletes the mutation operator and other calculation steps of the original BBO, so as  to balance 

the running time of the algorithm. Combined with the above experimental results, it can be found that ZGBBO can obtain higher precis ion 

problem solutions in the same or shorter time as the original BBO. 

 

Fig. 11  Average runtime comparisons among BBO and ZGBBO on the benchmark functions 

 

6.2 calculated amount 

To verify the comparison results in Fig. 11, we will analyze the calculation steps of ZGBBO and original BBO in depth. In order to 

facilitate intuitive comparison and understand the differences between  two algorithms, we transform the calculation steps of BBO and 

ZGBBO into flow charts, as shown in Fig. 12. Based on the observation of Fig. 12, we carry out the following analysis and discussion. 

First of all, in each iteration of the original BBO algorithm, the immigration rate and emigration rate of each habitat in the population 

need to be recalculated, so the total calculation times are 2·NP·T. But the immigration rates and emigration rates are based on rankings. In 

other words, the immigration rates and emigration rates are only related to the ranking of habitats. According to Eqs. (2) and (3), as long as 

the ranking of individuals is determined, the immigration rate and emigration rate of corresponding individual can be determined. 

Therefore, in the iteration process of ZGBBO, no matter how many times the total iteration is, the immigration rates and emigration rates 

of all habitats in the population are calculated only once. In addition, ZGBBO adopts the example learning method to select habitats for 
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migration, which does not need to calculate the emigration rate of each habitat, further reducing the calculation amount, and the total 

calculation times is NP. Therefore, compared with BBO, ZGBBO greatly reduces the operational complexity in the calculation of the 

immigration rate and the emigration rate, saving at least 2·(NP-1)·T times calculation. 

 

Fig. 12  Flowchart of BBO and ZGBBO 

 

Secondly, the mutation rate of each habitat only needs to be calculated once. According to Eqs. (5) and (6), as long as the immigration 

rate and emigration rate are determined, the mutation rate of a habitat can be obtained. Therefore, habitat mutation rate is also based on 

habitat suitability ranking and does not need to be calculated repeatedly in each iteration. However, the original BBO does not avoid 

repeated calculation, but calculates the mutation rate of each habitat in every generation. The species probability of the habitat should be 

calculated first to calculate the mutation rate, that is, the calculation times of each generation is 2·NP, so the total calculation times of 

BBO mutation operator is at least 2·NP·T. By contrast, ZGBBO directly deletes the mutation operator in the search process and uses the 

feedback differential evolution mechanism to replace it. Although the standard deviation of population suitability needs to be calculated, 

the amount of calculation is far less than the species probability. ZGBBO calculates 0.8 time's standard deviation for the whole population 

on average in each iteration, that is, the total calculation times is 0.8·T. Therefore, ZGBBO greatly reduces the computational complexity 

and saves at least 2·NP·(T-0.8) calculations in the mutation step. In addition, ZGBBO has one more judgment step than BBO in the 

migration process, but it does not introduce additional loops or add additional calculations. BBO used roulette to select the habitat to be 

emigrated, and the calculation times of each generation is NP, so the total calculation times is NP·T. Then, ZGBBO adopts the example 

learning method to select the emigration habitat. According to Eq. (7), each individual only needs to calculate once to select the habitat for 

migration. Therefore, the total calculation times of ZGBBO in the migration process is also NP·T times, and the calculation amount does 

not increase. Finally, ZGBBO adds a opposition-based learning strategy, which generates opposite individuals for the half of individuals 

with poor fitness in each iteration. The algorithm generates an opposite individuals would increase one calculation,  and the calculation 
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times of each generation would increase to NP/2, so the total calculation times is NP·T /2. Although ZGBBO increases NP·T /2 

computation in the opposition-based learning, this has been compensated in the other operators mentioned above. 

To sum up, ZGBBO reduces the computational complexity of the algorithm from several parts and achieves the purpose of reducing 

the computational amount. Although the amount of calculation is increased in the process of generating opposite individuals, it is fully 

compensated in other parts. Compared with the original BBO algorithm, the calculation times saved by ZGBBO algorithm is at least:  

2  (NP-1) T+2 NP  (T-0.8) - NP  T /2=(3.5T-1.6) NP-2T. 

7 Conclusions and future research 

In this paper, we analyze the performance deficiencies of the standard BBO algorithm, and propose a new biogeography-based 

optimization named ZGBBO. The framework of ZGBBO mainly includes three operators: selection, migration and feedback differential 

evolution. The selection operator and migration operator are used to improve the convergence accuracy and speed of the algorithm, so as to 

enhance the optimization efficiency. The feedback differential evolution is used to help the algorithm escape the local optimal solution, so 

as to enhance the optimization ability of multi-modal problems. To reduce the computational complexity, the mutation operator of BBO is 

deleted. Meanwhile, we creatively establish a population-based sequence convergence model to prove the convergence of the algorithm.  In 

order to verify the effectiveness and necessity of three improved operators, simulation experiments are carried out on ZGBBO and its three 

variants. Experimental results on 24 benchmark functions show that the three improved strategies are indispensable. In addition, ZGBBO is 

compared with seven improved BBO variants and six state-of-the-art evolutionary algorithms. On the whole,  ZGBBO has the best overall 

performance. Finally, the algorithm complexity of ZGBBO is analyzed. By comparing with the original BBO, the effectiveness of the 

proposed algorithm is fully verified. 

With the rapid development of modern society, practical problems in real life have higher and higher requirements for algorithms. 

Although the ZGBBO algorithm presented in this paper shows good results on high-dimensional test functions, it has not been applied to 

practical problems. An excellent algorithm need to serve human life. Therefore, the next step will be to further study the defects of ZGBBO 

algorithm, improve its optimization ability, and fully reduce the running time. In the future, ZGBBO will be applied to solve more complex 

practical problems, such as engineering optimization, wireless sensor network coverage, environmental monitoring, etc. 
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